// Hyperbolic Rogue -- rule generator // Copyright (C) 2011-2021 Zeno Rogue, see 'hyper.cpp' for details /** \file rulegen.cpp * \brief An algorithm to create strict tree rules for arb tessellations */ #include "hyper.h" namespace hr { EX namespace rulegen { /* limits */ EX int max_retries = 999; EX int max_tcellcount = 1000000; EX int max_adv_steps = 100; EX int max_examine_branch = 5040; EX int max_bdata = 1000; EX int max_getside = 10000; EX int rulegen_timeout = 60; #if HDR /** exception thrown by this algoritm in case of any problems */ struct rulegen_failure : hr_exception { rulegen_failure(string _s) : hr_exception(_s) {} }; /** this exception is thrown if we want to restart the computation -- this is normal, but if thrown more than max_retries times, just surrender */ struct rulegen_retry : rulegen_failure { rulegen_retry(string _s) : rulegen_failure(_s) {} }; /** this exception is thrown in case if we run into a special case that is not implemented yet */ struct rulegen_surrender : rulegen_failure { rulegen_surrender(string _s) : rulegen_failure(_s) {} }; const int MYSTERY = 31999; #endif EX bool parent_debug; /* === tcell === */ /** number of tcells created */ EX int tcellcount = 0; /** number of tcells united into other tcells */ EX int tunified = 0; /** hard cases for get_parent_dir */ EX int hard_parents = 0; /** the number of roots with single live branches */ EX int single_live_branches = 0; /** the number of roots with double live branches */ EX int double_live_branches = 0; /** the number of treestates pre-minimization */ EX int states_premini = 0; #if HDR /** change some flags -- they usually make it worse */ static const flagtype w_numerical = Flag(1); /*< build trees numerically */ static const flagtype w_single_shortcut = Flag(2); /*< generate just one shortcut */ static const flagtype w_no_shortcut = Flag(3); /*< generate no shortcuts */ static const flagtype w_no_restart = Flag(4); /*< do not restart at powers of two */ static const flagtype w_no_sidecache = Flag(5); /*< do not cache get_side */ static const flagtype w_no_relative_distance = Flag(6); /*< do not build relative distances into codes */ static const flagtype w_examine_once = Flag(7); /*< restart after first conflict found in analysis */ static const flagtype w_examine_all = Flag(8); /*< focus on all conflicts found in analysis even if we know them */ static const flagtype w_conflict_all = Flag(9); /*< full extension in case of conflicts */ static const flagtype w_parent_always = Flag(10); /*< always consider the full parent rule */ static const flagtype w_parent_reverse = Flag(11); /*< reverse paths in parent_dir */ static const flagtype w_parent_side = Flag(12); /*< allow side paths in parent_dir */ static const flagtype w_parent_never = Flag(13); /*< never consider the full parent rule */ static const flagtype w_always_clean = Flag(14); /*< restart following phases after any distance errors */ static const flagtype w_single_origin = Flag(15); /*< consider only one origin */ static const flagtype w_slow_side = Flag(16); /*< do not try get_side optimization */ static const flagtype w_bfs = Flag(17); /*< compute distances using BFS */ #endif EX flagtype flags = 0; #if HDR struct tcell* tmove(tcell *c, int d); /** rulegen algorithm works on tcells which have their own map generation */ struct tcell { /** tcells form a list */ tcell *next; /** shape ID in arb::current */ int id; /** degree */ int type; /** distance from the root */ short dist; /** cached code */ short code; /** direction to the parent in the tree */ short parent_dir; /** can we assume that dist is correct? if we assumed that the dist is correct but then find out it was wrong, throw an error */ bool is_solid; bool distance_fixed; /** sometimes we find out that multiple tcells represent the same actual cell -- in this case we unify them; unified_to is used for the union-find algorithm */ walker unified_to; int degree() { return type; } connection_table c; tcell*& move(int d) { return c.move(d); } tcell*& modmove(int d) { return c.modmove(d); } tcell* cmove(int d) { return tmove(this, d); } tcell* cmodmove(int d) { return tmove(this, c.fix(d)); } tcell() { } }; inline void print(hstream& hs, tcell* h) { print(hs, "P", index_pointer(h)); } using twalker = walker; #endif queue fix_queue; void push_unify(twalker a, twalker b) { if(a.at->id != b.at->id) { throw hr_exception("queued bad unify"); } fix_queue.push([=] { unify(a, b); }); } bool in_fixing = false; void process_fix_queue() { if(in_fixing) return; in_fixing = true; while(!fix_queue.empty()) { fix_queue.front()(); fix_queue.pop(); } in_fixing = false; } void ufind(twalker& p) { if(p.at->unified_to.at == p.at) return; twalker p1 = p.at->unified_to; ufind(p1); p.at->unified_to = p1; p = p1 + p.spin; } EX void ufindc(tcell*& c) { twalker cw = c; ufind(cw); c = cw.at; } EX tcell *first_tcell = nullptr; twalker addstep(twalker x) { x.cpeek(); ufind(x); return x + wstep; } void connect_and_check(twalker p1, twalker p2); void unify(twalker pw1, twalker pw2); tcell *gen_tcell(int id) { int d = isize(arb::current.shapes[id].connections); auto c = tailored_alloc (d); c->id = id; c->next = first_tcell; c->unified_to = twalker(c, 0); c->is_solid = false; c->distance_fixed = false; c->dist = MYSTERY; c->code = MYSTERY; c->parent_dir = MYSTERY; first_tcell = c; // println(hlog, c, " is a new tcell of id ", id); tcellcount++; return c; } map cell_to_tcell; map tcell_to_cell; tcell* tmove(tcell *c, int d) { if(d<0 || d >= c->type) throw hr_exception("wrong d"); if(c->move(d)) return c->move(d); if(flags & w_numerical) { cell *oc = tcell_to_cell[c]; cell *oc1 = oc->cmove(d); auto& c1 = cell_to_tcell[oc1]; if(!c1) { c1 = gen_tcell(shvid(oc1)); tcell_to_cell[c1] = oc1; } c->c.connect(d, cell_to_tcell[oc1], oc->c.spin(d), false); return c1; } auto cd = twalker(c, d); ufind(cd); auto& co = arb::current.shapes[c->id].connections[cd.spin]; tcell *c1 = gen_tcell(co.sid); connect_and_check(cd, twalker(c1, co.eid)); return c1; } /** check whether we have completed the vertex to the right of edge d of c */ void check_loops(twalker pw) { ufind(pw); auto& shs = arb::current.shapes; int id = pw.at->id; int valence = shs[id].vertex_valence[pw.spin]; int steps = 0; twalker pwf = pw; twalker pwb = pw; while(true) { if(!pwb.peek()) break; pwb = pwb + wstep - 1; steps++; if(pwb == pwf) { if(steps == valence) return; /* that's great, we already know this loop */ else throw hr_exception("vertex valence too small"); } if(steps == valence) { push_unify(pwf, pwb); return; } } while(true) { pwf++; if(!pwf.peek()) break; pwf += wstep; steps++; if(pwb == pwf) { if(steps == valence) return; /* that's great, we already know this loop */ else throw hr_exception("vertex valence too small"); } if(steps == valence) { push_unify(pwf, pwb); return; } } if(steps == valence - 1) { connect_and_check(pwb, pwf); } } void connect_and_check(twalker p1, twalker p2) { ufind(p1); ufind(p2); p1.at->c.connect(p1.spin, p2.at, p2.spin, false); fix_queue.push([=] { check_loops(p1); }); fix_queue.push([=] { check_loops(p2); }); process_fix_queue(); } EX void unify(twalker pw1, twalker pw2) { ufind(pw1); ufind(pw2); if(pw1 == pw2) return; if(pw1.at->unified_to.at != pw1.at) throw hr_exception("not unified to itself"); if(pw2.at->unified_to.at != pw2.at) throw hr_exception("not unified to itself"); if(pw1.at == pw2.at) { if(pw1.spin != pw2.spin) throw hr_exception("called unify with self and wrong direction"); return; } if(pw1.at->id != pw2.at->id) throw hr_exception("unifying two cells of different id's"); auto& shs = arb::current.shapes; if((pw1.spin - pw2.spin) % shs[pw1.at->id].cycle_length) throw hr_exception("unification spin disagrees with cycle_length"); unify_distances(pw1.at, pw2.at, pw2.spin - pw1.spin); int id = pw1.at->id; for(int i=0; iunified_to = pw1 - pw2.spin; tunified++; } EX vector t_origin; void delete_tmap() { while(first_tcell) { auto second = first_tcell->next; tailored_delete(first_tcell); first_tcell = second; } tcellcount = 0; tunified = 0; t_origin.clear(); } /* used in the debugger */ EX vector debuglist; /* === distances === */ bool no_errors = false; struct hr_solid_error : rulegen_retry { hr_solid_error() : rulegen_retry("solid error") {} }; /** since the last restart */ int solid_errors; /** total solid errors */ EX int all_solid_errors; #if HDR struct shortcut { vector pre; vector post; tcell *sample; int delta; }; #endif EX map> > shortcuts; vector root_path(twalker cw) { cw += wstep; vector res; while(true) { int i = cw.at->dist == 0 ? 0 : get_parent_dir(cw.at); int j = cw.to_spin(i); res.push_back(j); if(cw.at->dist == 0) return res; cw += j; cw += wstep; } } EX void shortcut_found(tcell *c, tcell *alt, const vector &walkers, const vector &walkers2, const vector& walkerdir, const vector& walkerdir2) { auto at0 = walkers2.back().at; tcell* at = at0; twalker at1; at1.at = nullptr; for(int i=isize(walkers)-1; i>=1; i--) if(at == walkers[i].at) at1 = walkers[i]; if(!at1.at) return; /* made obsolete by unification */ vector pre; for(int i=isize(walkers)-1; i>=1; i--) if(at == walkers[i].at) { pre.push_back(walkerdir[i]); at = walkers[i].peek(); } if(at != c) { if(parent_debug) println(hlog, "did not return to c"); return; } at = at0; vector post; for(int i=isize(walkers2)-1; i>=1; i--) if(at == walkers2[i].at) { post.push_back(walkerdir2[i]); at = walkers2[i].peek(); } if(at != alt) { if(parent_debug) println(hlog, "did not return to alt"); return; } reverse(pre.begin(), pre.end()); reverse(post.begin(), post.end()); int delta = at1.to_spin(walkers2.back().spin); for(auto& s: shortcuts[c->id]) if(s->pre == pre && s->post == post) { if(parent_debug) println(hlog, "already knew that ", pre, " ~ ", post); return; } if(debugflags & DF_GEOM) println(hlog, "new shortcut found, pre = ", pre, " post = ", post, " pre reaches ", at1, " post reaches ", walkers2.back(), " of type ", at1.at->id, " sample = ", c); if(isize(pre) > 500) { debuglist = { c }; throw rulegen_failure("shortcut too long"); } shortcuts[c->id].emplace_back(unique_ptr (new shortcut)); auto& sh = shortcuts[c->id].back(); sh->pre = pre; sh->post = post; sh->sample = c; sh->delta = delta; auto& sh1 = *sh; if(debugflags & DF_GEOM) println(hlog, "exhaustive search:"); indenter ind(2); tcell* c1 = first_tcell; while(c1) { if(c1->id == c->id) look_for_shortcuts(c1, sh1); c1 = c1->next; } } EX void find_new_shortcuts(tcell *c, int d, tcell *alt, int delta) { solid_errors++; all_solid_errors++; if(flags & w_no_shortcut) return; ufindc(c); if(debugflags & DF_GEOM) println(hlog, "solid ", c, " changes ", c->dist, " to ", d, " alt=", alt); if(c->dist == MYSTERY) throw rulegen_failure("find_new_shortcuts with MYSTERY distance"); set seen; vector walkers; vector walkerdir = {-1}; seen.insert(c); walkers.push_back(c); for(int j=0; jtype; s++) { twalker w1 = w + s; if(w1.peek() && w1.peek()->dist == w.at->dist - 1 && !seen.count(w1.peek())) { seen.insert(w1.peek()); walkers.push_back(w1 + wstep); walkerdir.push_back(s); } } } c->dist = d; set seen2; vector walkers2; vector walkerdir2 = {-1}; walkers2.push_back(twalker(alt, delta)); for(int j=0; jtype; s++) { twalker w1 = w + s; if(!w1.peek()) continue; if(w1.peek()->dist == w.at->dist - 1 && !seen2.count(w1.peek())) { seen2.insert(w1.peek()); walkers2.push_back(w1 + wstep); walkerdir2.push_back(s); if(seen.count(w1.peek())) { shortcut_found(c, alt, walkers, walkers2, walkerdir, walkerdir2); if(flags & w_single_shortcut) return; /* we do not want to go further */ for(auto& w: walkers) ufind(w); for(auto& w: walkers2) ufind(w); seen.clear(); for(auto& w: walkers) seen.insert(w.at); seen2.clear(); for(auto& w: walkers2) seen2.insert(w.at); } } } } } EX void remove_parentdir(tcell *c) { sidecache.clear(); c->parent_dir = MYSTERY; c->code = MYSTERY; for(int i=0; itype; i++) if(c->move(i)) { c->move(i)->parent_dir = MYSTERY; c->move(i)->code = MYSTERY; } } queue bfs_queue; void fix_distances(tcell *c) { if(flags & w_bfs) while(true) { ufindc(c); if(c->dist != MYSTERY) return; if(tcellcount >= max_tcellcount) throw rulegen_surrender("max_tcellcount exceeded"); if(bfs_queue.empty()) throw rulegen_failure("empty bfs queue"); auto c1 = bfs_queue.front(); ufindc(c1); bfs_queue.pop(); for(int i=0; itype; i++) { tcell *c2 = c1->cmove(i); if(c2->dist == MYSTERY) { c2->dist = c1->dist + 1; bfs_queue.push(c2); } } } c->distance_fixed = true; vector q = {c}; for(int qi=0; qidist; restart: for(int i=0; itype; i++) { if(!c->move(i)) continue; tcell *c1 = c->cmove(i); ufindc(c); c1 = c->cmove(i); if(c1->dist == MYSTERY) continue; auto& d1 = c1->dist; if(d > d1+1) { d = d1+1; remove_parentdir(c); goto restart; } if(d1 > d+1) { if(c1->is_solid) { find_new_shortcuts(c1, d+1, c1, 0); } d1 = d+1; remove_parentdir(c1); q.push_back(c1); } } } } void calc_distances(tcell *c) { if(c->dist != MYSTERY) return; fix_distances(c); } EX void unify_distances(tcell *c1, tcell *c2, int delta) { int d1 = c1->dist; int d2 = c2->dist; int d = min(d1, d2); if(c1->is_solid && d != d1) { solid_errors++; find_new_shortcuts(c1, d, c2, delta); remove_parentdir(c1); fix_distances(c1); } c1->dist = d; if(c2->is_solid && d != d2) { solid_errors++; find_new_shortcuts(c2, d, c1, -delta); remove_parentdir(c2); fix_distances(c2); } c2->dist = d; c1->distance_fixed = c2->distance_fixed = c1->distance_fixed || c2->distance_fixed; c1->is_solid = c2->is_solid = c1->is_solid || c2->is_solid; } EX void handle_distance_errors() { bool b = solid_errors; solid_errors = 0; if(b && !no_errors) { sidecache.clear(); if(flags & w_always_clean) clean_data(); throw hr_solid_error(); } } /** make sure that we know c->dist */ void be_solid(tcell *c) { if(c->is_solid) return; if(tcellcount >= max_tcellcount) throw rulegen_surrender("max_tcellcount exceeded"); ufindc(c); calc_distances(c); ufindc(c); look_for_shortcuts(c); ufindc(c); if(c->dist == MYSTERY) { if(debugflags & DF_GEOM) println(hlog, "set solid but no dist ", c); debuglist = { c }; throw rulegen_failure("set solid but no dist"); } c->is_solid = true; } EX void look_for_shortcuts(tcell *c, shortcut& sh) { if(c->dist <= 0) return; if(1) { twalker tw0(c, 0); twalker tw(c, 0); ufind(tw); ufind(tw0); vector opath; for(auto& v: sh.pre) { opath.push_back(tw.at); tw += v; if(!tw.peek()) return; if(tw.peek()->dist != tw.at->dist-1) return; ufind(tw); tw += wstep; } opath.push_back(tw.at); ufind(tw0); vector npath; for(auto& v: sh.post) { npath.push_back(tw0.at); tw0 += v; ufind(tw0); tw0 += wstep; calc_distances(tw0.at); } npath.push_back(tw0.at); int d = sh.delta; auto tw1 = tw + d; if(tw1.at->id != tw0.at->id) println(hlog, "ERROR: improper shortcut"); else push_unify(tw1, tw0); process_fix_queue(); for(auto t: npath) { ufindc(t); fix_distances(t); } ufindc(c); } } EX void look_for_shortcuts(tcell *c) { if(c->dist > 0) for(int i=0; iid]); i++) look_for_shortcuts(c, *shortcuts[c->id][i]); } void trace_root_path(vector& rp, twalker cw) { auto d = cw.peek()->dist; cw += wstep; bool side = (flags & w_parent_side); next: if(d > 0) { ufind(cw); handle_distance_errors(); int di = side ? -1 : get_parent_dir(cw.at); for(int i=0; itype; i++) { if((!side) && (cw+i).spin != di) continue; tcell *c1 = (cw+i).peek(); if(!c1) continue; be_solid(c1); if(c1->dist < d) { rp.push_back(i); cw += i; cw += wstep; d--; goto next; } } } rp.push_back(cw.to_spin(0)); if(flags & w_parent_reverse) reverse(rp.begin(), rp.end()); } /** which neighbor will become the parent of c */ EX int get_parent_dir(tcell *c) { if(c->parent_dir != MYSTERY) return c->parent_dir; int bestd = -1; vector bestrootpath; look_for_shortcuts(c); be_solid(c); if(c->dist > 0) { auto& sh = arb::current.shapes[c->id]; int n = sh.size(); int k = sh.cycle_length; vector nearer; auto beats = [&] (int i, int old) { if(old == -1) return true; if(i%k != old%k) return i%k < old%k; if(old < i) old += n; return old <= i+n/2; }; int d = c->dist; for(int i=0; icmove(i); be_solid(c1); if(parent_debug) println(hlog, "direction = ", i, " is ", c1, " distance = ", c1->dist); if(c1->dist < d) nearer.push_back(i); } if(parent_debug) println(hlog, "nearer = ", nearer, " n=", n, " k=", k); auto oc = c; ufindc(c); if(d != c->dist || oc != c) { return get_parent_dir(c); } bool failed = false; if(flags & w_parent_always) {failed = true; goto resolve; } // celebrity identification problem for(auto ne: nearer) if(beats(ne, bestd)) bestd = ne; if(parent_debug) for(auto ne: nearer) println(hlog, "beats", tie(ne, bestd), " = ", beats(ne, bestd)); for(auto ne: nearer) if(ne != bestd && beats(ne, bestd)) failed = true; if(failed) { if(flags & w_parent_never) { debuglist = { c }; throw rulegen_failure("still confused"); } resolve: hard_parents++; vector best; int bestfor = nearer[0]; trace_root_path(best, twalker(c, nearer[0])); for(auto ne1: nearer) { vector other; trace_root_path(other, twalker(c, ne1)); if(other < best) best = other, bestfor = ne1; } bestd = bestfor; } if(bestd == -1) { throw rulegen_failure("should not happen"); } } if(parent_debug) println(hlog, "set parent_dir to ", bestd); c->parent_dir = bestd; return bestd; } /** determine states for tcells */ #if HDR using aid_t = pair; struct analyzer { vector spread; vector parent_id; vector spin; void add_step(int pid, int s); }; #endif void analyzer::add_step(int pid, int s) { twalker cw = spread[pid]; cw = cw + s; cw.peek(); ufind(cw); cw = cw + wstep; spread.push_back(cw); parent_id.push_back(pid); spin.push_back(s); } EX map analyzers; EX aid_t get_aid(twalker cw) { ufind(cw); auto ide = cw.at->id; return {ide, gmod(cw.to_spin(0), arb::current.shapes[ide].cycle_length)}; } EX analyzer& get_analyzer(twalker cw) { auto aid = get_aid(cw); auto& a = analyzers[aid]; if(a.spread.empty()) { a.spread.push_back(cw); a.parent_id.push_back(-1); a.spin.push_back(-1); for(int i=0; itype; i++) a.add_step(0, i); } return a; } EX vector spread(analyzer& a, twalker cw) { vector res; int N = isize(a.spread); res.reserve(N); res.push_back(cw); for(int i=1; i >; struct treestate { int id; bool known; vector rules; twalker giver; int sid; int parent_dir; tcell* where_seen; code_t code; bool is_live; bool is_possible_parent; bool is_root; vector> possible_parents; }; static const int C_IGNORE = 0; static const int C_CHILD = 1; static const int C_UNCLE = 2; static const int C_EQUAL = 4; static const int C_NEPHEW = 6; static const int C_PARENT = 8; #endif EX vector treestates; EX set single_live_branch_close_to_root; /** is what on the left side, or the right side, of to_what? */ void treewalk(twalker& cw, int delta) { int d = get_parent_dir(cw.at); if(cw.spin == d) cw += wstep; else { auto cw1 = addstep(cw); get_parent_dir(cw1.at); ufind(cw1); if(get_parent_dir(cw1.at) == cw1.spin) cw += wstep; } cw+=delta; } EX std::map sidecache; int get_side(twalker what) { bool side = !(flags & w_no_sidecache); bool fast = !(flags & w_slow_side); if(side) { auto ww = at_or_null(sidecache, what); if(ww) return *ww; } int res = 99; int steps = 0; if(fast) { twalker w = what; twalker tw = what + wstep; auto adv = [] (twalker& cw) { int d = get_parent_dir(cw.at); ufind(cw); if(cw.at->move(d)->dist >= cw.at->dist) { handle_distance_errors(); if(debugflags & DF_GEOM) println(hlog, "get_parent_dir error at ", cw, " and ", cw.at->move(d), ": ", cw.at->dist, "::", cw.at->move(d)->dist); throw rulegen_failure("get_parent_dir error"); } cw.spin = d; cw += wstep; }; while(w.at != tw.at) { steps++; if(steps > max_getside) { debuglist = {what, w, tw}; throw rulegen_failure("qsidefreeze"); } ufind(w); ufind(tw); if(w.at->dist > tw.at->dist) adv(w); else if(w.at->dist < tw.at->dist) adv(tw); else { adv(w); adv(tw); } } int d = get_parent_dir(w.at); if(d >= 0 && !single_live_branch_close_to_root.count(w.at)) { twalker last(w.at, d); res = last.to_spin(w.spin) - last.to_spin(tw.spin); } } // failed to solve this in the simple way (ended at the root) -- go around the tree twalker wl = what; twalker wr = wl; auto to_what = what + wstep; auto ws = what; treewalk(ws, 0); if(ws == to_what) res = 0; while(res == 99) { handle_distance_errors(); steps++; if(steps > max_getside) { debuglist = {what, to_what, wl, wr}; throw rulegen_failure("xsidefreeze"); } bool gl = wl.at->dist <= wr.at->dist; bool gr = wl.at->dist >= wr.at->dist; if(gl) { treewalk(wl, -1); if(wl == to_what) { res = 1; } } if(gr) { treewalk(wr, +1); if(wr == to_what) {res = -1; } } } if(side) sidecache[what] = res; return res; } code_t id_at_spin(twalker cw) { code_t res; ufind(cw); res.first = get_aid(cw); auto& a = get_analyzer(cw); vector sprawl = spread(a, cw); int id = 0; for(auto cs: sprawl) { be_solid(cs.at); be_solid(cw.at); ufind(cw); ufind(cs); int x; int pid = a.parent_id[id]; if(pid > -1 && (res.second[pid] != C_CHILD)) { x = C_IGNORE; } else if(id == 0) x = C_CHILD; else { int p = get_parent_dir(cs.at); if(p >= 0 && get_parent_dir(cs.at) == cs.spin) x = C_CHILD; else { auto cs2 = cs + wstep; ufind(cs); ufind(cs2); be_solid(cs2.at); fix_distances(cs.at); int y = cs.at->dist - cs.peek()->dist; if(!(flags & w_no_relative_distance)) x = C_EQUAL; else if(y == 1) x = C_NEPHEW; else if(y == 0) x = C_EQUAL; else if(y == -1) x = C_UNCLE; else throw rulegen_failure("distance problem y=" + its(y) + lalign(0, " cs=", cs, " cs2=", cs2, " peek=", cs.peek(), " dist=", cs.at->dist, " dist2=", cs2.at->dist)); auto gs = get_side(cs); if(gs == 0 && x == C_UNCLE) x = C_PARENT; if(gs > 0) x++; } } res.second.push_back(x); id++; } return res; } map code_to_id; EX pair get_code(tcell *c) { if(c->code != MYSTERY && c->parent_dir != MYSTERY) { int bestd = c->parent_dir; if(bestd == -1) bestd = 0; return {bestd, c->code}; } be_solid(c); int bestd = get_parent_dir(c); if(bestd == -1) bestd = 0; indenter ind(2); code_t v = id_at_spin(twalker(c, bestd)); if(code_to_id.count(v)) { c->code = code_to_id[v]; return {bestd, code_to_id[v]}; } int id = isize(treestates); code_to_id[v] = id; if(c->code != MYSTERY && (c->code != id || c->parent_dir != bestd)) { throw rulegen_retry("exit from get_code"); } c->code = id; treestates.emplace_back(); auto& nts = treestates.back(); nts.id = id; nts.code = v; nts.where_seen = c; nts.known = false; nts.is_live = true; return {bestd, id}; } /* == rule generation == */ EX int rule_root; vector gen_rule(twalker cwmain); EX int try_count; EX vector important; vector cq; #if HDR /* special codes */ static const int DIR_UNKNOWN = -1; static const int DIR_LEFT = -4; static const int DIR_RIGHT = -5; static const int DIR_PARENT = -6; #endif vector gen_rule(twalker cwmain, int id) { vector cids; for(int a=0; atype; a++) { auto front = cwmain+a; tcell *c1 = front.cpeek(); be_solid(c1); if(a == 0 && cwmain.at->dist) { cids.push_back(DIR_PARENT); continue; } if(c1->dist <= cwmain.at->dist) { cids.push_back(DIR_UNKNOWN); continue; } auto co = get_code(c1); auto& d1 = co.first; auto& id1 = co.second; if(c1->cmove(d1) != cwmain.at || c1->c.spin(d1) != front.spin) { cids.push_back(DIR_UNKNOWN); continue; } cids.push_back(id1); } for(int i=0; i= 8) { debuglist = { cwmain }; if(debugflags & DF_GEOM) println(hlog, "i = ", i, " val = ", val, " code = ", treestates[id].code); throw rulegen_retry("wrong code in gen_rule"); } cids[i] = ((val & 1) ? DIR_RIGHT : DIR_LEFT); } return cids; } void rules_iteration_for(tcell *c) { indenter ri(2); ufindc(c); auto co = get_code(c); auto& d = co.first; auto& id = co.second; twalker cwmain(c,d); ufind(cwmain); vector cids = gen_rule(cwmain, id); auto& ts = treestates[id]; if(!ts.known) { ts.known = true; ts.rules = cids; ts.giver = cwmain; ts.sid = cwmain.at->id; ts.parent_dir = cwmain.spin; ts.is_root = c->dist == 0; } else if(ts.rules != cids) { handle_distance_errors(); auto& r = ts.rules; if(debugflags & DF_GEOM) { println(hlog, "merging ", ts.rules, " vs ", cids); println(hlog, "C ", treestates[id].code, " [", id, "]"); } int mismatches = 0; for(int z=0; z new_id(next_id); map new_id_of; int new_ids = 0; for(int id=0; id last_new_ids && new_ids < next_id) { last_new_ids = new_ids; map, int> hashes; new_ids = 0; auto last_new_id = new_id; for(int id=0; id hash; hash.push_back(last_new_id[id]); auto& ts = treestates[id]; for(auto& r: ts.rules) if(r >= 0) hash.push_back(last_new_id[r]); else hash.push_back(r); if(!hashes.count(hash)) hashes[hash] = new_ids++; new_id[id] = hashes[hash]; } } if(debugflags & DF_GEOM) println(hlog, "final new_ids = ", new_ids, " / ", next_id); if(1) { vector old_id(new_ids, -1); for(int i=0; i= 0) r = new_id[r]; } for(auto& p: code_to_id) p.second = new_id[p.second]; } } void find_possible_parents() { for(auto& ts: treestates) { ts.is_possible_parent = false; for(int r: ts.rules) if(r == DIR_PARENT) ts.is_possible_parent = true; } while(true) { int changes = 0; for(auto& ts: treestates) ts.possible_parents.clear(); for(auto& ts: treestates) if(ts.is_possible_parent) { int rid = 0; for(int r: ts.rules) { if(r >= 0) treestates[r].possible_parents.emplace_back(ts.id, rid); rid++; } } for(auto& ts: treestates) if(ts.is_possible_parent && ts.possible_parents.empty()) { ts.is_possible_parent = false; changes++; } if(!changes) break; } int pp = 0; for(auto& ts: treestates) if(ts.is_possible_parent) pp++; if(debugflags & DF_GEOM) println(hlog, pp, " of ", isize(treestates), " states are possible_parents"); } /* == branch testing == */ using tsinfo = pair; tsinfo get_tsinfo(twalker tw) { auto co = get_code(tw.at); int spin; if(co.first == -1) spin = tw.spin; else spin = gmod(tw.spin - co.first, tw.at->type); return {co.second, spin}; } int get_rule(const twalker tw, tsinfo s) { auto& r = treestates[s.first].rules; if(r.empty()) { important.push_back(tw.at); throw rulegen_retry("unknown rule in get_rule"); } return r[s.second]; } set > verified_branches; void push_deadstack(vector& hash, twalker w, tsinfo tsi, int dir) { hash.push_back(tsi); while(true) { ufind(w); if(isize(hash) > 10000) throw rulegen_failure("deadstack overflow"); tsi.second += dir; w += dir; auto& ts = treestates[tsi.first]; if(ts.is_root) return; if(tsi.second == 0 || tsi.second == isize(ts.rules)) { w += wstep; tsi = get_tsinfo(w); hash.push_back(tsi); } else { int r = ts.rules[tsi.second]; if(r > 0 && treestates[r].is_live) return; } } } struct verify_advance_failed : hr_exception {}; void verified_treewalk(twalker& tw, int id, int dir) { if(id >= 0) { auto co = get_code(tw.cpeek()); if(co.second != id || co.first != (tw+wstep).spin) { handle_distance_errors(); if(!treestates[co.second].known || (flags & w_examine_all)) { treestates[co.second].known = true; important.push_back(tw.at); if(debugflags & DF_GEOM) println(hlog, "expected ", make_pair((tw+wstep).spin,id), " found ", co); } else if(debugflags & DF_GEOM) println(hlog, "expected ", make_pair((tw+wstep).spin,id), " found ", co, " again"); debuglist = {tw, tw+wstep}; throw verify_advance_failed(); } } treewalk(tw, dir); } void examine_branch(int id, int left, int right) { auto rg = treestates[id].giver; if(debugflags & DF_GEOM) println(hlog, "need to examine branches ", tie(left, right), " of ", id, " starting from ", rg); indenter ind(2); auto wl = rg+left; auto wr = rg+left+1; vector lstack, rstack; int steps = 0; try { while(true) { handle_distance_errors(); steps++; if(steps > max_examine_branch) { debuglist = { rg+left, wl, wr }; throw rulegen_failure("max_examine_branch exceeded"); } auto tsl = get_tsinfo(wl); auto tsr = get_tsinfo(wr); auto rl = get_rule(wl, tsl); auto rr = get_rule(wr, tsr); // println(hlog, "wl = ", wl, " -> ", wl+wstep, " R", rl, " wr = ", wr, " -> ", wr+wstep, " R", rr, " lstack = ", lstack, " rstack = ", rstack); if(rl == DIR_RIGHT && rr == DIR_LEFT && lstack.empty() && rstack.empty()) { vector hash; push_deadstack(hash, wl, tsl, -1); hash.emplace_back(-1, -1); push_deadstack(hash, wr, tsr, +1); // println(hlog, "hash = ", hash); if(verified_branches.count(hash)) return; verified_branches.insert(hash); verified_treewalk(wl, rl, -1); verified_treewalk(wr, rr, +1); } else if(rl == DIR_RIGHT && !lstack.empty() && lstack.back() == wl+wstep) { lstack.pop_back(); verified_treewalk(wl, rl, -1); } else if(rr == DIR_LEFT && !rstack.empty() && rstack.back() == wr+wstep) { rstack.pop_back(); verified_treewalk(wr, rr, +1); } else if(rl == DIR_LEFT) { lstack.push_back(wl); verified_treewalk(wl, rl, -1); } else if(rr == DIR_RIGHT) { rstack.push_back(wr); verified_treewalk(wr, rr, +1); } else if(rl != DIR_RIGHT) verified_treewalk(wl, rl, -1); else if(rr != DIR_RIGHT) verified_treewalk(wr, rr, +1); else throw rulegen_failure("cannot advance while examining"); } } catch(verify_advance_failed&) { if(flags & w_examine_once) throw rulegen_retry("advance failed"); } } /* == main algorithm == */ void clear_codes() { treestates.clear(); code_to_id.clear(); auto c = first_tcell; while(c) { c->code = MYSTERY; c = c->next; } } void find_single_live_branch(twalker at) { handle_distance_errors(); rules_iteration_for(at.at); int id = get_code(at.at).second; int t = at.at->type; auto r = treestates[id].rules; /* no & because may move */ int q = 0; if(r.empty()) { important.push_back(at.at); throw rulegen_retry("no giver in find_single_live_branch"); } for(int i=0; i= 0) { if(treestates[r[i]].is_live) q++; } for(int i=0; i= 0) { single_live_branch_close_to_root.insert(at.at); if(!treestates[r[i]].is_live || q == 1) find_single_live_branch(at + i + wstep); } } EX void clean_data() { analyzers.clear(); important = t_origin; } EX void clean_parents() { clean_data(); sidecache.clear(); auto c = first_tcell; while(c) { c->parent_dir = MYSTERY; c = c->next; } } EX void rules_iteration() { try_count++; if((try_count & (try_count-1)) == 0) if(!(flags & w_no_restart)) { clean_data(); } if(debugflags & DF_GEOM) println(hlog, "attempt: ", try_count); auto c = first_tcell; while(c) { c->code = MYSTERY; c = c->next; } clear_codes(); cq = important; if(debugflags & DF_GEOM) println(hlog, "important = ", cq); for(int i=0; i= 0 && treestates[r[i]].is_live) { if(first_live_branch == -1) first_live_branch = i; if(last_live_branch >= 0) examine_branch(id, last_live_branch, i); last_live_branch = i; qbranches++; } if(qbranches == 2) double_live_branches++; if(first_live_branch == last_live_branch && treestates[id].is_root) { if(debugflags & DF_GEOM) println(hlog, "for id ", id, " we have a single live branch"); single_live_branches++; indenter ind(2); debuglist = { treestates[id].giver }; find_single_live_branch(treestates[id].giver); } if(isize(single_live_branch_close_to_root) != q) { vector v; for(auto c: single_live_branch_close_to_root) v.push_back(c); if(debugflags & DF_GEOM) println(hlog, "changed single_live_branch_close_to_root from ", q, " to ", v); debuglist = { treestates[id].giver }; throw rulegen_retry("single live branch"); } if(treestates[id].is_root) examine_branch(id, last_live_branch, first_live_branch); } for(int id=0; idis_solid = false; // c->dist = MYSTERY; c->parent_dir = MYSTERY; c->code = MYSTERY; c->distance_fixed = false; c = c->next; } in_fixing = false; fix_queue = {}; } void cleanup() { clear_tcell_data(); analyzers.clear(); code_to_id.clear(); important.clear(); shortcuts.clear(); single_live_branch_close_to_root.clear(); } void clear_all() { treestates.clear(); cleanup(); } EX void generate_rules() { auto t = SDL_GetTicks(); delete_tmap(); if(!arb::in()) try { arb::convert::convert(); if(flags & w_numerical) arb::convert::activate(); } catch(hr_exception& e) { throw rulegen_surrender("conversion failure"); } clear_all(); analyzers.clear(); important.clear(); treestates.clear(); hard_parents = single_live_branches = double_live_branches = all_solid_errors = 0; t_origin.clear(); cell_to_tcell.clear(); tcell_to_cell.clear(); sidecache.clear(); fix_queue = {}; in_fixing = false; if(flags & w_numerical) { start_game(); cell *s = currentmap->gamestart(); tcell *c = gen_tcell(shvid(s)); cell_to_tcell[s] = c; tcell_to_cell[c] = s; c->dist = 0; t_origin.push_back(c); } else if(flags & w_single_origin) { tcell *c = gen_tcell(0); c->dist = 0; t_origin.push_back(c); } else for(auto& ts: arb::current.shapes) { tcell *c = gen_tcell(ts.id); c->dist = 0; t_origin.push_back(c); } bfs_queue = {}; if(flags & w_bfs) for(auto c: t_origin) bfs_queue.push(c); try_count = 0; important = t_origin; while(true) { if(SDL_GetTicks() > t + 1000 * rulegen_timeout) throw rulegen_surrender("timeout"); try { rules_iteration(); break; } catch(rulegen_retry& e) { if(try_count >= max_retries) throw; } } } int reclevel; void build_test(); /* == hrmap_rulegen == */ struct hrmap_rulegen : hrmap { hrmap *base; heptagon *origin; heptagon* gen(int s, int d, bool c7) { int t = arb::current.shapes[treestates[s].sid].size(); heptagon *h = init_heptagon(t); if(c7) h->c7 = newCell(t, h); h->distance = d; h->fieldval = s; h->zebraval = treestates[s].sid; h->s = hsA; return h; } ~hrmap_rulegen() { clearfrom(origin); } hrmap_rulegen() { origin = gen(rule_root, 0, true); origin->s = hsOrigin; } hrmap_rulegen(heptagon *h) { origin = h; } heptagon *getOrigin() override { return origin; } int get_rule(heptspin hs) { int s = hs.at->fieldval; return treestates[s].rules[hs.spin]; } static void hsconnect(heptspin a, heptspin b) { a.at->c.connect(a.spin, b.at, b.spin, false); } heptagon *create_step(heptagon *h, int d) override { heptspin hs(h, d); int r = get_rule(hs); indenter ind(2); if(hlog.indentation >= 6000) throw rulegen_failure("failed to create_step"); if(r >= 0) { auto h1 = gen(r, h->distance + 1, h->c7); auto hs1 = heptspin(h1, 0); // verify_connection(hs, hs1); hsconnect(hs, hs1); return h1; } else if(r == DIR_PARENT) { auto& hts = treestates[h->fieldval]; auto& choices = hts.possible_parents; if(choices.empty()) throw rulegen_failure("no possible parents"); auto selected = hrand_elt(choices); auto h1 = gen(selected.first, h->distance - 1, h->c7); auto hs1 = heptspin(h1, selected.second); hsconnect(hs, hs1); return h1; } else if(r == DIR_LEFT || r == DIR_RIGHT) { heptspin hs1 = hs; int delta = r == DIR_LEFT ? -1 : 1; int rev = (DIR_LEFT ^ DIR_RIGHT ^ r); hs1 += delta; while(true) { int r1 = get_rule(hs1); if(r1 == rev) { hsconnect(hs, hs1); return hs1.at; } else if(r1 == r || r1 == DIR_PARENT || r1 >= 0) { hs1 += wstep; hs1 += delta; } else throw rulegen_failure("bad R1"); } } else throw rulegen_failure("bad R"); throw rulegen_failure("impossible"); } int get_arb_dir(int s, int dir) { int sid = treestates[s].sid; int N = arb::current.shapes[sid].size(); return gmod(dir + treestates[s].parent_dir, N); } transmatrix adj(heptagon *h, int dir) override { if(h->fieldval == -1) return arb::get_adj(arb::current_or_slided(), h->zebraval, dir, -1, -1); int s = h->fieldval; int dir0 = get_arb_dir(s, dir); int dir1 = -1; int sid1 = -1; if(h->c.move(dir)) { auto s1 = h->c.move(dir)->fieldval; dir1 = get_arb_dir(s1, h->c.spin(dir)); sid1 = treestates[s1].sid; } return arb::get_adj(arb::current_or_slided(), treestates[s].sid, dir0, sid1, dir1); } int shvid(cell *c) override { return c->master->zebraval; } transmatrix relative_matrixh(heptagon *h2, heptagon *h1, const hyperpoint& hint) override { return relative_matrix_recursive(h2, h1); } hyperpoint get_corner(cell *c, int cid, ld cf) override { if(c->master->fieldval == -1) { auto& sh = arb::current_or_slided().shapes[c->master->zebraval]; cid = gmod(cid, sh.size()); return normalize(C0 + (sh.vertices[cid] - C0) * 3 / cf); } int s = c->master->fieldval; auto& sh = arb::current_or_slided().shapes[c->master->zebraval]; auto dir = get_arb_dir(s, cid); return normalize(C0 + (sh.vertices[dir] - C0) * 3 / cf); } void find_cell_connection(cell *c, int d) override { if(c->master->cmove(d) == &oob) { c->c.connect(d, &out_of_bounds, 0, false); } else hrmap::find_cell_connection(c, d); } bool strict_tree_rules() override { return true; } virtual bool link_alt(heptagon *h, heptagon *alt, hstate firststate, int dir) override { auto& hts = treestates[h->fieldval]; int psid = hts.sid; if(firststate == hsOrigin) { alt->s = hsOrigin; for(auto& ts: treestates) if(ts.sid == psid && ts.is_root) { alt->fieldval = ts.id; // ts.parent_dir should be 0, but anyway altmap::relspin(alt) = gmod(ts.parent_dir-hts.parent_dir, isize(hts.rules)); return true; } return false; } int odir = hts.parent_dir + dir; int cl = arb::current.shapes[psid].cycle_length; vector choices; for(auto& ts: treestates) if(ts.is_possible_parent && ts.sid == psid) if(gmod(ts.parent_dir - odir, cl) == 0) choices.push_back(ts.id); alt->fieldval = hrand_elt(choices, -1); alt->s = hsA; if(alt->fieldval == -1) return false; altmap::relspin(alt) = dir; return true; } }; EX int get_arb_dir(cell *c, int dir) { return ((hrmap_rulegen*)currentmap)->get_arb_dir(c->master->fieldval, dir); } EX hrmap *new_hrmap_rulegen_alt(heptagon *h) { return new hrmap_rulegen(h); } EX hrmap *new_hrmap_rulegen() { return new hrmap_rulegen(); } EX int get_state(cell *c) { return c->master->fieldval; } string rules_known_for = "unknown"; string rule_status; EX bool known() { return arb::current.have_tree || rules_known_for == arb::current.name; } EX bool prepare_rules() { if(known()) return true; try { generate_rules(); rules_known_for = arb::current.name; rule_status = XLAT("rules generated successfully: %1 states using %2-%3 cells", its(isize(treestates)), its(tcellcount), its(tunified)); if(debugflags & DF_GEOM) println(hlog, rule_status); return true; } catch(rulegen_retry& e) { rule_status = XLAT("too difficult: %1", e.what()); } catch(rulegen_surrender& e) { rule_status = XLAT("too difficult: %1", e.what()); } catch(rulegen_failure& e) { rule_status = XLAT("bug: %1", e.what()); } if(debugflags & DF_GEOM) println(hlog, rule_status); return false; } #if CAP_COMMANDLINE int args() { using namespace arg; if(0) ; else if(argis("-rulegen")) { PHASEFROM(3); prepare_rules(); } else if(argis("-rulegen-cleanup")) cleanup(); else if(argis("-rulegen-play")) { PHASEFROM(3); if(prepare_rules()) { stop_game(); arb::convert::activate(); start_game(); } } else if(argis("-d:rulegen")) { launch_dialog(show); } else return 1; return 0; } auto hooks_arg = addHook(hooks_args, 100, args); #endif auto hooks = addHook(hooks_configfile, 100, [] { param_i(max_retries, "max_retries"); param_i(max_tcellcount, "max_tcellcount") ->editable(0, 16000000, 100000, "maximum cellcount", "controls the max memory usage of conversion algorithm -- the algorithm fails if exceeded", 'c'); param_i(max_adv_steps, "max_adv_steps"); param_i(max_examine_branch, "max_examine_branch"); param_i(max_getside, "max_getside"); param_i(max_bdata, "max_bdata"); param_i(rulegen_timeout, "rulegen_timeout"); }); EX void parse_treestate(arb::arbi_tiling& c, exp_parser& ep) { if(!c.have_tree) { c.have_tree = true; treestates.clear(); rule_root = 0; } treestates.emplace_back(); auto& ts = treestates.back(); ts.id = isize(treestates) - 1; ts.sid = ep.iparse(); ts.parent_dir = 0; if(!arb::correct_index(ts.sid, isize(c.shapes))) throw hr_parse_exception("incorrect treestate index at " + ep.where()); int N = c.shapes[ts.sid].size(); int qparent = 0, sumparent = 0; for(int i=0; i 1) throw hr_parse_exception("multiple parent at " + ep.where()); if(qparent == 1) { ts.parent_dir = sumparent; println(hlog, "before: ", ts.rules); std::rotate(ts.rules.begin(), ts.rules.begin() + sumparent, ts.rules.end()); println(hlog, "after : ", ts.rules); } ep.force_eat(")"); } EX void verify_parsed_treestates() { if(rule_root < 0 || rule_root >= isize(treestates)) throw hr_parse_exception("undefined treestate as root"); for(auto& ts: treestates) for(auto& r: ts.rules) { if(r < 0 && !among(r, DIR_PARENT, DIR_LEFT, DIR_RIGHT)) throw hr_parse_exception("negative number in treestates"); if(r > isize(treestates)) throw hr_parse_exception("undefined treestate"); } for(auto& sh: arb::current.shapes) sh.cycle_length = sh.size(); find_possible_parents(); } EX void show() { cmode = sm::SIDE | sm::MAYDARK; gamescreen(1); dialog::init(XLAT("strict tree maps")); dialog::addHelp(XLAT( "Strict tree maps are generated using a more powerful algorithm.\n\nThis algorithms supports horocycles and knows the expansion rates of various " "tessellations (contrary to the basic implementation of Archimedean, tes, and unrectified/warped/untruncated tessellations).\n\nYou can convert mostly any " "non-spherical periodic 2D tessellation to strict tree based.\n\nSwitching the map format erases your map.")); if(kite::in()) { dialog::addInfo("not available in aperiodic tessellations"); dialog::addBack(); dialog::display(); } else if(WDIM == 3) { dialog::addInfo("not available in 3D tessellations"); dialog::addBack(); dialog::display(); } dialog::addBoolItem(XLAT("in tes internal format"), arb::in(), 't'); dialog::add_action([] { if(!arb::in()) { arb::convert::convert(); arb::convert::activate(); start_game(); rule_status = XLAT("converted successfully -- %1 cell types", its(isize(arb::current.shapes))); rules_known_for = "unknown"; } else if(arb::convert::in()) { stop_game(); geometry = arb::convert::base_geometry; variation = arb::convert::base_variation; start_game(); } else { addMessage(XLAT("cannot be disabled for this tiling")); } }); dialog::addBoolItem(XLAT("strict tree based"), currentmap->strict_tree_rules(), 's'); dialog::add_action([] { if(!currentmap->strict_tree_rules()) { if(prepare_rules()) { println(hlog, "prepare_rules returned true"); stop_game(); arb::convert::activate(); start_game(); delete_tmap(); } } else if(arb::current.have_tree) { addMessage(XLAT("cannot be disabled for this tiling")); } else { rules_known_for = "unknown"; rule_status = "manually disabled"; stop_game(); start_game(); } }); add_edit(max_tcellcount); dialog::addBreak(100); dialog::addHelp(rule_status); dialog::items.back().color = known() ? 0x00FF00 : rules_known_for == "unknown" ? 0xFFFF00 : 0xFF0000; dialog::addBreak(100); dialog::addBack(); dialog::display(); } EX } }