// Hyperbolic Rogue -- hyperbolic graphics // Copyright (C) 2011-2018 Zeno Rogue, see 'hyper.cpp' for details namespace hr { ld ghx, ghy, ghgx, ghgy; hyperpoint ghpm = C0; void ghcheck(hyperpoint &ret, const hyperpoint &H) { if(hypot(ret[0]-ghx, ret[1]-ghy) < hypot(ghgx-ghx, ghgy-ghy)) { ghpm = H; ghgx = ret[0]; ghgy = ret[1]; } } void camrotate(ld& hx, ld& hy) { ld cam = vid.camera_angle * M_PI / 180; GLfloat cc = cos(cam); GLfloat ss = sin(cam); ld ux = hx, uy = hy * cc + ss, uz = cc - ss * hy; hx = ux / uz, hy = uy / uz; } hyperpoint gethyper(ld x, ld y) { ld hx = (x - vid.xcenter) / vid.radius; ld hy = (y - vid.ycenter) / vid.radius / vid.stretch; if(pmodel) { ghx = hx, ghy = hy; return ghpm; } if(vid.camera_angle) camrotate(hx, hy); if(euclid) return hpxy(hx * (1 + vid.alpha), hy * (1 + vid.alpha)); ld hr = hx*hx+hy*hy; if(hr > .9999 && !sphere) return Hypc; // hz*hz-(hx/(hz+alpha))^2 - (hy/(hz+alpha))^2 = // hz*hz-hr*(hz+alpha)^2 == 1 // hz*hz - hr*hr*hz*Hz ld A, B, C; ld curv = sphere ? 1 : -1; A = 1+curv*hr; B = 2*hr*vid.alpha*-curv; C = 1 - curv*hr*vid.alpha*vid.alpha; // Az^2 - Bz = C B /= A; C /= A; // z^2 - Bz = C // z^2 - Bz + (B^2/4) = C + (B^2/4) // z = (B/2) + sqrt(C + B^2/4) ld rootsign = 1; if(sphere && vid.alpha > 1) rootsign = -1; ld hz = B / 2 + rootsign * sqrt(C + B*B/4); hyperpoint H; H[0] = hx * (hz+vid.alpha); H[1] = hy * (hz+vid.alpha); H[2] = hz; return H; } void ballmodel(hyperpoint& ret, double alpha, double d, double zl) { hyperpoint H = ypush(geom3::camera) * xpush(d) * ypush(zl) * C0; ld tzh = vid.ballproj + H[2]; ld ax = H[0] / tzh; ld ay = H[1] / tzh; ld ball = vid.ballangle * M_PI / 180; ld ca = cos(alpha), sa = sin(alpha); ld cb = cos(ball), sb = sin(ball); ret[0] = ax * ca; ret[1] = ay * cb + ax * sa * sb; ret[2] = ax * sa * cb - ay * sb; } void apply_depth(hyperpoint &f, ld z) { if(vid.usingGL) f[2] = z; else { z = z * vid.radius; ld mul = stereo::scrdist / (stereo::scrdist + z); f[0] = f[0] * mul; f[1] = f[1] * mul; f[2] = vid.xres * stereo::eyewidth() / 2 / vid.radius + stereo::ipd * mul / 2; } } bool hypot_zlev(bool zlev_used, ld& d, ld zlev, ld& df, ld& zf, ld &z) { if(!zlev_used) { df = 1; zf = 0; return false; } else { // (0,0,1) -> (0, sin z, cos z) -> (sin d cos z, sin z, cos d cos z) ld z = geom3::factor_to_lev(zlev); ld tz = sin_auto(z); ld td = sin_auto(abs(d)) * cos_auto(z); ld h = hypot(td, tz); if(d > 0) d = hypot_auto(d, z); else d = -hypot_auto(d, z); zf = tz / h, df = td / h; return true; } } bool hypot_zlev(bool zlev_used, ld& d, ld zlev, ld& df, ld& zf) { ld z; return hypot_zlev(zlev_used, d, zlev, df, zf, z); } int twopoint_sphere_flips; bool twopoint_do_flips; void applymodel(hyperpoint H, hyperpoint& ret) { ld tz = euclid ? (1+vid.alpha) : vid.alpha+H[2]; if(tz < BEHIND_LIMIT && tz > -BEHIND_LIMIT) tz = BEHIND_LIMIT; if(pmodel == mdUnchanged) { for(int i=0; i<3; i++) ret[i] = H[i] / vid.radius; return; } if(pmodel == mdBall) { ld zlev = zlevel(H); using namespace hyperpoint_vec; H = H / zlev; ld zl = geom3::depth-geom3::factor_to_lev(zlev); double alpha = atan2(H[1], H[0]); double d = hdist0(H); ballmodel(ret, alpha, d, zl); ghcheck(ret,H); return; } if(pmodel == mdHemisphere) { ld ball = vid.ballangle * M_PI / 180; using namespace hyperpoint_vec; switch(cgclass) { case gcHyperbolic: { ld zl = zlevel(H); ret = H / H[2]; ret[2] = sqrt(1 - sqhypot2(ret)); ret = ret * (1 + (zl - 1) * ret[2]); break; } case gcEuclid: { // stereographic projection to a sphere auto hd = hdist0(H) / vid.euclid_to_sphere; if(hd == 0) ret = hpxyz(0, 0, -1); else { ld x = 2 * hd / (1 + hd * hd); ld y = x / hd; ret = H * x / hd / vid.euclid_to_sphere; ret[2] = (1 - y); ret = ret * (1 + (H[2]-1) * y / vid.euclid_to_sphere); } break; } case gcSphere: { ret = H; break; } } ret = rotmatrix(M_PI/2 + ball, 1, 2) * ret; ghcheck(ret, H); return; } if(pmodel == mdHyperboloidFlat) { H[2] += vid.alpha; H[0] /= H[2]; H[1] /= H[2]; H[2] = 1 - vid.alpha; ld ball = -vid.ballangle * M_PI / 180; ld cb = cos(ball), sb = sin(ball); ret[0] = H[0] / 3; ret[1] = (1 - H[2]) / 3 * cb - H[1] / 3 * sb; ret[2] = -(-H[1] / 3 * cb - (1 - H[2]) / 3 * sb); ghcheck(ret,H); return; } if(pmodel == mdHyperboloid) { ld& tz = conformal::top_z; if(H[2] > tz) { ld scale = sqrt(tz*tz-1) / hypot(H[0], H[1]); H[0] *= scale; H[1] *= scale; H[2] = tz; } ld ball = -vid.ballangle * M_PI / 180; ld cb = cos(ball), sb = sin(ball); ret[0] = H[0] / 3; ret[1] = (1 - H[2]) / 3 * cb - H[1] / 3 * sb; ret[2] = -(-H[1] / 3 * cb - (1 - H[2]) / 3 * sb); ghcheck(ret,H); return; } if(pmodel == mdDisk) { if(!vid.camera_angle) { ret[0] = H[0] / tz; ret[1] = H[1] / tz; ret[2] = vid.xres * stereo::eyewidth() / 2 / vid.radius - stereo::ipd / tz / 2; } else { ld tx = H[0]; ld ty = H[1]; ld cam = vid.camera_angle * M_PI / 180; GLfloat cc = cos(cam); GLfloat ss = sin(cam); ld ux = tx, uy = ty * cc - ss * tz, uz = tz * cc + ss * ty; ret[0] = ux / uz; ret[1] = uy / uz; ret[2] = vid.xres * stereo::eyewidth() / 2 / vid.radius - stereo::ipd / uz / 2; } return; } if(pmodel == mdFisheye) { ret[0] = H[0] / tz; ret[1] = H[1] / tz; ld hypot = sqrt(1 + ret[0]*ret[0] + ret[1]*ret[1]); ret[0] /= hypot; ret[1] /= hypot; ghcheck(ret, H); return; } ld zlev = 1; bool zlev_used = false; if(wmspatial || mmspatial) { zlev = zlevel(H); using namespace hyperpoint_vec; zlev_used = !((zlev > 1-1e-6 && zlev < 1+1e-6)); if(zlev_used) H /= zlev; } if(pmodel == mdTwoPoint || mdBandAny() || pmodel == mdSinusoidal) { // map to plane if(false) { auto p = vid.twopoint_param; ld dleft = hdist(H, xpush0(-p)); ld dright = hdist(H, xpush0(p)); ld yf = 1, zf = 0; if(zlev_used) { ld y_orig = asin_auto(H[1]); ld z; hypot_zlev(true, y_orig, zlev, yf, zf, z); dleft = hypot_auto(dleft, z); dright = hypot_auto(dright, z); } ld x = (dright*dright-dleft*dleft) / 4 / p; ld y = sqrt(dleft * dleft - (x-p)*(x-p) + 1e-9); x = -x; ret = hpxyz(x/M_PI, y*(H[1]<0?-1:1)*yf/M_PI, 0); if(zlev_used && stereo::active()) apply_depth(ret, y * zf / M_PI); } else { conformal::apply_orientation(H[0], H[1]); ld x, y, yf, zf=0; y = asin_auto(H[1]); x = asin_auto_clamp(H[0] / cos_auto(y)); if(sphere) { if(H[2] < 0 && x > 0) x = M_PI - x; else if(H[2] < 0 && x <= 0) x = -M_PI - x; } hypot_zlev(zlev_used, y, zlev, yf, zf); switch(pmodel) { case mdTwoPoint: { auto p = vid.twopoint_param; ld dleft = hypot_auto(x-p, y); ld dright = hypot_auto(x+p, y); if(sphere) { int tss = twopoint_sphere_flips; if(tss&1) { tss--; dleft = 2*M_PI - 2*p - dleft; dright = 2*M_PI - 2*p - dright; swap(dleft, dright); y = -y; } while(tss) { tss -= 2; dleft = 2*M_PI - 4*p + dleft; dright = 2*M_PI - 4*p + dright; } } x = (dright*dright-dleft*dleft) / 4 / p; y = (y>0?1:-1) * sqrt(dleft * dleft - (x-p)*(x-p) + 1e-9); break; } case mdBand: { switch(cgclass) { case gcSphere: y = atanh(sin(y)); x *= 2; y *= 2; break; case gcHyperbolic: y = 2 * atan(tanh(y/2)); x *= 2; y *= 2; break; case gcEuclid: // y = y; y *= 2; x *= 2; break; } break; } case mdBandEquiarea: { y = sin_auto(y); break; } case mdSinusoidal: { x *= cos_auto(y); break; } case mdBandEquidistant: { break; } default: { printf("unknown model\n"); } } ld yzf = y * zf; y *= yf; conformal::apply_orientation(y, x); ret = hpxyz(x / M_PI, y / M_PI, 0); if(zlev_used && stereo::active()) apply_depth(ret, yzf / M_PI); } ghcheck(ret, H); return; } if(mdAzimuthalEqui()) { ld rad = sqrt(H[0] * H[0] + H[1] * H[1]); if(rad == 0) rad = 1; ld d = hdist0(H); ld yf, zf; hypot_zlev(zlev_used, d, zlev, yf, zf); // 4 pi / 2pi = M_PI if(pmodel == 6 && sphere) d = sqrt(2*(1 - cos(d))) * M_PI / 2; else if(pmodel == 6 && !euclid) d = sqrt(2*(cosh(d) - 1)) / 1.5; ret[0] = d * yf * H[0] / rad / M_PI; ret[1] = d * yf * H[1] / rad / M_PI; ret[2] = 0; if(zlev_used && stereo::active()) apply_depth(ret, d * zf / M_PI); ghcheck(ret,H); return; } tz = H[2]+vid.alpha; if(pmodel == mdPolygonal || pmodel == mdPolynomial) { conformal::apply_orientation(H[0], H[1]); pair p = polygonal::compute(H[0]/tz, H[1]/tz); conformal::apply_orientation(p.second, p.first); ret[0] = p.first; ret[1] = p.second; ret[2] = 0; ghcheck(ret,H); return; } if(among(pmodel, mdJoukowsky, mdJoukowskyInverted)) { ld x0, y0; x0 = H[0] / tz; y0 = H[1] / tz; ld r = hypot(x0, y0); ld c = x0 / r; ld s = y0 / r; ret[0] = (r + 1/r) * c / 2; ret[1] = (r - 1/r) * s / 2; ret[2] = 0; if(pmodel == mdJoukowskyInverted) { ld r2 = sqhypot2(ret); ret[0] = ret[0] / r2; ret[1] = -ret[1] / r2; } ghcheck(ret,H); return; } if(pmodel == mdHalfplane) { // Poincare to half-plane ld x0, y0; x0 = H[0] / tz; y0 = H[1] / tz; conformal::apply_orientation(x0, y0); y0 += 1; double rad = x0*x0 + y0*y0; y0 /= -rad; x0 /= -rad; y0 += .5; conformal::apply_orientation(y0, x0); auto& ps = conformal::halfplane_scale; x0 *= ps, y0 *= ps; ret[0] = -conformal::osin + x0; if(wmspatial || mmspatial) { y0 = y0 * pow(zlev, conformal::ocos); } ret[1] = conformal::ocos + y0; ret[2] = 0; if(zlev != 1 && stereo::active()) apply_depth(ret, -y0 * geom3::factor_to_lev(zlev)); ghcheck(ret,H); return; } } // game-related graphics transmatrix View; // current rotation, relative to viewctr transmatrix cwtV = Id; // player-relative view transmatrix sphereflip; // on the sphere, flip heptspin viewctr; // heptagon and rotation where the view is centered at bool playerfound; // has player been found in the last drawing? #define eurad crossf double q3 = sqrt(double(3)); bool outofmap(hyperpoint h) { if(euclid) return h[2] < .5; // false; // h[0] * h[0] + h[1] * h[1] > 15 * eurad; else if(sphere) return h[2] < .1 && h[2] > -.1 && h[1] > -.1 && h[1] < .1 && h[0] > -.1 && h[0] < .1; else return h[2] < .5; } hyperpoint mirrorif(const hyperpoint& V, bool b) { if(b) return Mirror*V; else return V; } transmatrix mirrorif(const transmatrix& V, bool b) { if(b) return V*Mirror; else return V; } // -1 if away, 0 if not away int away(const transmatrix& V2) { return (intval(C0, V2 * xpush0(.1)) > intval(C0, tC0(V2))) ? -1 : 0; } /* double zgrad(double f1, double f2, int nom, int den) { using namespace geom3; ld fo1 = factor_to_lev(f1); ld fo2 = factor_to_lev(f2); return lev_to_factor(fo1 + (fo2-fo1) * nom / den); } */ double zgrad0(double l1, double l2, int nom, int den) { using namespace geom3; return lev_to_factor(l1 + (l2-l1) * nom / den); } bool behindsphere(const hyperpoint& h) { if(!sphere) return false; if(mdBandAny()) return false; if(vid.alpha > 1) { if(h[2] > -1/vid.alpha) return true; } if(vid.alpha <= 1) { if(h[2] < .2-vid.alpha) return true; } return false; } ld to01(ld a0, ld a1, ld x) { if(x < a0) return 0; if(x > a1) return 1; return (x-a0) / (a1-a0); } ld spherity(const hyperpoint& h) { if(!sphere) return 1; if(vid.alpha > 1) { return to01(1/vid.alpha, 1, -h[2]); } if(vid.alpha <= 1) { return to01(-1.5, 1, h[2]); } return 1; } bool behindsphere(const transmatrix& V) { return behindsphere(tC0(V)); } ld spherity(const transmatrix& V) { return spherity(tC0(V)); } bool confusingGeometry() { return elliptic || quotient || torus; } ld master_to_c7_angle() { return (!BITRUNCATED && !binarytiling && !archimedean) ? M_PI + gp::alpha : 0; } transmatrix actualV(const heptspin& hs, const transmatrix& V) { if(IRREGULAR) return V * spin(M_PI + 2 * M_PI / S7 * (hs.spin + irr::periodmap[hs.at].base.spin)); if(archimedean) return V * spin(-arcm::current.triangles[arcm::id_of(hs.at)][hs.spin].first); if(binarytiling) return V; return (hs.spin || !BITRUNCATED) ? V * spin(hs.spin*2*M_PI/S7 + master_to_c7_angle()) : V; } transmatrix applyspin(const heptspin& hs, const transmatrix& V) { if(binarytiling) return V; if(archimedean) return V * spin(arcm::current.triangles[arcm::id_of(hs.at)][hs.spin].first); return hs.spin ? V * spin(hs.spin*2*M_PI/S7) : V; } // in hyperbolic quotient geometries, relying on pathdist is not sufficient bool in_qrange(const transmatrix& V) { if(!quotient || !hyperbolic) return true; return V[2][2] < cosh(crossf * get_sightrange_ambush()); } namespace gp { /* void drawrec(cell *c, const transmatrix& V) { if(dodrawcell(c)) drawcell(c, V, 0, false); for(int i=0; itype; i++) { cell *c2 = c->move(i); if(!c2) continue; if(c2->move(0) != c) continue; if(c2 == c2->master->c7) continue; transmatrix V1 = V * ddspin(c, i) * xpush(crossf) * iddspin(c2, 0) * spin(M_PI); drawrec(c2, V1); } } */ gp::local_info draw_li; void drawrec(cell *c, const transmatrix& V, gp::loc at, int dir, int maindir) { if(dodrawcell(c)) { /* auto li = get_local_info(c); if(fix6(dir) != fix6(li.total_dir)) printf("totaldir %d/%d\n", dir, li.total_dir); if(at != li.relative) printf("at %s/%s\n", disp(at), disp(li.relative)); if(maindir != li.last_dir) printf("ld %d/%d\n", maindir, li.last_dir); */ draw_li.relative = at; draw_li.total_dir = fixg6(dir); transmatrix V1 = V * Tf[draw_li.last_dir][at.first&31][at.second&31][fixg6(dir)]; if(in_qrange(V1)) drawcell(c, V1, 0, false); } for(int i=0; itype; i++) { cell *c2 = c->move(i); if(!c2) continue; if(c2->move(0) != c) continue; if(c2 == c2->master->c7) continue; drawrec(c2, V, at + eudir(dir+i), dir + i + SG3, maindir); } } void drawrec(cell *c, const transmatrix& V) { draw_li.relative = loc(0,0); draw_li.total_dir = 0; draw_li.last_dir = -1; if(dodrawcell(c)) drawcell(c, V, 0, false); for(int i=0; itype; i++) { cell *c2 = c->move(i); if(!c2) continue; if(c2->move(0) != c) continue; if(c2 == c2->master->c7) continue; draw_li.last_dir = i; drawrec(c2, V, gp::loc(1,0), SG3, i); } } } void drawrec(const heptspin& hs, hstate s, const transmatrix& V) { // calc_relative_matrix(cwt.c, hs.at); cell *c = hs.at->c7; transmatrix V10; const transmatrix& V1 = hs.mirrored ? (V10 = V * Mirror) : V; bool draw = c->pathdist < PINFD; if(GOLDBERG) { gp::drawrec(c, actualV(hs, V1)); } else if(IRREGULAR) { auto& hi = irr::periodmap[hs.at]; transmatrix V0 = actualV(hs, V1); auto& vc = irr::cells_of_heptagon[hi.base.at]; for(int i=0; ic.fix(hs.spin + d); // createMov(c, ds); if(c->move(ds) && c->c.spin(ds) == 0 && dodrawcell(c->move(ds))) { transmatrix V2 = V1 * hexmove[d]; if(in_qrange(V2)) drawcell(c->move(ds), V2, 0, hs.mirrored ^ c->c.mirror(ds)); } } } if(draw && in_qrange(V)) for(int d=0; d= 16384 * eurad) Mat[0][2] -= 32768 * eurad; while(Mat[1][2] <= -16384 * v * eurad) Mat[1][2] += 32768 * v * eurad; while(Mat[1][2] >= 16384 * v * eurad) Mat[1][2] -= 32768 * v * eurad; return Mat; } transmatrix eumove(int vec) { int x, y; tie(x,y) = vec_to_pair(vec); return eumove(x, y); } transmatrix eumovedir(int d) { if(a4) { d = d & 3; switch(d) { case 0: return eumove(1,0); case 1: return eumove(0,1); case 2: return eumove(-1,0); case 3: return eumove(0,-1); } } else { d = fix6(d); switch(d) { case 0: return eumove(1,0); case 1: return eumove(0,1); case 2: return eumove(-1,1); case 3: return eumove(-1,0); case 4: return eumove(0,-1); case 5: return eumove(1,-1); } } return eumove(0,0); } ld matrixnorm(const transmatrix& Mat) { return Mat[0][2] * Mat[0][2] + Mat[1][2] * Mat[1][2]; } void drawEuclidean() { DEBB(DF_GRAPH, (debugfile,"drawEuclidean\n")); sphereflip = Id; if(!centerover.at) centerover = cwt; // printf("centerover = %p player = %p [%d,%d]-[%d,%d]\n", lcenterover, cwt.c, // mindx, mindy, maxdx, maxdy); int pvec = cellwalker_to_vec(centerover); int minsx = mindx-1, maxsx=maxdx+1, minsy=mindy-1, maxsy=maxdy+1; mindx=maxdx=mindy=maxdy=0; transmatrix View0 = View; ld cellrad = vid.radius / (1 + vid.alpha); ld centerd = matrixnorm(View0); for(int dx=minsx; dx<=maxsx; dx++) for(int dy=minsy; dy<=maxsy; dy++) { torusconfig::torus_cx = dx; torusconfig::torus_cy = dy; cellwalker cw = vec_to_cellwalker(pvec + euclid_getvec(dx, dy)); transmatrix Mat = eumove(dx,dy); if(!cw.at) continue; Mat = View0 * Mat; if(true) { ld locald = matrixnorm(Mat); if(locald < centerd) centerd = locald, centerover = cw, View = View0 * eumove(dx, dy); } // Mat[0][0] = -1; // Mat[1][1] = -1; // Mat[2][0] = x*x/10; // Mat[2][1] = y*y/10; // Mat = Mat * xpush(x-30) * ypush(y-30); int cx, cy, shift; getcoord0(tC0(Mat), cx, cy, shift); if(cx >= 0 && cy >= 0 && cx < vid.xres && cy < vid.yres) { if(dx < mindx) mindx = dx; if(dy < mindy) mindy = dy; if(dx > maxdx) maxdx = dx; if(dy > maxdy) maxdy = dy; } if(cx >= -cellrad && cy >= -cellrad && cx < vid.xres+cellrad && cy < vid.yres+cellrad) if(dodrawcell(cw.at)) { drawcell(cw.at, cw.mirrored ? Mat * Mirror : Mat, cw.spin, cw.mirrored); } } } void spinEdge(ld aspd) { if(downspin > aspd) downspin = aspd; if(downspin < -aspd) downspin = -aspd; View = spin(downspin) * View; } void centerpc(ld aspd) { if(ors::mode == 2 && vid.sspeed < 5) return; if(vid.sspeed >= 4.99) aspd = 1000; DEBB(DF_GRAPH, (debugfile,"center pc\n")); ors::unrotate(cwtV); ors::unrotate(View); hyperpoint H = ypush(-vid.yshift) * sphereflip * tC0(cwtV); ld R = H[0] == 0 && H[1] == 0 ? 0 : hdist0(H); // = sqrt(H[0] * H[0] + H[1] * H[1]); if(R < 1e-9) { // either already centered or direction unknown /* if(playerfoundL && playerfoundR) { } */ spinEdge(aspd); fixmatrix(View); ors::rerotate(cwtV); ors::rerotate(View); return; } if(euclid) { // Euclidean aspd *= (2+3*R*R); if(aspd > R) aspd = R; View[0][2] -= cwtV[0][2] * aspd / R; View[1][2] -= cwtV[1][2] * aspd / R; } else { aspd *= (1+R+(shmup::on?1:0)); if(R < aspd) { View = gpushxto0(H) * View; } else View = rspintox(H) * xpush(-aspd) * spintox(H) * View; fixmatrix(View); spinEdge(aspd); } ors::rerotate(cwtV); ors::rerotate(View); } void optimizeview() { if(centerover.at && inmirror(centerover.at)) { anims::reflect_view(); } DEBB(DF_GRAPH, (debugfile,"optimize view\n")); int turn = 0; ld best = INF; transmatrix TB = Id; if(binarytiling || archimedean) { turn = -1, best = View[2][2]; for(int i=0; ic7->type; i++) { int i1 = i * DUALMUL; heptagon *h2 = createStep(viewctr.at, i1); transmatrix T = (binarytiling) ? binary::relative_matrix(h2, viewctr.at) : arcm::relative_matrix(h2, viewctr.at); hyperpoint H = View * tC0(T); ld quality = euclid ? hdist0(H) : H[2]; if(quality < best) best = quality, turn = i1, TB = T; } if(turn >= 0) { View = View * TB; fixmatrix(View); viewctr.at = createStep(viewctr.at, turn); } } else { for(int i=-1; i= 0) { View = View * TB; fixmatrix(View); viewctr = viewctr + turn + wstep; } } } void addball(ld a, ld b, ld c) { hyperpoint h; ballmodel(h, a, b, c); for(int i=0; i<3; i++) h[i] *= vid.radius; curvepoint(h); } void ballgeometry() { queuereset(vid.usingGL ? mdDisk : mdUnchanged, PPR::CIRCLE); for(int i=0; i<60; i++) addball(i * M_PI/30, 10, 0); for(double d=10; d>=-10; d-=.2) addball(0, d, 0); for(double d=-10; d<=10; d+=.2) addball(0, d, geom3::depth); addball(0, 0, -geom3::camera); addball(0, 0, geom3::depth); addball(0, 0, -geom3::camera); addball(0, -10, 0); addball(0, 0, -geom3::camera); queuecurve(darkena(0xFF, 0, 0x80), 0, PPR::CIRCLE); queuereset(pmodel, PPR::CIRCLE); } void resetview() { DEBB(DF_GRAPH, (debugfile,"reset view\n")); View = Id; // EUCLIDEAN if(!masterless) viewctr.at = cwt.at->master, viewctr.spin = cwt.spin; else centerover = cwt; cwtV = Id; // SDL_LockSurface(s); // SDL_UnlockSurface(s); } void panning(hyperpoint hf, hyperpoint ht) { View = rgpushxto0(hf) * rgpushxto0(gpushxto0(hf) * ht) * gpushxto0(hf) * View; playermoved = false; } void fullcenter() { if(playerfound && false) centerpc(INF); else { bfs(); resetview(); drawthemap(); centerpc(INF); centerover = cwt.at; } playermoved = true; } transmatrix screenpos(ld x, ld y) { transmatrix V = Id; V[0][2] += (x - vid.xcenter) / vid.radius * (1+vid.alpha); V[1][2] += (y - vid.ycenter) / vid.radius * (1+vid.alpha); return V; } transmatrix atscreenpos(ld x, ld y, ld size) { transmatrix V = Id; V[0][2] += (x - vid.xcenter); V[1][2] += (y - vid.ycenter); V[0][0] = size * 2 * hcrossf / crossf; V[1][1] = size * 2 * hcrossf / crossf; V[2][2] = stereo::scrdist; return V; } }