namespace nilrider { const int steps_per_block = 16; const int texture_density = 64; void level::init_textures() { int tY = isize(map_tiles); int tX = isize(map_tiles[0]); for(int stepped: {0, 1}) { auto& target = stepped ? unil_texture_stepped : unil_texture; target = new texture::texture_data; auto& tex = *target; tex.twidth = tex.tx = tX * texture_density; tex.theight = tex.ty = tY * texture_density; tex.stretched = false; tex.strx = tex.tx; tex.stry = tex.ty; tex.base_x = 0; tex.base_y = 0; tex.whitetexture(); auto getpix = [&] (int x, int y) { int px = x / pixel_per_block; int py = y / pixel_per_block; if(px < 0 || py < 0 || px >= tX || py >= tY) return '!'; char bmch = map_tiles[py][px]; if(bmch == '!') return '!'; return submaps[bmch][y % pixel_per_block][x % pixel_per_block]; }; int subpixels = texture_density / pixel_per_block; int stepdiv = texture_density / steps_per_block; for(int y=0; yscale); init_textures(); int tY = isize(map_tiles); int tX = isize(map_tiles[0]); start.where = mappt(startx+.5, starty+.5, 1); start.t = 0; current = start; println(hlog, "start.where = ", start.where); println(hlog, "current.where = ", current.where, " : ", format("%p", ¤t)); /* start facing slightly to the right from the slope */ for(auto b: {true, false}) while(true) { auto c = start; if(c.tick(this) == b) break; start.heading_angle -= 1 * degree; } for(int s=0; s<3; s++) { cgi.bshape(s == 0 ? shFloor : s == 1 ? shPlanFloor : shStepFloor, PPR::WALL); shFloor.flags |= POLY_TRIANGLES; shPlanFloor.flags |= POLY_TRIANGLES; shStepFloor.flags |= POLY_TRIANGLES; int prec = 16; if(s == 2) prec *= 2; int cdiv = prec / steps_per_block; auto pt = [&] (int x, int y) { if(s == 0) uniltinf.tvertices.push_back(glhr::makevertex(x * 1. / tX / prec, y * 1. / tY / prec, 0)); if(s == 2) uniltinf_stepped.tvertices.push_back(glhr::makevertex(x * 1. / tX / prec, y * 1. / tY / prec, 0)); hyperpoint h = mappt(x, y, prec); if(s == 2) { if(x % cdiv == cdiv/2+1) x += cdiv/2 - 1; if(y % cdiv == cdiv/2+1) y += cdiv/2 - 1; int gx = x/cdiv*cdiv + (x%cdiv) * 2; int gy = y/cdiv*cdiv + (y%cdiv) * 2; hyperpoint gh = mappt(gx, gy, prec); int ax = x/cdiv*cdiv + cdiv/2; int ay = y/cdiv*cdiv + cdiv/2; hyperpoint ah = mappt(ax, ay, prec); gh[0] = gh[0] - ah[0]; gh[1] = gh[1] - ah[1]; gh[2] = 0; gh = sym_to_heis(gh); h = rgpushxto0(ah) * gh; ld delta = 0; // make sure steps are below the actual level for(int z=0; z<4; z++) { int zx = x/cdiv*cdiv + ((z&1)?cdiv:0); int zy = y/cdiv*cdiv + ((z&2)?cdiv:0); hyperpoint zh = mappt(zx, zy, prec); hyperpoint uh; uh[0] = zh[0] - ah[0]; uh[1] = zh[1] - ah[1]; uh[2] = 0; uh[3] = 1; uh = sym_to_heis(uh); uh = rgpushxto0(ah) * uh; delta = max(delta, uh[2] - zh[2]); } h[2] -= delta; } real_minx = min(real_minx, h[0]); real_maxx = max(real_maxx, h[0]); real_miny = min(real_miny, h[1]); real_maxy = max(real_maxy, h[1]); if(s == 1) h[2] = h[3] = 1; cgi.hpcpush(h); }; for(int y=0; y (cdiv/2)) q+=2; if(y % cdiv == (cdiv/2)) q++; if(y % cdiv > (cdiv/2)) q+=2; if(q > 1) continue; } pt(x, y); pt(x, y+1); pt(x+1, y); pt(x+1, y+1); pt(x+1, y); pt(x, y+1); } cgi.finishshape(); } if(1) { cgi.bshape(shField, PPR::WALL); shField.flags |= POLY_TRIANGLES; auto pt = [&] (hyperpoint p) { hyperpoint h = mappt(p[0], p[1], 16); h[2] += p[2]; cgi.hpcpush(h); // cgi.hpcpush(hyperpoint(rand() % 10 - 5, rand() % 10 - 5, rand() % 10 - 5, 1)); }; for(int y=0; y bar + M_PI) h[0] -= 2 * M_PI; } int tY = isize(map_tiles); int tX = isize(map_tiles[0]); ld rtx = ilerp(minx, maxx, h[0]) * tX; ld rty = ilerp(miny, maxy, h[1]) * tY; return {rtx, rty}; } char level::mapchar(xy_int p) { auto x = p.first; auto y = p.second; int tY = isize(map_tiles); int tX = isize(map_tiles[0]); if(x < 0 || y < 0 || x >= tX || y >= tY) return '!'; return map_tiles[y][x]; } /* convert ASCII map coordinates to Heisenberg coordinates */ hyperpoint level::mappt(ld x, ld y, int s) { int tY = isize(map_tiles); int tX = isize(map_tiles[0]); x /= s; y /= s; hyperpoint h; h[0] = lerp(minx, maxx, x / tX); h[1] = lerp(miny, maxy, y / tY); if(flags & nrlPolar) tie(h[0], h[1]) = make_pair(h[1] * sin(h[0]), h[1] * cos(h[0])); h[2] = surface(h); h[3] = 1; return h; }; void level::init_plan() { plan.emplace_back(start.where, hpxy(cos(start.heading_angle + 90*degree) * 2, sin(start.heading_angle + 90*degree) * 2)); current = start; timer = 0; } ld level::safe_alt(hyperpoint h, ld mul, ld mulx) { ld maxv = 0; for(int x: {-1, 0, 1}) for(int y: {-1, 0, 1}) { hyperpoint c = sym_to_heis(point31(x*.5*scale*mulx, y*.5*scale*mulx, 0)); hyperpoint j = rgpushxto0(h) * c; maxv = max(maxv, mul * (surface(j) - j[2])); } return maxv; } bool stepped_display; void level::draw_level(const shiftmatrix& V) { int id = 0; for(auto& t: triangles) { bool gotit = current.collected_triangles & Flag(id); id++; if(!gotit) { for(int i=0; i<6; i++) { auto &poly = queuepoly(V * rgpushxto0(t.where) * cpush(2, abs(0.2 * sin(timer * 5))), shMini[i], t.colors[i]); poly.tinf = &floor_texture_vertices[cgi.shFloor.id]; ensure_vertex_number(*poly.tinf, poly.cnt); } } } if(true) { auto& poly = queuepoly(V, shCastle, 0xC02020FF); poly.tinf = &castle_tinf; castle_tinf.texture_id = castle_texture->textureid; } for(auto st: statues) queuepoly(V * st.T, *st.shape, st.color); queuepoly(V, shField, 0xFFFF00FF); if(!stepped_display) { auto& poly = queuepoly(V, shFloor, 0xFFFFFFFF); // 0xFFFFFFFF); poly.tinf = &uniltinf; uniltinf.texture_id = unil_texture->textureid; } else { auto& poly = queuepoly(V, shStepFloor, 0xFFFFFFFF); // 0xFFFFFFFF); poly.tinf = &uniltinf_stepped; uniltinf_stepped.texture_id = unil_texture_stepped->textureid; } } }