// Hyperbolic Rogue -- surfaces of constant negative curvature // Copyright (C) 2011-2018 Zeno Rogue, see 'hyper.cpp' for details /** \file surface.cpp * \brief surfaces of constant negative curvature * * See http://webmath2.unito.it/paginepersonali/sergio.console/CurveSuperfici/AG15.pdf for a nice reference */ #include "hyper.h" #if CAP_SURFACE namespace hr { #define USING_NATIVE_GEOMETRY dynamicval gw(geometry, hr::rug::gwhere) EX namespace surface { ld sech(ld d) { return 1 / cosh(d); } #if HDR enum eShape { dsNone, dsTractricoid, dsDini, dsKuen, dsHyperlike, dsHyperboloid, dsHemisphere, dsCrystal }; #endif string shape_name[] = { "hypersian rug", "tractricoid", "Dini's surface", "Kuen surface", "concave barrel", "hyperboloid", "hemisphere", "crystal" }; EX eShape sh; hyperpoint unit_vector[3] = {point3(1,0,0), point3(0,1,0), point3(0,0,1)}; ld last_int_of = 0, last_int = 0; EX ld dini_b = .15; EX ld hyper_b = 1; ld f(ld x) { return sqrt(1 - pow(hyper_b * sinh(x), 2)); } int kuen_branch(ld v, ld u); ld integral(ld x) { if(x == 0) { last_int = last_int_of = 0; } else { last_int += (x - last_int) * f((x + last_int)/2); last_int_of = x; } return last_int; } hyperpoint coord(hyperpoint h) { // return { cos(u)*sin(v), cos(u)*cos(v), sin(u) }; /* ld t = h[0]; ld v = h[1]; ld r = 1 / cosh(t); ld x = t - tanh(t); return { x + v * .1, r * sin(v), r * cos(v) }; */ switch(sh) { case dsTractricoid: { ld t = h[0]; ld v = h[1]; ld r = 1 / cosh(t); ld x = t - tanh(t); return point31( r * sin(v), r * cos(v), x ); break; } case dsDini: { ld t = h[0]; // atan(h[0])/2 + M_PI * 3/ 4; ld v = h[1]; ld a = sqrt(1-dini_b*dini_b); return point31( a * sin(v) * sin(t), a * cos(v) * sin(t), a * (cos(t) + log(tan(t/2))) + dini_b * v ); break; } case dsKuen: { ld v = h[0]; ld u = h[1]; ld deno = 1 / (1 + u * u * sin(v) * sin(v)); return point31( 2 * (cos(u) + u * sin(u)) * sin(v) * deno, 2 * (sin(u) - u * cos(u)) * sin(v) * deno, log(tan(v/2)) + 2 * cos(v) * deno ); } case dsHyperlike: { ld u = h[0]; ld v = h[1]; ld phi = hyper_b * cosh(v); ld psi = integral(v); return point31( phi * cos(u), phi * sin(u), psi ); } default: return h; } } ld det(hyperpoint h1, hyperpoint h2, hyperpoint h3) { return det(build_matrix(h1, h2, h3,C03)); } ld epsd = 1e-5; hyperpoint coord_derivative(hyperpoint h, int cc) { switch(sh) { case dsHyperlike: { ld u = h[0]; ld v = h[1]; if(cc == 0) { ld phi = hyper_b * cosh(v); return point3( phi * -sin(u), phi * cos(u), 0 ); } else { return point3( hyper_b * sinh(v) * cos(u), hyper_b * sinh(v) * sin(u), f(v) ); } } case dsKuen: { ld v = h[0]; ld u = h[1]; ld denom = pow(sin(v),2)*(u*u)+1; ld denom2 = denom * denom; if(cc == 1) return point3( 2*sin(v)/denom*u*cos(u)+-4*(sin(u)*u+cos(u))*pow(sin(v),3)/denom2*u, -4*pow(sin(v),3)*(sin(u)-u*cos(u))/denom2*u+2*sin(u)*sin(v)/denom*u, -4*pow(sin(v),2)/denom2*u*cos(v) ); else return point3( 2*(sin(u)*u+cos(u))/denom*cos(v)+-4*(sin(u)*u+cos(u))*pow(sin(v),2)/denom2*(u*u)*cos(v), 2*(sin(u)-u*cos(u))/denom*cos(v)+-4*pow(sin(v),2)*(sin(u)-u*cos(u))/denom2*(u*u)*cos(v), -4*sin(v)/denom2*(u*u)*pow(cos(v),2)+1/tan(v/2)*(pow(tan(v/2),2)+1)/2+-2*sin(v)/denom ); break; } default: // too lazy do differentiate return (coord(h + unit_vector[cc] * epsd) - coord(h)) / epsd; } } ld compute_curvature(hyperpoint at) { hyperpoint xu = coord_derivative(at, 0); hyperpoint xv = coord_derivative(at, 1); hyperpoint xuu = (coord_derivative(at + unit_vector[0] * epsd, 0) - xu) / epsd; hyperpoint xuv = (coord_derivative(at + unit_vector[1] * epsd, 0) - xu) / epsd; hyperpoint xvv = (coord_derivative(at + unit_vector[1] * epsd, 1) - xv) / epsd; return (det(xuu, xu, xv) * det(xvv, xu, xv) - pow(det(xuv, xu, xv), 2)) / pow((xu|xu) * (xv|xv) - pow((xu|xv), 2), 2); } hyperpoint shape_origin() { switch(sh) { case dsDini: return point31(M_PI * .82, 0, 0); case dsTractricoid: return point31(1, 0, 0); case dsKuen: return point31(M_PI * .500001, M_PI * 1, 0); case dsHyperlike: return point31(0,0,0); default: return Hypc; } } ld hyperlike_bound() { return asinh(1 / hyper_b); } bool flag_clamp_min(ld& coord, ld minv) { if(coord < minv) { coord = minv; return false; } return true; } bool flag_clamp_max(ld& coord, ld maxv) { if(coord > maxv) { coord = maxv; return false; } return true; } bool flag_clamp(ld& coord, ld minv, ld maxv) { return flag_clamp_min(coord, minv) & flag_clamp_max(coord, maxv); } bool flag_clamp_sym(ld& coord, ld v) { return flag_clamp(coord, -v, v); } int surface_branch(hyperpoint p) { if(sh == dsKuen) return kuen_branch(p[0], p[1]); return 0; } bool inbound(ld& x, ld& y) { switch(sh) { case dsDini: return flag_clamp(x, M_PI/2, M_PI); case dsTractricoid: return flag_clamp_min(x, 0) & flag_clamp_sym(y, M_PI); case dsKuen: return flag_clamp(x, 0, M_PI) & flag_clamp(y, 0, 2*M_PI); case dsHyperlike: return flag_clamp_sym(x, M_PI) & flag_clamp_sym(y, hyperlike_bound()); default: return true; } } bool is_inbound(hyperpoint h) { return inbound(h[0], h[1]); } int precision = 100; using rug::dexp_data; struct dexp_origin { transmatrix H; // isometry of H2 moving zero to C0 transmatrix M; // local coordinates on H2 to local coordinates on surface hyperpoint zero; // parameters of the zero point }; dexp_data dexp(hyperpoint p, hyperpoint t) { ld eps = 1. / precision; int b = surface_branch(p); for(ld u=0; u<1; u += eps) { transmatrix T = build_matrix(coord_derivative(p, 0), coord_derivative(p, 1), Hypc, C03); p += t * eps; if(!is_inbound(p) || surface_branch(p) != b) return { p - t * eps, t, hypot_d(3, t) * (1-u) / precision }; auto v0 = coord_derivative(p, 0); auto v1 = coord_derivative(p, 1); transmatrix T2 = build_matrix(v0, v1, v0 ^ v1, C03); t = inverse(T2) * T * t; t[2] = 0; } return { p, t, 0 }; } dexp_data map_to_surface(hyperpoint p, const dexp_origin& dor) { hyperpoint h = dor.H * p; ld rad = hypot_d(2, h); if(rad == 0) rad = 1; ld d = hdist0(h); hyperpoint direction; direction[0] = d * h[0] / rad; direction[1] = d * h[1] / rad; direction[2] = 0; #if MAXMDIM == 4 direction[3] = 0; #endif return dexp(dor.zero, dor.M * direction); } transmatrix create_M_matrix(hyperpoint zero, hyperpoint v1) { hyperpoint Te0 = coord_derivative(zero, 0); hyperpoint Te1 = coord_derivative(zero, 1); transmatrix T = build_matrix(Te0, Te1, Hypc, C03); v1 = v1 / hypot_d(3, T*v1); hyperpoint v2 = point3(1e-3, 1e-4, 0); v2 = v2 - v1 * ((T*v1) | (T*v2)) / hypot_d(3, T*v1); v2 = v2 / hypot_d(3, T*v2); if((((T*v1) ^ (T*v2)) | ((T*unit_vector[0]) ^ (T*unit_vector[1]))) < 0) v2 = v2 * -1; transmatrix M = build_matrix(v1, v2, Hypc, C03); println(hlog, M); println(hlog, "M matrix test: ", make_tuple(hypot_d(3, T*M*unit_vector[0]), hypot_d(3, T*M*unit_vector[1]), hypot_d(3, T*M*(unit_vector[0]+unit_vector[1])), ((T*M*unit_vector[0]) | (T*M*unit_vector[1])))); return M; } dexp_origin at_zero(hyperpoint zero, transmatrix start) { println(hlog, "zero = ", zero); println(hlog, "curvature at zero = ", compute_curvature(zero)); println(hlog, "curvature at X1 = ", compute_curvature(zero + point3(.3, 0, 0))); println(hlog, "curvature at X2 = ", compute_curvature(zero + point3(0, .3, 0))); println(hlog, "curvature at X3 = ", compute_curvature(zero + point3(.4, .3, 0))); return {start, create_M_matrix(zero, unit_vector[0]), zero}; } dexp_origin at_other(dexp_origin& o1, hyperpoint h) { println(hlog, "\n\nmapping ", h, "..."); println(hlog, o1.H, o1.M); auto dd = map_to_surface(h, o1); hyperpoint newzero = dd.params; println(hlog, "error = ", dd.remaining_distance); transmatrix Spin = spintox(o1.H * h); transmatrix T = pushxto0(Spin * o1.H * h) * Spin; println(hlog, "h is = ", h); println(hlog, "T*c0 is = ", T * C0); println(hlog, "T*h is = ", T * o1.H * h); return {T * o1.H, create_M_matrix(newzero, dd.cont), newzero}; } void addTriangleV(rug::rugpoint *t1, rug::rugpoint *t2, rug::rugpoint *t3, ld len = 1) { if(t1 && t2 && t3) rug::addTriangle(t1, t2, t3, len); } hyperpoint kuen_cross(ld v, ld u) { auto du = coord_derivative(point3(v,u,0), 0); auto dv = coord_derivative(point3(v,u,0), 1); return du^dv; } ld kuen_hypot(ld v, ld u) { auto du = coord_derivative(point3(v,u,0), 0); auto dv = coord_derivative(point3(v,u,0), 1); auto n = hypot_d(3, du^dv); return n; } int kuen_branch(ld v, ld u) { if(v > M_PI/2) return kuen_cross(v, u)[2] > 0 ? 1 : 2; else return kuen_cross(v, u)[2] < 0 ? 1 : 2; } int dexp_colors[16] = { 0xFF0000, 0x00FF00, 0x0000FF, 0xFFFF00 }; int dexp_comb_colors[16] = { 0x000000, 0x0000FF, 0x00FF00, 0x00FFFF, 0xFF0000, 0xFF00FF, 0xFFFF00, 0xFFFFFF, 0xFFD500, 0x123456, 0x123456, 0x123456, 0x123456, 0x123456, 0x123456, 0x123456 }; int coverage_style; vector > coverage; #ifndef CAP_KUEN_MAP #define CAP_KUEN_MAP 0 #endif #if CAP_KUEN_MAP void draw_kuen_map() { SDL_Surface *kuen_map = SDL_CreateRGBSurface(SDL_SWSURFACE,512,512,32,0,0,0,0); ld nmax = 0; for(int i=0; i<2; i++) { for(int r=0; r<512; r++) for(int h=0; h<512; h++) { ld v = M_PI * (r+.5) / 512; ld u = 2 * M_PI * (h+.5) / 512; auto du = coord_derivative(point3(v,u,0), 0); auto dv = coord_derivative(point3(v,u,0), 1); auto n = hypot_d(3, du^dv); if(n > nmax) nmax = n; if(i == 1) { auto vv = kuen_cross(v, u); auto& px = qpixel(kuen_map, r, h); px |= 0xFF000000; for(int k=0; k<3; k++) part(px, k) = (vv[k] > 0 ? 0xFF : 0); px = 0xFF000000 + (((int)(n*255/nmax)) * (kuen_branch(v,u) == 1 ? 0x10101 : 0x10001)); } } println(hlog, "nmax = ", nmax); } for(auto p: rug::points) { auto hp = p->surface_point.params; int x = int(512 * hp[0] / M_PI); int y = int(512 * hp[1] / 2 / M_PI); qpixel(kuen_map, x, y) = 0xFF000000 | dexp_colors[p->dexp_id]; } IMAGESAVE(kuen_map, "kuen.png"); } #endif void full_mesh() { rug::clear_model(); rug::buildRug(); rug::qvalid = 0; for(auto p: rug::points) p->valid = true, rug::qvalid++; while(rug::subdivide_further()) rug::subdivide(); rug::sort_rug_points(); for(auto p: rug::points) p->valid = false; rug::good_shape = true; } char rchar(int id) { return 33 + id % 94; } void run_hyperlike() { if(!rug::rugged) rug::reopen(); rug::clear_model(); int lim = (int) sqrt(rug::vertex_limit); for(int r=0; r integral_table; for(int i=0; i<=precision; i++) integral_table.push_back(integral(hyperlike_bound() * i / precision)); int id = 0; for(auto p: rug::points) { auto h = p->h; coverage.emplace_back(h, rchar(id++) + 7 * 256); ld y = asinh(h[1]); ld x = asinh(h[0] / cosh(y)) / hyper_b; p->surface_point.remaining_distance = !inbound(x, y); p->surface_point.params = hpxyz(x, y, 0); int sgn = y > 0 ? 1 : -1; ld phi = hyper_b * cosh(y); int pt = y * precision * sgn / hyperlike_bound(); USING_NATIVE_GEOMETRY; p->native = point31(phi * cos(x), phi * sin(x), sgn * integral_table[pt]); p->valid = true; } } void run_kuen() { full_mesh(); auto H = Id; // spin(-M_PI / 4) * xpush(2); auto Hi = inverse(H); auto frontal_map = at_zero(hpxyz(M_PI * .500001, M_PI * 1, 0), Id); auto back0 = at_zero(hpxyz(M_PI * .500001, .67, 0), H); auto back1 = at_other(back0, Hi * spin(-M_PI/2) * hpxy(0.511, -0.5323)); auto back2 = at_other(back0, Hi * spin(-M_PI/2) * hpxy(0.511, 0.5323)); frontal_map.H = frontal_map.H * ypush(2.6); back0.H = back0.H * ypush(.4); back1.H = back1.H * ypush(.4); back2.H = back2.H * ypush(.4); int it = 0; for(auto p: rug::points) p->dexp_id = it++; vector mesh = move(rug::points); vector old_triangles = move(rug::triangles); rug::clear_model(); int part = 0; vector coverages(isize(mesh), 0); for(auto& m: { frontal_map, back0, back1, back2 } ) { part++; int pid[5] = {0, 8, 1, 2, 4}; string captions[5] = {"", "the upper component", "the lower center", "the lower left", "the lower right"}; vector newmesh(isize(mesh), nullptr); for(auto p: mesh) { auto px = map_to_surface(p->h, m); p->surface_point = px; history::progress(XLAT("solving the geodesics on: %1, %2/%3", XLAT(captions[part]), its(p->dexp_id), its(isize(mesh)))); } for(auto p: mesh) { // make it a bit nicer by including the edges where only one endpoint is valid auto& px = p->surface_point; p->valid = px.remaining_distance == 0; for(auto e: p->edges) if(e.target->surface_point.remaining_distance == 0) p->valid = true; if(p->valid) { rug::rugpoint *np = new rug::rugpoint; newmesh[p->dexp_id] = np; rug::points.push_back(np); np->x1 = p->x1; np->y1 = p->y1; np->valid = true; np->inqueue = false; np->dist = 0; np->h = p->h; USING_NATIVE_GEOMETRY; np->native = coord(px.params); np->surface_point = px; np->dexp_id = p->dexp_id; coverages[p->dexp_id] |= pid[part]; } } for(auto& t: old_triangles) { rug::rugpoint* r[3]; for(int i=0; i<3; i++) r[i] = newmesh[t.m[i]->dexp_id]; bool looks_good = true; for(int i=0; i<3; i++) if(!r[i]) looks_good = false; if(!looks_good) continue; for(int i=0; i<3; i++) { USING_NATIVE_GEOMETRY; if(hypot_d(3, r[i]->native - r[(i+1)%3]->native) > .2) looks_good = false; } if(looks_good) addTriangleV(r[0], r[1], r[2]); } } for(auto t: mesh) { int c = coverages[t->dexp_id]; coverage.emplace_back(t->h, rchar(t->dexp_id) + 256 * c); } // delete the old mesh for(auto t: mesh) delete t; #if CAP_KUEN_MAP draw_kuen_map(); #endif } template void run_function(T f) { full_mesh(); for(auto p: rug::points) { USING_NATIVE_GEOMETRY; p->native = f(p->h), p->valid = true; } } void run_other() { full_mesh(); auto dp = at_zero(shape_origin(), spin(M_PI/2)); int it = 0; for(auto p: rug::points) { it++; auto h = p->h; p->surface_point = map_to_surface(h, dp); if(1) { USING_NATIVE_GEOMETRY; p->native = coord(p->surface_point.params); } history::progress(XLAT("solving the geodesics on: %1, %2/%3", XLAT(shape_name[sh]), its(it), its(isize(rug::points)))); if(p->surface_point.remaining_distance == 0) coverage.emplace_back(h, rchar(it) + 256 * 7); } clearMessages(); for(auto p: rug::points) { // make it a bit nicer by including the edges where only one endpoint is valid p->valid = p->surface_point.remaining_distance == 0; if(sh != dsKuen) { for(auto e: p->edges) if(e.target->surface_point.remaining_distance == 0) p->valid = true; } } } EX void run_shape(eShape s) { coverage.clear(); need_mouseh = true; sh = s; if(rug::rugged) rug::close(); rug::init(); // if(!rug::rugged) rug::reopen(); pushScreen(history::progress_screen); if(sh != dsNone) rug::good_shape = true; switch(sh) { case dsNone: break; case dsKuen: run_kuen(); break; case dsHyperlike: run_hyperlike(); break; default: run_other(); break; case dsHyperboloid: run_function([] (hyperpoint h) { return h; }); break; case dsHemisphere: run_function([] (hyperpoint h) { h = h / h[2]; h[2] = sqrt(1 - sqhypot_d(2, h)); return h; }); break; } if(sh != dsNone) rug::good_shape = true; rug::qvalid = 0; popScreen(); if(sh != dsHyperboloid && sh != dsHemisphere && sh != dsNone) { ld minx = 1e9, maxx = -1e9; for(auto p: rug::points) if(p->valid) { minx = min(p->native[2], minx); maxx = max(p->native[2], maxx); rug::qvalid++; } println(hlog, "minx = ", minx, " maxx = ", maxx); ld shift = -(minx + maxx) / 2; for(auto p: rug::points) if(p->valid) p->native[2] += shift; } } void cancel_shape() { if(sh) { sh = dsNone; rug::good_shape = false; rug::qvalid = 0; for(auto p: rug::points) p->valid = p->surface_point.remaining_distance == 0; for(auto p: rug::points) if(p->valid) rug::qvalid++, rug::enqueue(p); } } cell *coverage_center; transmatrix coverage_matrix; EX void show_surfaces() { cmode = sm::SIDE; gamescreen(0); dialog::init(XLAT("constant curvature surfaces"), iinf[itPalace].color, 150, 0); bool b = rug::rugged || coverage_style; dialog::addBoolItem(XLAT("tractricoid"), b && sh == dsTractricoid, '1'); dialog::addBoolItem(XLAT("concave barrel"), b && sh == dsHyperlike, '2'); dialog::addSelItem(" " + XLAT("parameter"), fts(hyper_b), '@'); dialog::addBoolItem(XLAT("Dini's surface"), b && sh == dsDini, '3'); dialog::addSelItem(" " + XLAT("parameter") + " ", fts(dini_b), '#'); dialog::addBoolItem(XLAT("Kuen surface"), b && sh == dsKuen, '4'); dialog::addBreak(50); dialog::addTitle(XLAT("other 3D models"), iinf[itPalace].color, 150); dialog::addBoolItem(XLAT("Hypersian Rug"), b && sh == dsNone, '5'); dialog::addBoolItem(XLAT("Minkowski hyperboloid"), b && sh == dsHyperboloid, '6'); dialog::addBoolItem(XLAT("hemisphere"), b && sh == dsHemisphere, '7'); dialog::addBreak(100); dialog::addSelItem(XLAT("precision"), its(precision), 'p'); string cstyles[4] = { "OFF", "on surface", "on H² (static)", "on H² (dynamic)" }; if((rug::rugged && sh && sh != dsHyperboloid && sh != dsHemisphere) || coverage_style) dialog::addSelItem(XLAT("display coverage"), cstyles[coverage_style], 'c'); else dialog::addBreak(100); dialog::addHelp(); dialog::addBack(); dialog::display(); keyhandler = [] (int sym, int uni) { dialog::handleNavigation(sym, uni); if(uni == 'h' || uni == SDLK_F1) gotoHelp(XLAT( "In this menu you can choose from several known smooth surfaces of constant negative curvature. " "Since the curvature of hyperbolic plane is also constant negative, these surfaces " "are great to draw hyperbolic tesselations on. While they look great, only a small part " "of the hyperbolic plane can be visibly represented in this way, so they are not " "good for playing HyperRogue; however, the coverage extends far away in specific directions, " "so first increasing sight range in graphics config and texture size in hypersian rug settings may improve the effect. " "For convenience, you can also choose other 3D models from this menu." )); else if(uni == '1') run_shape(dsTractricoid); else if(uni == '2') run_shape(dsHyperlike); else if(uni == '3') run_shape(dsDini); else if(uni == '4') run_shape(dsKuen); else if(uni == '5') run_shape(dsNone); else if(uni == '6') run_shape(dsHyperboloid); else if(uni == '7') run_shape(dsHemisphere); else if(uni == '@') { dialog::editNumber(hyper_b, -1, 1, .05, 1, XLAT("parameter"), XLAT("Controls the inner radius.") ); dialog::reaction = [] () { if(sh == dsHyperlike) run_shape(sh); }; } else if(uni == 'x') for(auto p: rug::points) p->native = p->surface_point.params; else if(uni == '#') dialog::editNumber(dini_b, -1, 1, .05, .15, XLAT("parameter"), XLAT("The larger the number, the more twisted it is.") ); else if(uni == 'p') { dialog::editNumber(precision, 1, 10000, 0, 100, XLAT("precision"), XLAT("Computing these models involves integrals and differential equations, which are currently solved numerically. This controls the precision.") ); dialog::ne.step = .1; dialog::scaleLog(); } else if(uni == 'c') { coverage_style = (1 + coverage_style) % 4; if(coverage_style == 0) { rug::reopen(); } if(coverage_style == 2) { if(rug::rugged) rug::close(); } coverage_matrix = inverse(ggmatrix(coverage_center = cwt.at)); } else if(rug::handlekeys(sym, uni)) ; else if(doexiton(sym, uni)) popScreen(); }; } #if CAP_COMMANDLINE int surface_args() { using namespace arg; if(0) ; else if(argis("-kuen")) { PHASE(3); calcparam(); run_shape(dsKuen); } else if(argis("-dini")) { PHASE(3); calcparam(); shift(); dini_b = argf(); run_shape(dsDini); } else if(argis("-barrel")) { PHASE(3); calcparam(); shift(); hyper_b = argf(); run_shape(dsHyperlike); } else if(argis("-tractricoid")) { PHASE(3); calcparam(); run_shape(dsTractricoid); } else if(argis("-hemi")) { PHASE(3); calcparam(); run_shape(dsHemisphere); } else if(argis("-hyperb")) { PHASE(3); calcparam(); run_shape(dsHyperboloid); } else if(argis("-d:surface")) launch_dialog(show_surfaces); else return 1; return 0; } auto surface_hook = addHook(hooks_args, 100, surface_args); #endif void display_coverage() { transmatrix M = coverage_style == 3 ? ggmatrix(coverage_center) * coverage_matrix : Id; if(coverage_style) for(auto p : coverage) queuestr(M * p.first, 10, s0+char(p.second), dexp_comb_colors[(p.second >> 8) & 15]); /* if(p->valid && p->surface_point.remaining_distance == 0) queuestr(p->h, 10, "x", dexp_colors[p->dexp_id]); */ } auto surface_hook2 = addHook(hooks_frame, 0, display_coverage); }} #endif