// Hyperbolic Rogue -- Heptagon // Copyright (C) 2011-2018 Zeno Rogue, see 'hyper.cpp' for details /** \file heptagon.cpp * \brief implementation of Heptagons * * Start with locations.cpp */ #include "hyper.h" namespace hr { #define MIRR(x) x.mirrored int heptacount = 0; struct cell; cell *newCell(int type, heptagon *master); /** the automaton is used to generate each heptagon in an unique way. * See http://roguetemple.com/z/dev.php for more help. * From the origin we can go further in any direction, and from other heptagons * we can go in directions 3 and 4 (0 is back to origin, so 3 and 4 go forward), * and sometimes in direction 5 */ EX hstate transition(hstate s, int dir) { if(embedded_plane) return IPF(transition(s, dir)); if(sphere) { if(S7 == 4) { if(s == hsOrigin) return dir == 0 ? hsB0 : hsB1; } if(S7 == 3 && S3 == 3) { if(s == hsOrigin) return hsB1; } if(S7 == 3 && S3 == 4) { if(s == hsOrigin) return dir == 0 ? hsA0 : hsA1; if(s == hsA0 && dir == 1) return hsB0; if(s == hsA1 && dir == 1) return hsB1; if(s == hsB0 && dir == 2) return hsC; return hsError; } if(s == hsOrigin) return dir == 0 ? hsA0 : hsA1; if(s == hsA0 && dir == 2) return hsB0; if(s == hsA1 && dir == 2) return hsB1; if(s == hsB0 && dir == S7-2) return hsC; return hsError; } else if(S6 == 8) { if(s == hsOrigin) return hsA; if(s == hsA && (dir >= 2 && dir < S7-1)) return hsA; if(s == hsA && (dir == S7-1)) return hsB; if(s == hsB && (dir >= 2 && dir < S7-2)) return hsA; if(s == hsB && (dir == S7-2)) return hsB; } else if(S3 >= OINF) { if(s == hsOrigin) return hsA; if(s == hsA && dir) return hsA; } else { if(s == hsOrigin) return hsA; if(s == hsA && dir >= 3 && dir <= S7-3) return hsA; if(s == hsA && dir == S7-2) return hsB; if(s == hsB && dir >= 3 && dir <= S7-4) return hsA; if(s == hsB && dir == S7-3) return hsB; } return hsError; } #define COMPUTE -1000000 // create a new heptagon EX heptagon *buildHeptagon1(heptagon *h, heptagon *parent, int d, hstate s, int pard IS(0)) { h->alt = NULL; h->s = s; h->c.connect(pard, parent, d, false); h->cdata = NULL; return h; } EX heptagon *init_heptagon(int type) { heptagon *h = tailored_alloc<heptagon> (type); h->emeraldval = 0; h->zebraval = 0; h->fiftyval = 0; h->fieldval = 0; h->rval0 = h->rval1 = 0; h->cdata = NULL; h->alt = NULL; h->c7 = NULL; h->distance = 0; h->dm4 = 0; return h; } heptagon *buildHeptagon(heptagon *parent, int d, hstate s, int pard = 0, int fixdistance = COMPUTE) { heptagon *h = buildHeptagon1(tailored_alloc<heptagon> (S7), parent, d, s, pard); if(bt::in() || arcm::in()) return h; if(parent->c7) { #if CAP_IRR if(IRREGULAR) irr::link_next(parent, d); else #endif h->c7 = newCell(S7, h); h->rval0 = h->rval1 = 0; h->emeraldval = emerald_heptagon(parent->emeraldval, d); h->zebraval = zebra_heptagon(parent->zebraval, d); #if CAP_FIELD if(&currfp != &fieldpattern::fp_invalid) h->fieldval = currfp.connections[fieldpattern::btspin(parent->fieldval, d)]; #endif if(a38) h->fiftyval = fifty_38(parent->fiftyval, d); else if(parent->s == hsOrigin) h->fiftyval = firstfiftyval(d); else h->fiftyval = nextfiftyval(parent->fiftyval, parent->move(0)->fiftyval, d); } else { h->c7 = NULL; h->emeraldval = 0; h->fiftyval = 0; h->cdata = NULL; } //generateEmeraldval(parent); //generateEmeraldval(h); if(pard == 0) { h->dm4 = parent->dm4+1; if(fixdistance != COMPUTE) h->distance = fixdistance; else if(S3 == 4 && BITRUNCATED) { h->distance = parent->distance + 2; if(h->c.spin(0) == 2 || (h->c.spin(0) == 3 && S7 <= 5)) h->distance = min<short>(h->distance, createStep(h->move(0), 0)->distance + 3); if(h->c.spin(0) == 2 && h->move(0)) { int d = h->c.spin(0); int d1 = (d+S7-1)%S7; bool missing0 = !h->move(0)->move(d1); if(missing0) { if(s == 1 && h->move(0)->s != hsOrigin) h->distance = h->move(0)->distance + 1; } else { heptagon* h1 = createStep(h->move(0), d1); if(h1->distance <= h->move(0)->distance) h->distance = h->move(0)->distance+1; } } if((h->s == hsB && h->move(0)->s == hsB) || h->move(0)->s == hsA) { int d = h->c.spin(0); heptagon* h1 = createStep(h->move(0), (d+1)%S7); if(h1->distance <= h->move(0)->distance) h->distance = h->move(0)->distance+1; } if(h->c.spin(0) == S7-1 && (h->move(0)->s != hsOrigin) && BITRUNCATED) { bool missing = !h->move(S7-1); if(missing) { h->distance = parent->distance; if( parent->distance - h->move(0)->move(0)->distance == 1 && h->c.spin(0) == S7 - 1 && h->move(0)->c.spin(0) == 2) h->distance++; } else { h->distance = min( h->move(0)->move(0)->distance + 2, createStep(h, S7-1)->distance + 1 ); } } } else if(parent->s == hsOrigin) h->distance = parent->distance + gp::dist_2(); #if CAP_GP else if(S3 == 4 && GOLDBERG && h->c.spin(0) == S7-2 && h->move(0)->c.spin(0) >= S7-2 && h->move(0)->move(0)->s != hsOrigin) { heptspin hs(h, 0); hs += wstep; int d1 = hs.at->distance; hs += 1; hs += wstep; int dm = hs.at->distance; hs += -1; hs += wstep; int d0 = hs.at->distance; h->distance = gp::solve_triangle(dm, d0, d1, gp::param * gp::loc(-1,1)); } else if(S3 == 4 && GOLDBERG && h->c.spin(0) == S7-1 && among(h->move(0)->c.spin(0), S7-2, S7-3) && h->move(0)->move(0)->s != hsOrigin) { heptspin hs(h, 0); hs += wstep; int d0 = hs.at->distance; hs += 1; hs += wstep; int dm = hs.at->distance; hs += 1; hs += wstep; int d1 = hs.at->distance; h->distance = gp::solve_triangle(dm, d0, d1, gp::param * gp::loc(1,1)); } else if(S3 == 4 && GOLDBERG && h->c.spin(0) >= 2 && h->c.spin(0) <= S7-2) { h->distance = parent->distance + gp::dist_2(); } #endif else if(h->c.spin(0) == S7-2) { #if CAP_GP if(GOLDBERG) { int d0 = parent->distance; int d1 = createStep(parent, S7-1)->distance; int dm = createStep(parent, 0)->distance; h->distance = gp::solve_triangle(dm, d0, d1, gp::param * gp::loc(1,1)); } else #endif h->distance = parent->distance + gp::dist_1(); } else if(h->c.spin(0) == S7-3 && h->move(0)->s == hsB) { #if CAP_GP if(GOLDBERG) { int d0 = parent->distance; int d1 = createStep(parent, S7-2)->distance; int dm = createStep(parent, S7-1)->distance; h->distance = gp::solve_triangle(dm, d0, d1, gp::param * gp::loc(1,1)); } else #endif h->distance = createStep(h->move(0), (h->c.spin(0)+2)%S7)->distance + gp::dist_3(); } else if(h->c.spin(0) == S7-1 && S3 == 4 && GOLDBERG) { h->distance = parent->distance + gp::dist_1(); } else h->distance = parent->distance + gp::dist_2(); } else { h->distance = parent->distance - gp::dist_2(); if(S3 == 4 && S7 > 5 && BITRUNCATED) { h->distance = parent->distance - 2; } if(S3 == 4 && S7 == 5) { if(h->s == hsOrigin) { printf("had to cheat!\n"); h->distance = parent->distance - 2; } else { h->distance = parent->distance - 1; buildHeptagon(h, 2, hsA, 0, h->distance + 2); buildHeptagon(h, 4, hsB, 0, h->distance); } } h->dm4 = parent->dm4-1; } return h; } int recsteps; void addSpin(heptagon *h, int d, heptagon *from, int rot, int spin) { rot = h->c.fix(rot); auto h1 = createStep(from, rot); int fr = h1->c.fix(from->c.spin(rot) + spin); h->c.connect(d, from->move(rot), fr, false); } extern int hrand(int); EX hookset<void(heptagon*, int)> hooks_createStep; // create h->move(d) if not created yet heptagon *createStep(heptagon *h, int d) { d = h->c.fix(d); if(h->move(d)) return h->move(d); callhooks(hooks_createStep, h, d); return currentmap->create_step(h, d); } heptagon *hrmap_standard::create_step(heptagon *h, int d) { if(!h->move(0) && h->s != hsOrigin && !bt::in() && !cryst) { // cheating: int pard=0; if(S3 == 3) pard = 3 + hrand(2); else if(S3 == 4 && S7 == 5) pard = 3; // to do: randomize else if(S3 == 4) pard = 3; buildHeptagon(h, 0, h->distance < -global_distance_limit - 200 ? hsOrigin : hsA, pard); } if(h->move(d)) return h->move(d); if(h->s == hsOrigin) { buildHeptagon(h, d, hsA); } else if(S3 == 4) { if(d == 1) { heptspin hs(h, 0, false); hs = hs + wstep - 1 + wstep - 1 + wstep - 1; h->c.connect(d, hs); } else if(h->s == hsB && d == S7-1) { heptspin hs(h, 0, false); hs = hs + wstep + 1 + wstep + 1 + wstep + 1; h->c.connect(d, hs); } else buildHeptagon(h, d, transition(h->s, d)); } else if(S3 > 4 && quotient) { /* this branch may be used for some >4-valent quotient spaces outside of standard HyperRogue */ /* this is wrong, but we don't care in quotient */ h->move(d) = h; // buildHeptagon(h, d, transition(h->s, d)); } else if(d == 1) { addSpin(h, d, h->move(0), h->c.spin(0)-1, -1); } else if(d == S7-1) { addSpin(h, d, h->move(0), h->c.spin(0)+1, +1); } else if(d == 2) { createStep(h->move(0), h->c.spin(0)-1); addSpin(h, d, h->move(0)->modmove(h->c.spin(0)-1), S7-2 + h->move(0)->c.modspin(h->c.spin(0)-1), -1); } else if(d == S7-2 && h->s == hsB) { createStep(h->move(0), h->c.spin(0)+1); addSpin(h, d, h->move(0)->modmove(h->c.spin(0)+1), 2 + h->move(0)->c.modspin(h->c.spin(0)+1), +1); } else buildHeptagon(h, d, (d == S7-2 || (h->s == hsB && d == S7-3)) ? hsB : hsA); return h->move(d); } // display the coordinates of the heptagon void backtrace(heptagon *pos) { if(pos->s == hsOrigin) return; backtrace(pos->move(0)); printf(" %d", pos->c.spin(0)); } void hsshow(const heptspin& t) { printf("ORIGIN"); backtrace(t.at); printf(" (spin %d)\n", t.spin); } }