#include "rogueviz.h" /** A physics visualization of balls in a shell. * * Compile with HyperRogue, enable a 3D geometry (e.g. Nil), and watch. * This is not configurable yet... you may need to manually change the gravity direction, or the number of balls * (it is not optimized, and it does not work in real time with the default number of balls). */ namespace rogueviz { namespace balls { bool on = true; struct ball { hyperpoint at; hyperpoint vel; }; vector<ball> balls; ld r_small_ball = .1; ld r_big_ball = 1; hpcshape shSmallBall, shBigBall, shShell; void initialize(int max_ball) { on = true; cgi.make_ball(shSmallBall, r_small_ball, 2); cgi.make_ball(shBigBall, r_big_ball, 4); cgi.bshape(shShell, PPR::WALL); shShell.flags |= POLY_TRIANGLES; auto pt = [] (int i, int j) { cgi.hpcpush(direct_exp(/* cspin(0, 2, -30*degree) **/ cspin(2, 1, 90*degree) * cspin(0, 1, j * degree) * cspin(0, 2, i * M_PI / 2 / 16) * ztangent(r_big_ball))); }; for(int i=0; i<16; i++) for(int j=0; j<360; j++) { pt(i, j); pt(i, j+1); pt(i+1, j); pt(i, j+1); pt(i+1, j); pt(i+1, j+1); } cgi.finishshape(); cgi.extra_vertices(); for(int a=-max_ball; a<=max_ball; a++) for(int b=-max_ball; b<=max_ball; b++) for(int c=-max_ball; c<=max_ball; c++) { hyperpoint h = point3(0.21*a + 1e-2, 0.21*b, 0.21*c); if(hypot_d(3, h) > r_big_ball - r_small_ball) continue; transmatrix T = rgpushxto0(direct_exp(h)); balls.emplace_back(ball{T*C0, T*ztangent(1e-3)}); } } bool draw_balls(cell *c, const shiftmatrix& V) { if(!on) return false; if(c == currentmap->gamestart()) { for(auto& b: balls) queuepoly(V * rgpushxto0(b.at), shSmallBall, 0xFFFFFFFF); queuepoly(V, shShell, 0x0000F0FF); } return false; } ld inner(hyperpoint a, hyperpoint b) { ld s = a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; if(hyperbolic) return s - a[3] * b[3]; if(sphere) return s + a[3] * b[3]; return s; } void geodesic_steps(hyperpoint& at, hyperpoint& vel, int qty) { if(nonisotropic) { vel /= qty; for(int i=0; i<qty; i++) nisot::geodesic_step(at, vel); vel *= qty; } else { ld d = sqrt(inner(vel, vel)); tie(at, vel) = make_pair( at * cos_auto(d) + vel * sin_auto(d)/d, vel * cos_auto(d) - at * sin_auto(d) * sig(3) * d ); } } ld elastic_in = .2; ld elastic_out = .2; ld gravity = 1; bool turn(int delta) { if(!on) return false; for(int i=0; i<delta; i++) { for(auto& b: balls) { /* gravity direction: z */ b.vel += ctangent(2, 1e-6) * gravity; geodesic_steps(b.at, b.vel, 1); if(!nonisotropic && !euclid) { ld e = sqrt(abs(inner(b.at, b.at))); b.at /= e; ld e2 = inner(b.at, b.vel) * sig(3); b.vel -= b.at * e2; } hyperpoint v = inverse_exp(shiftless(b.at)); ld d = hypot_d(3, v); ld rbs = r_big_ball - r_small_ball; if(d > rbs) { hyperpoint c = C0, ve = v * rbs / d; geodesic_steps(c, ve, 20); hyperpoint ort = ve / d; transmatrix T = gpushxto0(b.at); b.vel -= inner(T*b.vel, T*ort) * ort * (1 + elastic_out); b.at = c; if(!nonisotropic && !euclid) { ld e2 = inner(b.at, b.vel) * sig(3); b.vel -= b.at * e2; } } } /* This is not optimized. It should use a partition of the space, * to tell which balls have a chance to touch each other. */ for(auto& b1: balls) for(auto& b2: balls) { if(&b2 == &b1) break; hyperpoint dif = inverse_exp(shiftless(gpushxto0(b1.at) * b2.at)); ld d = hypot_d(3, dif); if(d < r_small_ball * 2) { hyperpoint ort1 = (dif / d); ld vel1 = +inner(gpushxto0(b1.at) * b1.vel, ort1); hyperpoint ort2 = inverse_exp(shiftless(gpushxto0(b2.at) * b1.at)) / d; ld vel2 = +inner(gpushxto0(b2.at) * b2.vel, ort2); ld vels = vel1 + vel2; if(vels < 0) continue; vels *= (1 + elastic_in) / 2; b1.vel -= rgpushxto0(b1.at) * (vels * ort1); b2.vel -= rgpushxto0(b2.at) * (vels * ort2); } } } return false; } int args() { using namespace arg; if(0) ; else if(argis("-ball-physics")) { start_game(); check_cgi(); cgi.require_shapes(); shift(); initialize(argi()); View = cspin(1, 2, M_PI/2); } else return 1; return 0; } auto celldemo = addHook(hooks_drawcell, 100, draw_balls) + addHook(shmup::hooks_turn, 100, turn) + addHook(hooks_args, 100, args) + addHook(hooks_clearmemory, 40, [] () { balls.clear(); on = false; }); } }