// Hyperbolic Rogue -- cells // Copyright (C) 2011-2016 Zeno Rogue, see 'hyper.cpp' for details // cells the game is played on #define DEBMEM(x) // { x fflush(stdout); } int fix6(int a) { return (a+MODFIXER)%S6; } int fix7(int a) { return (a+MODFIXER)%S7; } int dirdiff(int dd, int t) { dd %= t; if(dd<0) dd += t; if(t-dd < dd) dd = t-dd; return dd; } struct cell : gcell { char type; // 6 for hexagons, 7 for heptagons // wall parameter, used for remaining power of Bonfires and Thumpers char wparam; // 'tmp' is used for: // pathfinding algorithm used by monsters with atypical movement (which do not use pathdist) // bugs' pathfinding algorithm short aitmp; uint32_t spintable; int spin(int d) { return tspin(spintable, d); } int spn(int d) { return tspin(spintable, d); } int mirror(int d) { return tmirror(spintable, d); } heptagon *master; cell *mov[MAX_EDGE]; // meaning very similar to heptagon::move }; int fixdir(int a, cell *c) { a %= c->type; if(a<0) a += c->type; return a; } int cellcount = 0; void initcell(cell *c); // from game.cpp cell *newCell(int type, heptagon *master) { cell *c = new cell; cellcount++; c->type = type; c->master = master; for(int i=0; imov[i] = NULL; initcell(c); return c; } void merge(cell *c, int d, cell *c2, int d2, bool mirrored = false) { c->mov[d] = c2; tsetspin(c->spintable, d, d2 + (mirrored?8:0)); c2->mov[d2] = c; tsetspin(c2->spintable, d2, d + (mirrored?8:0)); } typedef unsigned short eucoord; struct cdata { int val[4]; int bits; }; // list all cells in distance at most maxdist, or until when maxcount cells are reached struct celllister { vector lst; vector tmps; vector dists; void add(cell *c, int d) { if(eq(c->aitmp, sval)) return; c->aitmp = sval; tmps.push_back(c->aitmp); lst.push_back(c); dists.push_back(d); } ~celllister() { for(int i=0; iaitmp = tmps[i]; } celllister(cell *orig, int maxdist, int maxcount, cell *breakon) { lst.clear(); tmps.clear(); dists.clear(); sval++; add(orig, 0); cell *last = orig; for(int i=0; i= maxcount || dists[i]+1 == maxdist) break; last = lst[size(lst)-1]; } } } void prepare() { for(int i=0; iaitmp = i; } int getdist(cell *c) { return dists[c->aitmp]; } bool listed(cell *c) { return c->aitmp >= 0 && c->aitmp < size(lst) && lst[c->aitmp] == c; } }; // -- hrmap --- struct hrmap { virtual heptagon *getOrigin() { return NULL; } virtual cell *gamestart() { return getOrigin()->c7; } virtual ~hrmap() { }; virtual vector& allcells() { return dcal; } virtual void verify() { } }; hrmap *currentmap; vector allmaps; // --- auxiliary hyperbolic map for horocycles --- struct hrmap_alternate : hrmap { heptagon *origin; hrmap_alternate(heptagon *o) { origin = o; } ~hrmap_alternate() { clearfrom(origin); } }; // --- hyperbolic geometry --- struct hrmap_hyperbolic : hrmap { heptagon *origin; bool ispurehepta; hrmap_hyperbolic() { // printf("Creating hyperbolic map: %p\n", this); origin = new heptagon; heptagon& h = *origin; h.s = hsOrigin; h.emeraldval = 98; h.zebraval = 40; h.fiftyval = 0; h.fieldval = 0; h.rval0 = h.rval1 = 0; h.cdata = NULL; for(int i=0; i ph(purehepta, ispurehepta); clearfrom(origin); } void verify() { verifycells(origin); } }; // --- spherical geometry --- int spherecells() { if(S7 == 5) return (elliptic?6:12); if(S7 == 4) return (elliptic?3:6); if(S7 == 3) return 4; if(S7 == 2) return (elliptic?1:2); if(S7 == 1) return 1; return 12; } struct hrmap_spherical : hrmap { heptagon *dodecahedron[12]; bool ispurehepta; hrmap_spherical() { ispurehepta = purehepta; for(int i=0; imove[i] = dodecahedron[i+1]; dodecahedron[0]->setspin(i, 0); dodecahedron[i+1]->move[0] = dodecahedron[0]; dodecahedron[i+1]->setspin(0, i); dodecahedron[i+1]->move[1] = dodecahedron[(i+S7-1)%S7+1]; dodecahedron[i+1]->setspin(1, S7-1); dodecahedron[i+1]->move[S7-1] = dodecahedron[(i+1)%S7+1]; dodecahedron[i+1]->setspin(S7-1, 1); if(S7 == 5 && elliptic) { dodecahedron[i+1]->move[2] = dodecahedron[(i+2)%S7+1]; dodecahedron[i+1]->setspin(2, 3 + 8); dodecahedron[i+1]->move[3] = dodecahedron[(i+3)%S7+1]; dodecahedron[i+1]->setspin(3, 2 + 8); } else if(S7 == 5) { dodecahedron[6]->move[i] = dodecahedron[7+i]; dodecahedron[6]->setspin(i, 0); dodecahedron[7+i]->move[0] = dodecahedron[6]; dodecahedron[7+i]->setspin(0, i); dodecahedron[i+7]->move[1] = dodecahedron[(i+4)%5+7]; dodecahedron[i+7]->setspin(1, 4); dodecahedron[i+7]->move[4] = dodecahedron[(i+1)%5+7]; dodecahedron[i+7]->setspin(4, 1); dodecahedron[i+1]->move[2] = dodecahedron[7+(10-i)%5]; dodecahedron[i+1]->setspin(2, 2); dodecahedron[7+(10-i)%5]->move[2] = dodecahedron[1+i]; dodecahedron[7+(10-i)%5]->setspin(2, 2); dodecahedron[i+1]->move[3] = dodecahedron[7+(9-i)%5]; dodecahedron[i+1]->setspin(3, 3); dodecahedron[7+(9-i)%5]->move[3] = dodecahedron[i+1]; dodecahedron[7+(9-i)%5]->setspin(3, 3); } if(S7 == 4) { dodecahedron[5]->move[3-i] = dodecahedron[i+1]; dodecahedron[5]->setspin(3-i, 2); dodecahedron[i+1]->move[2] = dodecahedron[5]; dodecahedron[i+1]->setspin(2, 3-i); } } } heptagon *getOrigin() { return dodecahedron[0]; } ~hrmap_spherical() { dynamicval ph(purehepta, ispurehepta); for(int i=0; i (currentmap); if(!s) return NULL; return s->dodecahedron[i]; } // --- euclidean geometry --- cell*& euclideanAtCreate(eucoord x, eucoord y); namespace torusconfig { // the configuration of the torus topology. // torus cells are indexed [0..qty), // where the cell to the right from i is indexed i+dx, // and the cell to the down-rightis numbered i+dy // changed with command line option: -tpar ,, int qty = 127*3, dx = -1, dy = 11*2; } int decodeId(heptagon* h); heptagon* encodeId(int id); struct hrmap_torus : hrmap { vector all; vector dists; virtual vector& allcells() { return all; } cell *gamestart() { return all[0]; } hrmap_torus() { using namespace torusconfig; all.resize(qty); for(int i=0; imaster = encodeId(i); } dx %= qty; dy %= qty; for(int i=0; imov[0] = all[(i+dx+2*qty)%qty]; all[i]->mov[1] = all[(i+dy+2*qty)%qty]; all[i]->mov[2] = all[(i+dy-dx+2*qty)%qty]; all[i]->mov[3] = all[(i-dx+2*qty)%qty]; all[i]->mov[4] = all[(i-dy+2*qty)%qty]; all[i]->mov[5] = all[(i-dy+dx+2*qty)%qty]; for(int j=0; j<6; j++) tsetspin(all[i]->spintable, j, (j+3) % 6); } celllister cl(gamestart(), 100, 100000000, NULL); dists.resize(qty); for(int i=0; imaster)] = cl.dists[i]; } ~hrmap_torus() { for(cell *c: all) delete c; } }; int toridMod(int id) { using namespace torusconfig; id %= qty; if(id < 0) id += qty; return id; } hrmap_torus *torusmap() { return dynamic_cast (currentmap); } cell *getTorusId(int id) { hrmap_torus *cur = torusmap(); if(!cur) return NULL; return cur->all[toridMod(id)]; } struct hrmap_euclidean : hrmap { cell *gamestart() { return euclideanAtCreate(0,0); } struct euclideanSlab { cell* a[256][256]; euclideanSlab() { for(int y=0; y<256; y++) for(int x=0; x<256; x++) a[y][x] = NULL; } ~euclideanSlab() { for(int y=0; y<256; y++) for(int x=0; x<256; x++) if(a[y][x]) delete a[y][x]; } }; euclideanSlab* euclidean[256][256]; hrmap_euclidean() { for(int y=0; y<256; y++) for(int x=0; x<256; x++) euclidean[y][x] = NULL; } cell*& at(eucoord x, eucoord y) { euclideanSlab*& slab = euclidean[y>>8][x>>8]; if(!slab) slab = new hrmap_euclidean::euclideanSlab; return slab->a[y&255][x&255]; } map eucdata; ~hrmap_euclidean() { for(int y=0; y<256; y++) for(int x=0; x<256; x++) if(euclidean[y][x]) { delete euclidean[y][x]; euclidean[y][x] = NULL; } eucdata.clear(); } }; union heptacoder { heptagon *h; struct { eucoord x; eucoord y; } c; int id; }; void decodeMaster(heptagon *h, eucoord& x, eucoord& y) { if(torus) { printf("decodeMaster on torus\n"); exit(1); } heptacoder u; u.h = h; x = u.c.x; y = u.c.y; } int decodeId(heptagon* h) { heptacoder u; u.h = h; return u.id; } heptagon* encodeMaster(eucoord x, eucoord y) { if(torus) { printf("encodeMaster on torus\n"); exit(1); } heptacoder u; u.c.x = x; u.c.y = y; return u.h; } heptagon* encodeId(int id) { heptacoder u; u.id = id; return u.h; } // --- quotient geometry --- namespace quotientspace { struct code { int c[8]; }; bool operator == (const code& c1, const code &c2) { for(int i=0; i<8; i++) if(c1.c[i] != c2.c[i]) return false; return true; } bool operator < (const code& c1, const code &c2) { for(int i=0; i<8; i++) if(c1.c[i] != c2.c[i]) return c1.c[i] < c2.c[i]; return false; } int cod(heptagon *h) { return zebra40(h->c7); } code get(heptspin hs) { code res; res.c[0] = cod(hs.h); for(int i=1; i<8; i++) { res.c[i] = cod(hsstep(hs, 0).h); hs = hsspin(hs, 1); } return res; } int rvadd = 0, rvdir = 1; int rv(int x) { return (rvadd+x*rvdir) % 7; } struct hrmap_quotient : hrmap { hrmap_hyperbolic base; vector celllist; cell *origin; map reachable; vector bfsq; vector connections; void add(const heptspin& hs) { code g = get(hs); if(!reachable.count(g)) { reachable[g] = bfsq.size(); bfsq.push_back(hs); add(hsspin(hs, 1)); } } vector allh; hrmap_quotient() { if(quotient == 2) { connections = currfp.connections; } else { heptspin hs; hs.h = base.origin; hs.spin = 0; reachable.clear(); bfsq.clear(); connections.clear(); add(hs); for(int i=0; i<(int)bfsq.size(); i++) { hs = hsstep(bfsq[i], 0); add(hs); connections.push_back(reachable[get(hs)]); } } int TOT = connections.size() / 7; printf("heptagons = %d\n", TOT); printf("all cells = %d\n", TOT*10/3); if(!TOT) exit(1); allh.resize(TOT); for(int i=0; ialt = base.origin; for(int i=0; ialt = NULL; } if(true) { h->s = hsOrigin; h->emeraldval = 0; h->zebraval = 0; h->fiftyval = 0; h->fieldval = 7*i; h->rval0 = h->rval1 = 0; h->cdata = NULL; h->distance = 0; h->c7 = newCell(S7, h); } for(int j=0; j<7; j++) { h->move[rv(j)] = allh[connections[i*7+j]/7]; h->setspin(rv(j), rv(connections[i*7+j]%7)); } } for(int i=0; iemeraldval = allh[i]->alt->emeraldval; allh[i]->zebraval = allh[i]->alt->zebraval; allh[i]->fiftyval = allh[i]->alt->fiftyval; allh[i]->distance = allh[i]->alt->distance; /* for(int j=0; j<7; j++) allh[i]->move[j]->alt = createStep(allh[i]->alt, j); */ } celllister cl(gamestart(), 100, 100000000, NULL); celllist = cl.lst; } heptagon *getOrigin() { return allh[0]; } ~hrmap_quotient() { for(int i=0; i& allcells() { return celllist; } }; }; // --- general --- cell *createMov(cell *c, int d); // similar to heptspin from heptagon.cpp struct cellwalker { cell *c; int spin; bool mirrored; cellwalker(cell *c, int spin, bool m=false) : c(c), spin(spin), mirrored(m) { } cellwalker() { mirrored = false; } }; void cwspin(cellwalker& cw, int d) { cw.spin = (cw.spin+(MIRR(cw)?-d:d) + MODFIXER) % cw.c->type; } bool cwstepcreates(cellwalker& cw) { return cw.c->mov[cw.spin] == NULL; } cell *cwpeek(cellwalker cw, int dir) { return createMov(cw.c, (cw.spin+MODFIXER+dir) % cw.c->type); } void cwmirrorat(cellwalker& cw, int d) { cw.spin = (d+d - cw.spin + MODFIXER) % cw.c->type; cw.mirrored = !cw.mirrored; } void cwstep(cellwalker& cw) { createMov(cw.c, cw.spin); int nspin = cw.c->spn(cw.spin); if(cw.c->mirror(cw.spin)) cw.mirrored = !cw.mirrored; cw.c = cw.c->mov[cw.spin]; cw.spin = nspin; } void cwrev(cellwalker& cw) { cwspin(cw, cw.c->type/2 + ((cw.c->type&1)?hrand(2):0)); } void cwrevstep(cellwalker& cw) { cwrev(cw); cwstep(cw); } // very similar to createMove in heptagon.cpp cell *createMov(cell *c, int d) { if(euclid && !c->mov[d]) { eucoord x, y; decodeMaster(c->master, x, y); for(int dx=-1; dx<=1; dx++) for(int dy=-1; dy<=1; dy++) euclideanAtCreate(x+dx, y+dy); if(!c->mov[d]) { printf("fail!\n"); } } if(c->mov[d]) return c->mov[d]; else if(purehepta) { heptagon *h2 = createStep(c->master, d); merge(c,d,h2->c7,c->master->spin(d),false); } else if(c == c->master->c7) { cell *n = newCell(S6, c->master); merge(c,d,n,0,false); heptspin hs; hs.h = c->master; hs.spin = d; hs.mirrored = false; int a3 = c->type/2; int a4 = a3+1; /* heptspin hs2 = hsstep(hsspin(hs, a3), -a4); merge(hs2.h->c7, hs2.spin, n, 2, hs2.mirrored); heptspin hs3 = hsstep(hsspin(hs, a4), -a3); merge(hs3.h->c7, hs3.spin, n, S6-2, hs3.mirrored); */ for(int u=2; uc7, hs.spin, n, u, hs.mirrored); } extern void verifycell(cell *c); verifycell(n); } else { bool mirr = c->mirror(d-1); int di = fixrot(c->spn(d-1)-(mirr?-1:1)); cell *c2 = createMov(c->mov[d-1], di); bool nmirr = mirr ^ c->mov[d-1]->mirror(di); merge(c, d, c2, fix6(c->mov[d-1]->spn(di) - (nmirr?-1:1)), nmirr); } return c->mov[d]; } cell *createMovR(cell *c, int d) { d %= MODFIXER; d += MODFIXER; d %= c->type; return createMov(c, d); } cell *getMovR(cell *c, int d) { d %= MODFIXER; d += MODFIXER; d %= c->type; return c->mov[d]; } void eumerge(cell* c1, cell *c2, int s1, int s2) { if(!c2) return; c1->mov[s1] = c2; tsetspin(c1->spintable, s1, s2); c2->mov[s2] = c1; tsetspin(c2->spintable, s2, s1); } // map, cell*> euclidean; cell*& euclideanAt(eucoord x, eucoord y) { if(torus) { printf("euclideanAt called\n"); exit(1); } hrmap_euclidean* euc = dynamic_cast (currentmap); return euc->at(x, y); } cell*& euclideanAtCreate(eucoord x, eucoord y) { cell*& c = euclideanAt(x,y); if(!c) { c = newCell(6, NULL); c->master = encodeMaster(x,y); euclideanAt(x,y) = c; eumerge(c, euclideanAt(x+1,y), 0, 3); eumerge(c, euclideanAt(x,y+1), 1, 4); eumerge(c, euclideanAt(x-1,y+1), 2, 5); eumerge(c, euclideanAt(x-1,y), 3, 0); eumerge(c, euclideanAt(x,y-1), 4, 1); eumerge(c, euclideanAt(x+1,y-1), 5, 2); } return c; } // initializer (also inits origin from heptagon.cpp) void initcells() { DEBB(DF_INIT, (debugfile,"initcells\n")); if(torus) currentmap = new hrmap_torus; else if(euclid) currentmap = new hrmap_euclidean; else if(sphere) currentmap = new hrmap_spherical; else if(quotient) currentmap = new quotientspace::hrmap_quotient; else currentmap = new hrmap_hyperbolic; allmaps.push_back(currentmap); windmap::create(); // origin->emeraldval = } void clearcell(cell *c) { if(!c) return; DEBMEM ( printf("c%d %p\n", c->type, c); ) for(int t=0; ttype; t++) if(c->mov[t]) { DEBMEM ( printf("mov %p [%p] S%d\n", c->mov[t], c->mov[t]->mov[c->spn(t)], c->spn(t)); ) if(c->mov[t]->mov[c->spn(t)] != NULL && c->mov[t]->mov[c->spn(t)] != c) { printf("cell error\n"); exit(1); } c->mov[t]->mov[c->spn(t)] = NULL; } DEBMEM ( printf("DEL %p\n", c); ) delete c; } heptagon deletion_marker; void clearHexes(heptagon *at) { if(at->c7) { if(!purehepta) for(int i=0; i<7; i++) clearcell(at->c7->mov[i]); clearcell(at->c7); } } void clearfrom(heptagon *at) { queue q; q.push(at); at->alt = &deletion_marker; //int maxq = 0; while(!q.empty()) { at = q.front(); // if(q.size() > maxq) maxq = q.size(); q.pop(); DEBMEM ( printf("from %p\n", at); ) for(int i=0; i<7; i++) if(at->move[i]) { if(at->move[i]->alt != &deletion_marker) q.push(at->move[i]); at->move[i]->alt = &deletion_marker; DEBMEM ( printf("!mov %p [%p]\n", at->move[i], at->move[i]->move[at->spin(i)]); ) if(at->move[i]->move[at->spin(i)] != NULL && at->move[i]->move[at->spin(i)] != at) { printf("hept error\n"); exit(1); } at->move[i]->move[at->spin(i)] = NULL; at->move[i] = NULL; } clearHexes(at); delete at; } //printf("maxq = %d\n", maxq); } void verifycell(cell *c) { int t = c->type; for(int i=0; imov[i]; if(c2) { if(!euclid && !purehepta && c == c->master->c7) verifycell(c2); if(c2->mov[c->spn(i)] && c2->mov[c->spn(i)] != c) { printf("cell error %p:%d [%d] %p:%d [%d]\n", c, i, c->type, c2, c->spn(i), c2->type); exit(1); } } } } void verifycells(heptagon *at) { for(int i=0; imove[i] && at->move[i]->move[at->spin(i)] && at->move[i]->move[at->spin(i)] != at) { printf("hexmix error %p [%d s=%d] %p %p\n", at, i, at->spin(i), at->move[i], at->move[i]->move[at->spin(i)]); } if(!sphere && !quotient) for(int i=0; imove[i] && at->spin(i) == 0 && at->s != hsOrigin) verifycells(at->move[i]); verifycell(at->c7); } int eupattern(cell *c) { if(torus) return decodeId(c->master) % 3; eucoord x, y; decodeMaster(c->master, x, y); short z = (short(y+2*x))%3; z %= 3; if(z<0) z += 3; return z; } bool ishept(cell *c) { // EUCLIDEAN if(euclid) return eupattern(c) == 0; else return c->type != S6; } bool ishex1(cell *c) { // EUCLIDEAN if(euclid) return eupattern(c) == 1; else return c->type != S6; } int emeraldval(cell *c) { if(euclid) return eupattern(c); if(sphere) return 0; if(ctof(c)) return c->master->emeraldval >> 3; else { return emerald_hexagon( emeraldval(createMov(c,0)), emeraldval(createMov(c,2)), emeraldval(createMov(c,4)) ); } } int eudist(short sx, short sy) { int z0 = abs(sx); int z1 = abs(sy); int z2 = abs(sx+sy); return max(max(z0,z1), z2); } int compdist(int dx[]) { int mi = dx[0]; for(int u=0; u mi+2) return -1; // { printf("cycle error!\n"); exit(1); } for(int u=0; udists[decodeId(c->master)]; eucoord x, y; decodeMaster(c->master, x, y); return eudist(x, y); } if(sphere) return celldistance(c, currentmap->gamestart()); if(ctof(c)) return c->master->distance; int dx[MAX_S3]; for(int u=0; umaster->distance; return compdist(dx); } #define ALTDIST_BOUNDARY 99999 #define ALTDIST_UNKNOWN 99998 #define ALTDIST_ERROR 90000 // defined in 'game' int euclidAlt(short x, short y); int celldistAlt(cell *c) { if(euclid) { if(torus) return celldist(c); eucoord x, y; decodeMaster(c->master, x, y); return euclidAlt(x, y); } if(!c->master->alt) return 0; if(ctof(c)) return c->master->alt->distance; int dx[MAX_S3]; for(int u=0; umaster->alt == NULL) return ALTDIST_UNKNOWN; for(int u=0; umaster->alt->distance; // return compdist(dx); -> not OK because of boundary conditions int mi = dx[0]; for(int i=1; i mi+2) return ALTDIST_BOUNDARY; // { printf("cycle error!\n"); exit(1); } for(int i=0; itype; i++) if(cfrom->mov[i] == cto) return i; return -1; } // === FIFTYVALS === unsigned bitmajority(unsigned a, unsigned b, unsigned c) { return (a&b) | ((a^b)&c); } int eufifty(cell *c) { eucoord x, y; if(torus) { if(c->land == laWildWest) return decodeId(c->master) % 37; else return decodeId(c->master) % 27; } decodeMaster(c->master, x, y); int ix = short(x) + 99999 + short(y); int iy = short(y) + 99999; if(c->land == laWildWest) return (ix + iy * 26 + 28) % 37; else { ix += (iy/3) * 3; iy %= 3; ix %= 9; return iy * 9 + ix; } } int fiftyval(cell *c) { if(euclid) return eufifty(c) * 32; if(sphere || S7>7 || S6>6) return 0; if(c->type == 7) return c->master->fiftyval; else { return bitmajority( fiftyval(createMov(c,0)), fiftyval(createMov(c,2)), fiftyval(createMov(c,4))) + 512; } } int cdist50(cell *c) { if(sphere || S7>7 || S6>6) return 0; if(euclid) { if(c->land == laWildWest) return "0123333332112332223322233211233333322"[eufifty(c)] - '0'; else return "012333321112322232222321123"[eufifty(c)] - '0'; } if(c->type != 6) return cdist50(fiftyval(c)); int a0 = cdist50(createMov(c,0)); int a1 = cdist50(createMov(c,2)); int a2 = cdist50(createMov(c,4)); if(a0 == 0 || a1 == 0 || a2 == 0) return 1; return a0+a1+a2-5; } int land50(cell *c) { if(c->type != 6) return land50(fiftyval(c)); else if(sphere || euclid) return 0; else { if(cdist50(createMov(c,0)) < 3) return land50(createMov(c,0)); if(cdist50(createMov(c,2)) < 3) return land50(createMov(c,2)); if(cdist50(createMov(c,4)) < 3) return land50(createMov(c,4)); return 0; } } int polara50(cell *c) { if(c->type != 6) return polara50(fiftyval(c)); else if(sphere || euclid || S7>7 || S6>6) return 0; else { if(cdist50(createMov(c,0)) < 3) return polara50(createMov(c,0)); if(cdist50(createMov(c,2)) < 3) return polara50(createMov(c,2)); if(cdist50(createMov(c,4)) < 3) return polara50(createMov(c,4)); return 0; } } int polarb50(cell *c) { if(euclid) return true; if(c->type != 6) return polarb50(fiftyval(c)); else if(sphere || euclid || S7>7 || S6>6) return true; else { if(cdist50(createMov(c,0)) < 3) return polarb50(createMov(c,0)); if(cdist50(createMov(c,2)) < 3) return polarb50(createMov(c,2)); if(cdist50(createMov(c,4)) < 3) return polarb50(createMov(c,4)); return 0; } } int elhextable[28][3] = { {0,1,2}, {1,2,9}, {1,9,-1}, {1,8,-1}, {1,-1,-1} }; int fiftyval049(cell *c) { if(c->type != 6 || euclid) return fiftyval(c) / 32; else if(sphere) return 0; else { int a[3], qa=0; int pa = polara50(c), pb = polarb50(c); for(int i=0; i<6; i+=2) { cell *c2 = c->mov[i]; if(polara50(c2) == pa && polarb50(c2) == pb) a[qa++] = fiftyval049(c2); } // 0-1-2 sort(a, a+qa); if(qa == 1) return 43+a[0]-1; if(qa == 2 && a[1] == a[0]+7) return 36+a[0]-1; if(qa == 2 && a[1] != a[0]+7) return 29+a[0]-1; if(a[1] == 1 && a[2] == 7) return 15 + 6; if(a[2] >= 1 && a[2] <= 7) return 15 + a[1]-1; if(a[0] == 1 && a[1] == 7 && a[2] == 8) return 22; if(a[1] <= 7 && a[2] >= 8) return 22 + a[1]-1; return 0; } } /* {0,1,2} 15+0..15+6 {1,2,9},22+0..22+6 {1,9} 29+0..29+6 {1,8} 36+0..36+6 {1} 43+0..43+6 */ // zebraval int zebra40(cell *c) { if(ctof(c)) return (c->master->zebraval/10); else if(sphere) return 0; else if(euclid) return eupattern(c); else { int ii[3], z; ii[0] = (c->mov[0]->master->zebraval/10); ii[1] = (c->mov[2]->master->zebraval/10); ii[2] = (c->mov[4]->master->zebraval/10); for(int r=0; r<2; r++) if(ii[1] < ii[0] || ii[2] < ii[0]) z = ii[0], ii[0] = ii[1], ii[1] = ii[2], ii[2] = z; for(int i=0; i<28; i++) if(zebratable6[i][0] == ii[0] && zebratable6[i][1] == ii[1] && zebratable6[i][2] == ii[2]) { int ans = 16+i; // if(ans >= 40) ans ^= 2; // if(ans >= 4 && ans < 16) ans ^= 2; return ans; } return 0; } } int zebra3(cell *c) { if(c->type != 6) return (c->master->zebraval/10)/4; else if(sphere || S7>7 || S6>6) return 0; else { int ii[3]; ii[0] = (c->mov[0]->master->zebraval/10)/4; ii[1] = (c->mov[2]->master->zebraval/10)/4; ii[2] = (c->mov[4]->master->zebraval/10)/4; if(ii[0] == ii[1]) return ii[0]; if(ii[1] == ii[2]) return ii[1]; if(ii[2] == ii[0]) return ii[2]; return 0; } } #define RPV_MODULO 5 #define RPV_RAND 0 #define RPV_ZEBRA 1 #define RPV_EMERALD 2 #define RPV_PALACE 3 #define RPV_CYCLE 4 int getCdata(cell *c, int j); // x mod 5 = pattern type // x mod (powers of 2) = pattern type specific // (x/5) mod 15 = picture for drawing floors // x mod 7 = chance of pattern-specific pic // whole = randomization bool randpattern(cell *c, int rval) { int i, sw=0; switch(rval%5) { case 0: if(rval&1) { return hrandpos() < rval; } else { int cd = getCdata(c, 0); return !((cd/(((rval/2)&15)+1))&1); } case 1: i = zebra40(c); if(i&1) { if(rval&4) sw^=1; i &= ~1; } if(i&2) { if(rval&8) sw^=1; i &= ~2; } i >>= 2; i--; i /= 3; if(rval & (16<>= 2; i--; if(rval & (16<>2)&3)+"/"+its((rval>>4)&15); case 2: return "E/"+its((rval>>2)&3)+"/"+its((rval>>4)&2047); case 3: return "P/"+its((rval>>2)&3)+"/"+its((rval>>4)&255); case 4: return "C/"+its(rval&3)+"/"+its((rval>>2)&65535); } return "?"; } int randpatternCode(cell *c, int rval) { switch(rval % RPV_MODULO) { case 1: return zebra40(c); case 2: return emeraldval(c); case 3: return fiftyval049(c) + (polara50(c)?50:0) + (polarb50(c)?1000:0); case 4: return towerval(c, celldist) * 6 + celldist(c) % 6; } return 0; } #define RANDITER 31 char rpm_memoize[3][256][RANDITER+1]; void clearMemoRPM() { for(int a=0; a<3; a++) for(int b=0; b<256; b++) for(int i=0; itype; i++) { if(randpatternMajority(createMov(c,i), ival, iterations-1)) z++; else z--; } if(z!=0) memo = (z>0); else memo = randpattern(c, rval); // printf("%p] rval = %X code = %d iterations = %d result = %d\n", c, rval, code, iterations, memo); return memo; } map spins; #define RVAL_MASK 0x10000000 #define DATA_MASK 0x20000000 cdata orig_cdata; void affect(cdata& d, short rv, signed char signum) { if(rv&1) d.val[0]+=signum; else d.val[0]-=signum; if(rv&2) d.val[1]+=signum; else d.val[1]-=signum; if(rv&4) d.val[2]+=signum; else d.val[2]-=signum; if(rv&8) d.val[3]+=signum; else d.val[3]-=signum; int id = (rv>>4) & 63; if(id < 32) d.bits ^= (1 << id); } void setHeptagonRval(heptagon *h) { if(!(h->rval0 || h->rval1)) { h->rval0 = hrand(0x10000); h->rval1 = hrand(0x10000); } } cdata *getHeptagonCdata(heptagon *h) { if(h->cdata) return h->cdata; if(sphere || quotient) h = currentmap->gamestart()->master; if(h == currentmap->gamestart()->master) { return h->cdata = new cdata(orig_cdata); } cdata mydata = *getHeptagonCdata(h->move[0]); for(int di=3; di<5; di++) { heptspin hs; hs.h = h; hs.spin = di; int signum = +1; while(true) { heptspin hstab[15]; hstab[7] = hs; for(int i=8; i<12; i++) { hstab[i] = hsspin(hstab[i-1], (i&1) ? 4 : 3); hstab[i] = hsstep(hstab[i], 0); hstab[i] = hsspin(hstab[i], (i&1) ? 3 : 4); } for(int i=6; i>=3; i--) { hstab[i] = hsspin(hstab[i+1], (i&1) ? 3 : 4); hstab[i] = hsstep(hstab[i], 0); hstab[i] = hsspin(hstab[i], (i&1) ? 4 : 3); } if(hstab[3].h->distance < hstab[7].h->distance) { hs = hstab[3]; continue; } if(hstab[11].h->distance < hstab[7].h->distance) { hs = hstab[11]; continue; } int jj = 7; for(int k=3; k<12; k++) if(hstab[k].h->distance < hstab[jj].h->distance) jj = k; int ties = 0, tiespos = 0; for(int k=3; k<12; k++) if(hstab[k].h->distance == hstab[jj].h->distance) ties++, tiespos += (k-jj); // printf("ties=%d tiespos=%d jj=%d\n", ties, tiespos, jj); if(ties == 2) jj += tiespos/2; if(jj&1) signum = -1; hs = hstab[jj]; break; } hs = hsstep(hsspin(hs, 3), 0); setHeptagonRval(hs.h); affect(mydata, hs.spin ? hs.h->rval0 : hs.h->rval1, signum); /* if(!(spins[hs.h] & hs.spin)) { spins[hs.h] |= (1<cdata = new cdata(mydata); } cdata *getEuclidCdata(heptagon *h) { if(torus) { static cdata xx; return &xx; } eucoord x, y; hrmap_euclidean* euc = dynamic_cast (currentmap); if(euc->eucdata.count(h)) return &(euc->eucdata[h]); decodeMaster(h, x, y); if(x == 0 && y == 0) { cdata xx; for(int i=0; i<4; i++) xx.val[i] = 0; xx.bits = 0; return &(euc->eucdata[h] = xx); } int ord = 1, bid = 0; while(!((x|y)&ord)) ord <<= 1, bid++; for(int k=0; k<3; k++) { eucoord x1 = x + (k<2 ? ord : 0); eucoord y1 = y - (k>0 ? ord : 0); if((x1&ord) || (y1&ord)) continue; eucoord x2 = x - (k<2 ? ord : 0); eucoord y2 = y + (k>0 ? ord : 0); cdata *d1 = getEuclidCdata(encodeMaster(x1,y1)); cdata *d2 = getEuclidCdata(encodeMaster(x2,y2)); cdata xx; double disp = pow(2, bid/2.) * 6; for(int i=0; i<4; i++) { double dv = (d1->val[i] + d2->val[i])/2 + (hrand(1000) - hrand(1000))/1000. * disp; xx.val[i] = floor(dv); if(hrand(1000) / 1000. < dv - floor(dv)) xx.val[i]++; } xx.bits = 0; for(int b=0; b<32; b++) { bool gbit = ((hrand(2)?d1:d2)->bits >> b) & 1; int flipchance = (1< 512) flipchance = 512; if(hrand(1024) < flipchance) gbit = !gbit; if(gbit) xx.bits |= (1<eucdata[h] = xx); } // impossible! return NULL; } int getCdata(cell *c, int j) { if(euclid) return getEuclidCdata(c->master)->val[j]; else if(c->type != 6) return getHeptagonCdata(c->master)->val[j]*3; else { int jj = 0; for(int k=0; k<6; k++) if(c->mov[k] && c->mov[k]->type == 7) jj += getHeptagonCdata(c->mov[k]->master)->val[j]; return jj; } } int getBits(cell *c) { if(euclid) return getEuclidCdata(c->master)->bits; else if(c->type != 6) return getHeptagonCdata(c->master)->bits; else { int b0 = getHeptagonCdata(createMov(c, 0)->master)->bits; int b1 = getHeptagonCdata(createMov(c, 2)->master)->bits; int b2 = getHeptagonCdata(createMov(c, 4)->master)->bits; return (b0 & b1) | (b1 & b2) | (b2 & b0); } } eLand getCLand(cell *c) { int b = getBits(c); b = (b&31) ^ (b>>5); return land_scape[b & 31]; } cell *heptatdir(cell *c, int d) { if(d&1) { cell *c2 = createMov(c, d); int s = c->spin(d); s += 3; s %= 6; return createMov(c2, s); } else return createMov(c, d); } namespace fieldpattern { pair fieldval(cell *c) { if(ctof(c)) return make_pair(c->master->fieldval, false); else return make_pair(btspin(c->master->fieldval, c->spin(0)), true); } int fieldval_uniq(cell *c) { if(sphere) { if(ctof(c)) return c->master->fieldval; else return createMov(c, 0)->master->fieldval + 256 * createMov(c,2)->master->fieldval + (1<<16) * createMov(c,4)->master->fieldval; } else if(torus) { return decodeId(c->master); } else if(euclid) { eucoord x, y; decodeMaster(c->master, x, y); int i = (short int)(x) * torusconfig::dx + (short int)(y) * torusconfig::dy; i %= torusconfig::qty; if(i<0) i += torusconfig::qty; return i; } if(ctof(c)) return c->master->fieldval/S7; else { int z = 0; for(int u=0; umaster->fieldval, c->spin(u))); return -1-z; } } int fieldval_uniq_rand(cell *c, int randval) { if(sphere || torus || euclid) // we do not care in these cases return fieldval_uniq(c); if(ctof(c)) return currfp.gmul(c->master->fieldval, randval)/7; else { int z = 0; for(int u=0; u<6; u+=2) z = max(z, btspin(currfp.gmul(createMov(c, u)->master->fieldval, randval), c->spin(u))); return -1-z; } } int subpathid = currfp.matcode[currfp.strtomatrix("RRRPRRRRRPRRRP")]; int subpathorder = currfp.order(currfp.matrices[subpathid]); pair subval(cell *c, int _subpathid = subpathid, int _subpathorder = subpathorder) { if(!ctof(c)) { auto m = subval(createMov(c, 0)); for(int u=2; u pbest, pcur; pcur.first = c->master->fieldval; pcur.second = 0; pbest = pcur; for(int i=0; i<_subpathorder; i++) { pcur.first = currfp.gmul(pcur.first, _subpathid); pcur.second++; if(pcur < pbest) pbest = pcur; } return pbest; } } } int celldistance(cell *c1, cell *c2) { int d = 0; if(euclid) { if(torus) return torusmap()->dists[toridMod(decodeId(c1->master)-decodeId(c2->master))]; eucoord x1, y1, x2, y2; decodeMaster(c1->master, x1, y1); decodeMaster(c2->master, x2, y2); return eudist(x1-x2, y1-y2); } if(sphere || quotient == 1) { celllister cl(c1, 64, 1000, c2); for(int i=0; i= d2) { cl1 = chosenDown(cl1, -1, 0, celldist); // cl1->item = eItem(rand() % 10); cr1 = chosenDown(cr1, 1, 0, celldist); // cr1->item = eItem(rand() % 10); d++; d1--; } if(d1 < d2) { cl2 = chosenDown(cl2, -1, 0, celldist); // cl2->item = eItem(rand() % 10); cr2 = chosenDown(cr2, 1, 0, celldist); // cr2->item = eItem(rand() % 10); d++; d2--; } } } void clearCellMemory() { for(int i=0; itype != 6) { int id = c->master->fiftyval; int hemitable[3][12] = { { 6, 3, 3, 3, 3, 3,-6,-3,-3,-3,-3,-3}, { 6, 3, 6, 3, 0, 0,-6,-3,-6,-3, 0, 0}, {-3, 0, 3, 0,-6,-6, 3, 0,-3, 0, 6, 6} }; return hemitable[which][id]; } else { int score = 0; for(int i=0; i<6; i+=2) score += getHemisphere(c->mov[i], which); return score/3; } }