// Hyperbolic Rogue -- nonisotropic spaces (Solv and Nil) // Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details /** \file nonisotropic.cpp * \brief nonisotropic spaces (Solv and Nil) */ #include "hyper.h" namespace hr { EX namespace nisot { #if HDR typedef array ptlow; #endif EX transmatrix local_perspective; #if HDR inline bool local_perspective_used() { return nonisotropic || prod; } #endif EX bool geodesic_movement = true; EX transmatrix translate(hyperpoint h) { if(sl2) return slr::translate(h); transmatrix T = Id; for(int i=0; i tab; string fname; bool loaded; void load(); hyperpoint get(ld ix, ld iy, ld iz, bool lazy); nisot::ptlow& get_int(int ix, int iy, int iz) { return tab[(iz*PRECY+iy)*PRECX+ix]; } GLuint texture_id; bool toload; GLuint get_texture_id(); tabled_inverses(string s) : fname(s), texture_id(0), toload(true) {} }; #endif void tabled_inverses::load() { if(loaded) return; FILE *f = fopen(fname.c_str(), "rb"); // if(!f) f = fopen("/usr/lib/soltable.dat", "rb"); if(!f) { addMessage(XLAT("geodesic table missing")); pmodel = mdPerspective; return; } ignore(fread(&PRECX, 4, 1, f)); ignore(fread(&PRECY, 4, 1, f)); ignore(fread(&PRECZ, 4, 1, f)); tab.resize(PRECX * PRECY * PRECZ); ignore(fread(&tab[0], sizeof(nisot::ptlow) * PRECX * PRECY * PRECZ, 1, f)); fclose(f); loaded = true; } hyperpoint tabled_inverses::get(ld ix, ld iy, ld iz, bool lazy) { ix *= PRECX-1; iy *= PRECY-1; iz *= PRECZ-1; hyperpoint res; if(lazy) { auto r = get_int(int(ix), int(iy), int(iz)); for(int i=0; i<3; i++) res[i] = r[i]; } else { if(ix >= PRECX-1) ix = PRECX-2; if(iy >= PRECX-1) iy = PRECX-2; if(iz >= PRECZ-1) iz = PRECZ-2; int ax = ix, bx = ax+1; int ay = iy, by = ay+1; int az = iz, bz = az+1; #define S0(x,y,z) get_int(x, y, z)[t] #define S1(x,y) (S0(x,y,az) * (bz-iz) + S0(x,y,bz) * (iz-az)) #define S2(x) (S1(x,ay) * (by-iy) + S1(x,by) * (iy-ay)) for(int t=0; t<3; t++) res[t] = S2(ax) * (bx-ix) + S2(bx) * (ix-ax); } return res; } GLuint tabled_inverses::get_texture_id() { if(!toload) return texture_id; load(); if(!loaded) return 0; println(hlog, "installing table"); toload = false; if(texture_id == 0) glGenTextures(1, &texture_id); glBindTexture( GL_TEXTURE_3D, texture_id); glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE); auto xbuffer = new glvertex[PRECZ*PRECY*PRECX]; for(int z=0; z, heptagon*> at; unordered_map> coords; heptagon *origin; heptagon *getOrigin() override { return origin; } heptagon *get_at(heptagon *x, heptagon *y) { auto& h = at[make_pair(x, y)]; if(h) return h; h = tailored_alloc (S7); h->c7 = newCell(S7, h); coords[h] = make_pair(x, y); h->distance = x->distance; h->dm4 = 0; h->zebraval = x->emeraldval; h->emeraldval = y->emeraldval; h->fieldval = 0; h->cdata = NULL; h->alt = NULL; return h; } hrmap_solnih() { heptagon *alt; heptagon *alt3; if(true) { dynamicval g(geometry, gBinary4); alt = tailored_alloc (S7); alt->s = hsOrigin; alt->alt = alt; alt->cdata = NULL; alt->c7 = NULL; alt->zebraval = 0; alt->distance = 0; alt->emeraldval = 0; binary_map = binary::new_alt_map(alt); } if(nih) { dynamicval g(geometry, gTernary); alt3 = tailored_alloc (S7); alt3->s = hsOrigin; alt3->alt = alt3; alt3->cdata = NULL; alt3->c7 = NULL; alt3->zebraval = 0; alt3->distance = 0; alt3->emeraldval = 0; ternary_map = binary::new_alt_map(alt3); } else { alt3 = alt; ternary_map = nullptr; } origin = get_at(alt, alt3); } heptagon *altstep(heptagon *h, int d) { dynamicval g(geometry, gBinary4); dynamicval cm(currentmap, binary_map); return h->cmove(d); } heptagon *altstep3(heptagon *h, int d) { dynamicval g(geometry, gTernary); dynamicval cm(currentmap, ternary_map); return h->cmove(d); } heptagon *create_step(heptagon *parent, int d) override { auto p = coords[parent]; auto pf = p.first, ps = p.second; auto rule = [&] (heptagon *c1, heptagon *c2, int d1) { auto g = get_at(c1, c2); parent->c.connect(d, g, d1, false); return g; }; switch(geometry){ case gSol: switch(d) { case 0: // right return rule(altstep(pf, 2), ps, 4); case 1: // up return rule(pf, altstep(ps, 2), 5); case 2: // front left return rule(altstep(pf, 0), altstep(ps, 3), ps->zebraval ? 7 : 6); case 3: // front right return rule(altstep(pf, 1), altstep(ps, 3), ps->zebraval ? 7 : 6); case 4: // left return rule(altstep(pf, 4), ps, 0); case 5: // down return rule(pf, altstep(ps, 4), 1); case 6: // back down return rule(altstep(pf, 3), altstep(ps, 0), pf->zebraval ? 3 : 2); case 7: // back up return rule(altstep(pf, 3), altstep(ps, 1), pf->zebraval ? 3 : 2); default: return NULL; } case gNIH: switch(d) { case 0: // right return rule(altstep(pf, 2), ps, 2); case 1: // up return rule(pf, altstep3(ps, 3), 3); case 2: // left return rule(altstep(pf, 4), ps, 0); case 3: // down return rule(pf, altstep3(ps, 5), 1); case 4: // back return rule(altstep(pf, 3), altstep3(ps, 4), 5 + pf->zebraval + 2 * ps->zebraval); default: return rule(altstep(pf, (d-5) % 2), altstep3(ps, (d-5)/2), 4); } case gSolN: switch(d) { case 0: // right return rule(altstep(pf, 2), ps, 2); case 1: // up return rule(pf, altstep3(ps, 3), 3); case 2: // left return rule(altstep(pf, 4), ps, 0); case 3: // down return rule(pf, altstep3(ps, 5), 1); case 4: case 5: return rule(altstep(pf, d-4), altstep3(ps, 4), ps->zebraval + 6); case 6: case 7: case 8: return rule(altstep(pf, 3), altstep3(ps, d-6), pf->zebraval + 4); default: return NULL; } default: throw "not solnihv"; } } ~hrmap_solnih() { delete binary_map; if(ternary_map) delete ternary_map; for(auto& p: at) clear_heptagon(p.second); } transmatrix adjmatrix(int i, int j) { switch(geometry) { case gSol: { ld z = log(2); ld bw = vid.binary_width * z; switch(i) { case 0: return xpush(+bw); case 1: return ypush(+bw); case 2: case 3: return ypush(bw*(6.5-j)) * zpush(+z) * xpush(bw*(i-2.5)); case 4: return xpush(-bw); case 5: return ypush(-bw); case 6: case 7: return xpush(bw*(2.5-j)) * zpush(-z) * ypush(bw*(i-6.5)); default:return Id; } } case gNIH: { ld bw = vid.binary_width; switch(i) { case 0: return xpush(+bw); case 1: return ypush(+bw); case 2: return xpush(-bw); case 3: return ypush(-bw); case 4: return xpush(-((j-5)%2-.5)*bw) * ypush(-((j-5)/2-1)*bw) * zpush(1); default: return zpush(-1) * xpush(((i-5)%2-.5)*bw) * ypush(((i-5)/2-1)*bw); } } case gSolN: { ld bw = vid.binary_width; switch(i) { case 0: return xpush(+bw); case 1: return ypush(+bw); case 2: return xpush(-bw); case 3: return ypush(-bw); case 4: case 5: return ypush(bw*(7-j)) * zpush(+1) * xpush(bw*(i-4.5)); case 6: case 7: case 8: return xpush(bw*(4.5-j)) * zpush(-1) * ypush(bw*(i-7)); } } default: throw "not nihsolv"; } } virtual transmatrix relative_matrix(heptagon *h2, heptagon *h1) override { for(int i=0; itype; i++) if(h1->move(i) == h2) return adjmatrix(i, h1->c.spin(i)); if(gmatrix0.count(h2->c7) && gmatrix0.count(h1->c7)) return inverse(gmatrix0[h1->c7]) * gmatrix0[h2->c7]; return Id; // not implemented yet } void draw() override { dq::visited.clear(); dq::enqueue(viewctr.at, cview()); while(!dq::drawqueue.empty()) { auto& p = dq::drawqueue.front(); heptagon *h = get<0>(p); transmatrix V = get<1>(p); dq::drawqueue.pop(); cell *c = h->c7; if(!do_draw(c, V)) continue; drawcell(c, V, 0, false); for(int i=0; icmove(i); dq::enqueue(h1, V * adjmatrix(i, h->c.spin(i))); } } } }; EX pair getcoord(heptagon *h) { return ((hrmap_solnih*)currentmap)->coords[h]; } EX heptagon *get_at(heptagon *h1, heptagon *h2, bool gen) { auto m = ((hrmap_solnih*)currentmap); if(!gen && !m->at.count(make_pair(h1, h2))) return nullptr; return m->get_at(h1, h2); } EX string common = "uniform mediump sampler3D tInvExpTable;" "uniform mediump float PRECX, PRECY, PRECZ;" "float x_to_ix(float u) {" " if(u < 1e-6) return 0.;" " float diag = u*u/2.;" " float x = diag;" " float y = u;" " float z = diag+1.;" " x /= (1.+z);" " y /= (1.+z);" " return 0.5 - atan((0.5-x) / y) / 3.1415926535897932384626433832795;" " }"; hyperpoint christoffel(const hyperpoint at, const hyperpoint velocity, const hyperpoint transported) { constexpr ld l2 = log(2); constexpr ld l3 = log(3); switch(geometry) { case gSolN: return hpxyz3( -(velocity[2] * transported[0] + velocity[0] * transported[2]) * l2, (velocity[2] * transported[1] + velocity[1] * transported[2]) * l3, velocity[0] * transported[0] * exp(2*l2*at[2]) * l2 - velocity[1] * transported[1] * exp(-2*l3*at[2]) * l3, 0 ); case gSol: return hpxyz3( -velocity[2] * transported[0] - velocity[0] * transported[2], velocity[2] * transported[1] + velocity[1] * transported[2], velocity[0] * transported[0] * exp(2*at[2]) - velocity[1] * transported[1] * exp(-2*at[2]), 0 ); case gNIH: return hpxyz3( (velocity[2] * transported[0] + velocity[0] * transported[2]) * l2, (velocity[2] * transported[1] + velocity[1] * transported[2]) * l3, -(velocity[0] * transported[0] * exp(-2*l2*at[2]) * l2 + velocity[1] * transported[1] * exp(-2*l3*at[2]) * l3), 0 ); default: throw "christoffel not in solnihv"; } } EX hyperpoint get_inverse_exp_symsol(hyperpoint h, bool lazy, bool just_direction) { auto& s = get_tabled(); s.load(); ld ix = h[0] >= 0. ? solnihv::x_to_ix(h[0]) : solnihv::x_to_ix(-h[0]); ld iy = h[1] >= 0. ? solnihv::x_to_ix(h[1]) : solnihv::x_to_ix(-h[1]); ld iz = tanh(h[2]); if(h[2] < 0.) { iz = -iz; swap(ix, iy); } hyperpoint res = s.get(ix, iy, iz, lazy); if(h[2] < 0.) { swap(res[0], res[1]); res[2] = -res[2]; } if(h[0] < 0.) res[0] = -res[0]; if(h[1] < 0.) res[1] = -res[1]; if(!just_direction) { ld r = hypot_d(3, res); if(r == 0.) return res; return res * atanh(r) / r; } return res; } EX hyperpoint get_inverse_exp_nsym(hyperpoint h, bool lazy, bool just_direction) { auto& s = get_tabled(); s.load(); ld ix = h[0] >= 0. ? solnihv::x_to_ix(h[0]) : solnihv::x_to_ix(-h[0]); ld iy = h[1] >= 0. ? solnihv::x_to_ix(h[1]) : solnihv::x_to_ix(-h[1]); ld iz = (tanh(h[2]/4)+1)/2; hyperpoint res = s.get(ix, iy, iz, lazy); if(h[0] < 0.) res[0] = -res[0]; if(h[1] < 0.) res[1] = -res[1]; if(!just_direction) { ld r = hypot_d(3, res); if(r == 0.) return res; return res * atanh(r) / r; } return res; } EX string shader_symsol = solnihv::common + "vec4 inverse_exp(vec4 h) {" "float ix = h[0] >= 0. ? x_to_ix(h[0]) : x_to_ix(-h[0]);" "float iy = h[1] >= 0. ? x_to_ix(h[1]) : x_to_ix(-h[1]);" "float iz = tanh(h[2]);" "if(h[2] < 1e-6) { iz = -iz; float s = ix; ix = iy; iy = s; }" "if(iz < 0.) iz = 0.;" "vec4 res;" "float cx = ix*(1.-1./PRECX) + .5/PRECX;" "float cy = iy*(1.-1./PRECY) + .5/PRECY;" "float cz = iz*(1.-1./PRECZ) + .5/PRECZ;" "if(ix > .5 && iy > .6 && ix < iy + .05 && iz < .2 && iz < (iy - 0.5) * 0.6)" "res = vec4(0.,0.,0.,1.); " "else " "res = texture3D(tInvExpTable, vec3(cx, cy, cz));" "if(h[2] < 1e-6) { res.xy = res.yx; res[2] = -res[2]; }" "if(h[0] < 0.) res[0] = -res[0];" "if(h[1] < 0.) res[1] = -res[1];" "return res;" "}"; EX string shader_nsym = solnihv::common + "vec4 inverse_exp(vec4 h) {" "float ix = h[0] >= 0. ? x_to_ix(h[0]) : x_to_ix(-h[0]);" "float iy = h[1] >= 0. ? x_to_ix(h[1]) : x_to_ix(-h[1]);" "float iz = (tanh(h[2]/4.)+1.) / 2.;" "vec4 res;" "float cx = ix*(1.-1./PRECX) + .5/PRECX;" "float cy = iy*(1.-1./PRECY) + .5/PRECY;" "float cz = iz*(1.-1./PRECZ) + .5/PRECZ;" "res = texture3D(tInvExpTable, vec3(cx, cy, cz));" "if(h[0] < 0.) res[0] = -res[0];" "if(h[1] < 0.) res[1] = -res[1];" "return res;" "}"; EX ld solrange_xy = 15; EX ld solrange_z = 4; EX bool in_table_range(hyperpoint h) { return abs(h[0]) < solrange_xy && abs(h[1]) < solrange_xy && abs(h[2]) < solrange_z; } EX tabled_inverses solt = solnihv::tabled_inverses("solv-geodesics.dat"); EX tabled_inverses niht = solnihv::tabled_inverses("h23-geodesics.dat"); EX tabled_inverses sont = solnihv::tabled_inverses("sont-geodesics.dat"); EX tabled_inverses& get_tabled() { switch(geometry) { case gSol: return solt; case gNIH: return niht; case gSolN: return sont; default: throw "not solnih"; } } EX int approx_distance(heptagon *h1, heptagon *h2) { auto m = (solnihv::hrmap_solnih*) currentmap; dynamicval g(geometry, gBinary4); dynamicval cm(currentmap, m->binary_map); int d1 = binary::celldistance3_approx(m->coords[h1].first, m->coords[h2].first); int d2 = binary::celldistance3_approx(m->coords[h1].second, m->coords[h2].second); return d1 + d2 - abs(h1->distance - h2->distance); } EX } #endif EX namespace nilv { hyperpoint christoffel(const hyperpoint Position, const hyperpoint Velocity, const hyperpoint Transported) { ld x = Position[0]; return point3( x * Velocity[1] * Transported[1] - 0.5 * (Velocity[1] * Transported[2] + Velocity[2] * Transported[1]), -.5 * x * (Velocity[1] * Transported[0] + Velocity[0] * Transported[1]) + .5 * (Velocity[2] * Transported[0] + Velocity[0] * Transported[2]), -.5 * (x*x-1) * (Velocity[1] * Transported[0] + Velocity[0] * Transported[1]) + .5 * x * (Velocity[2] * Transported[0] + Velocity[0] * Transported[2]) ); } EX hyperpoint formula_exp(hyperpoint v) { // copying Modelling Nil-geometry in Euclidean Space with Software Presentation // v[0] = c cos alpha // v[1] = c sin alpha // v[2] = w if(v[0] == 0 && v[1] == 0) return point31(v[0], v[1], v[2]); if(v[2] == 0) return point31(v[0], v[1], v[0] * v[1] / 2); ld alpha = atan2(v[1], v[0]); ld w = v[2]; ld c = hypot(v[0], v[1]) / v[2]; return point31( 2 * c * sin(w/2) * cos(w/2 + alpha), 2 * c * sin(w/2) * sin(w/2 + alpha), w * (1 + (c*c/2) * ((1 - sin(w)/w) + (1-cos(w))/w * sin(w + 2 * alpha))) ); } EX hyperpoint get_inverse_exp(hyperpoint h, int iterations) { ld wmin, wmax; ld side = h[2] - h[0] * h[1] / 2; if(hypot_d(2, h) < 1e-6) return point3(h[0], h[1], h[2]); else if(side > 1e-6) { wmin = 0, wmax = 2 * M_PI; } else if(side < -1e-6) { wmin = - 2 * M_PI, wmax = 0; } else return point3(h[0], h[1], 0); ld alpha_total = h[0] ? atan(h[1] / h[0]) : M_PI/2; ld b; if(abs(h[0]) > abs(h[1])) b = h[0] / 2 / cos(alpha_total); else b = h[1] / 2 / sin(alpha_total); ld s = sin(2 * alpha_total); for(int it=0;; it++) { ld w = (wmin + wmax) / 2; ld z = b * b * (s + (sin(w) - w)/(cos(w) - 1)) + w; if(it == iterations) { ld alpha = alpha_total - w/2; ld c = b / sin(w/2); return point3(c * w * cos(alpha), c * w * sin(alpha), w); } if(h[2] > z) wmin = w; else wmax = w; } } EX string nilshader = "vec4 inverse_exp(vec4 h) {" "float wmin, wmax;" "float side = h[2] - h[0] * h[1] / 2.;" "if(h[0]*h[0] + h[1]*h[1] < 1e-12) return vec4(h[0], h[1], h[2], 1);" "if(side > 1e-6) { wmin = 0.; wmax = 2.*PI; }" "else if(side < -1e-6) { wmin = -2.*PI; wmax = 0.; }" "else return vec4(h[0], h[1], 0., 1.);" "float at = h[0] != 0. ? atan(h[1] / h[0]) : PI/2.;" "float b = abs(h[0]) > abs(h[1]) ? h[0] / 2. / cos(at) : h[1] / 2. / sin(at);" "float s = sin(2. * at);" "for(int it=0; it<50; it++) {" "float w = (wmin + wmax) / 2.;" // the formula after ':' produces visible numerical artifacts for w~0 "float z = b * b * (s + (abs(w) < .1 ? w/3. + w*w*w/90. + w*w*w*w*w/2520.: (sin(w) - w)/(cos(w) - 1.))) + w;" "if(h[2] > z) wmin = w;" "else wmax = w;" "}" "float w = (wmin + wmax) / 2.;" "float alpha = at - w/2.;" "float c = b / sin(w/2.);" "return vec4(c*w*cos(alpha), c*w*sin(alpha), w, 1.);" "}"; struct mvec : array { mvec() { } mvec(int x, int y, int z) { auto& a = *this; a[0] = x; a[1] = y; a[2] = z; } mvec inverse() { auto& a = *this; return mvec(-a[0], -a[1], -a[2]+a[1] * a[0]); } mvec operator * (const mvec b) { auto& a = *this; return mvec(a[0] + b[0], a[1] + b[1], a[2] + b[2] + a[0] * b[1]); } }; static const mvec mvec_zero = mvec(0, 0, 0); hyperpoint mvec_to_point(mvec m) { return hpxy3(m[0], m[1], m[2]); } #if HDR static const int nilv_S7 = 6; #endif /* array movevectors = {{ mvec(-1,0,0), mvec(-1,0,1), mvec(0,-1,0), mvec(0,0,-1), mvec(1,0,0), mvec(1,0,-1), mvec(0,1,0), mvec(0,0,1) }}; EX array, nilv_S7> facevertices = {{ { point31(-0.5,-0.5,-0.25), point31(-0.5,-0.5,0.75), point31(-0.5,0.5,-0.25), }, { point31(-0.5,-0.5,0.75), point31(-0.5,0.5,0.75), point31(-0.5,0.5,-0.25), }, { point31(-0.5,-0.5,-0.25), point31(-0.5,-0.5,0.75), point31(0.5,-0.5,0.25), point31(0.5,-0.5,-0.75), }, { point31(-0.5,-0.5,-0.25), point31(-0.5,0.5,-0.25), point31(0.5,0.5,-0.75), point31(0.5,-0.5,-0.75), }, { point31(0.5,0.5,0.25), point31(0.5,-0.5,0.25), point31(0.5,-0.5,-0.75), }, { point31(0.5,0.5,-0.75), point31(0.5,0.5,0.25), point31(0.5,-0.5,-0.75), }, { point31(-0.5,0.5,0.75), point31(-0.5,0.5,-0.25), point31(0.5,0.5,-0.75), point31(0.5,0.5,0.25), }, { point31(-0.5,-0.5,0.75), point31(-0.5,0.5,0.75), point31(0.5,0.5,0.25), point31(0.5,-0.5,0.25), }, }}; */ array movevectors = {{ mvec(-1,0,0), mvec(0,-1,0), mvec(0,0,-1), mvec(1,0,0), mvec(0,1,0), mvec(0,0,1) }}; EX array, nilv_S7> facevertices = {{ { point31(-0.5,-0.5,-0.25), point31(-0.5,-0.5,0.75), point31(-0.5,0.5,0.25), point31(-0.5,0.5,-0.75), }, { point31(0.5,-0.5,-0.5), point31(0.5,-0.5,0.5), point31(-0.5,-0.5,0.5), point31(-0.5,-0.5,-0.5), }, { point31(0,0,-0.5), point31(-0.5,0.5,-0.75), point31(-0.5,-0.5,-0.25), point31(0,0,-0.5), point31(-0.5,-0.5,-0.25), point31(-0.5,-0.5,-0.5), point31(0,0,-0.5), point31(-0.5,-0.5,-0.5), point31(0.5,-0.5,-0.5), point31(0,0,-0.5), point31(0.5,-0.5,-0.5), point31(0.5,-0.5,-0.75), point31(0,0,-0.5), point31(0.5,-0.5,-0.75), point31(0.5,0.5,-0.25), point31(0,0,-0.5), point31(0.5,0.5,-0.25), point31(0.5,0.5,-0.5), point31(0,0,-0.5), point31(0.5,0.5,-0.5), point31(-0.5,0.5,-0.5), point31(0,0,-0.5), point31(-0.5,0.5,-0.5), point31(-0.5,0.5,-0.75), }, { point31(0.5,0.5,-0.25), point31(0.5,0.5,0.75), point31(0.5,-0.5,0.25), point31(0.5,-0.5,-0.75), }, { point31(-0.5,0.5,-0.5), point31(-0.5,0.5,0.5), point31(0.5,0.5,0.5), point31(0.5,0.5,-0.5), }, { point31(0,0,0.5), point31(-0.5,0.5,0.25), point31(-0.5,-0.5,0.75), point31(0,0,0.5), point31(-0.5,-0.5,0.75), point31(-0.5,-0.5,0.5), point31(0,0,0.5), point31(-0.5,-0.5,0.5), point31(0.5,-0.5,0.5), point31(0,0,0.5), point31(0.5,-0.5,0.5), point31(0.5,-0.5,0.25), point31(0,0,0.5), point31(0.5,-0.5,0.25), point31(0.5,0.5,0.75), point31(0,0,0.5), point31(0.5,0.5,0.75), point31(0.5,0.5,0.5), point31(0,0,0.5), point31(0.5,0.5,0.5), point31(-0.5,0.5,0.5), point31(0,0,0.5), point31(-0.5,0.5,0.5), point31(-0.5,0.5,0.25), }, }}; struct hrmap_nil : hrmap { unordered_map at; unordered_map coords; heptagon *getOrigin() override { return get_at(mvec_zero); } ~hrmap_nil() { for(auto& p: at) clear_heptagon(p.second); } heptagon *get_at(mvec c) { auto& h = at[c]; if(h) return h; h = tailored_alloc (S7); h->c7 = newCell(S7, h); coords[h] = c; h->dm4 = 0; h->zebraval = c[0]; h->emeraldval = c[1]; h->fieldval = c[2]; h->cdata = NULL; h->alt = NULL; return h; } heptagon *create_step(heptagon *parent, int d) override { auto p = coords[parent]; auto q = p * movevectors[d]; auto child = get_at(q); parent->c.connect(d, child, (d + nilv_S7/2) % nilv_S7, false); return child; } transmatrix adjmatrix(int i) { return nisot::translate(mvec_to_point(movevectors[i])); } virtual transmatrix relative_matrix(heptagon *h2, heptagon *h1) override { return nisot::translate(mvec_to_point(coords[h1].inverse() * coords[h2])); } void draw() override { dq::visited.clear(); dq::enqueue(viewctr.at, cview()); while(!dq::drawqueue.empty()) { auto& p = dq::drawqueue.front(); heptagon *h = get<0>(p); transmatrix V = get<1>(p); dq::drawqueue.pop(); cell *c = h->c7; if(!do_draw(c, V)) continue; drawcell(c, V, 0, false); if(0) for(int t=0; ttype; t++) { if(!c->move(t)) continue; dynamicval g(poly_outline, darkena((0x142968*t) & 0xFFFFFF, 0, 255) ); queuepoly(V, cgi.shWireframe3D[t], 0); } for(int i=0; icmove(i); dq::enqueue(h1, V * adjmatrix(i)); } } } }; EX hyperpoint on_geodesic(hyperpoint s0, hyperpoint s1, ld x) { hyperpoint local = inverse(nisot::translate(s0)) * s1; hyperpoint h = get_inverse_exp(local, 100); return nisot::translate(s0) * formula_exp(h * x); } EX } EX bool in_s2xe() { return prod && hybrid::over_sphere(); } EX bool in_h2xe() { return prod && !hybrid::over_sphere(); } EX namespace hybrid { EX int current_view_level; EX eGeometry underlying; EX geometry_information *underlying_cgip; EX bool over_sphere() { return ginf[hybrid::underlying].cclass == gcSphere; } EX void configure(eGeometry g) { if(WDIM == 3) return; check_cgi(); cgi.require_basics(); underlying = geometry; underlying_cgip = cgip; bool sph = sphere; auto keep = ginf[g].menu_displayed_name; ginf[g] = ginf[underlying]; ginf[g].menu_displayed_name = keep; if(g == gRotSpace) { ginf[g].g = sph ? giSphere3 : giSL2; ginf[g].tiling_name = "Iso(" + ginf[g].tiling_name + ")"; string& qn = ginf[g].quotient_name; string qplus = sph ? "elliptic" : qn; if(qn == "none" || qn == "elliptic") qn = qplus; else qn = qn + "/" + qplus; if(sph) ginf[g].flags |= qELLIPTIC; } else { ginf[g].cclass = g == gRotSpace ? gcSL2 : gcProduct; ginf[g].g.gameplay_dimension++; ginf[g].g.graphical_dimension++; ginf[g].tiling_name += "xZ"; } ginf[g].flags |= qHYBRID; } EX hrmap *pmap; geometry_information *pcgip; EX eGeometry actual_geometry; template auto in_actual(const T& t) -> decltype(t()) { dynamicval g(geometry, actual_geometry); dynamicval gc(cgip, pcgip); dynamicval gu(currentmap, pmap); dynamicval gup(pmap, NULL); return t(); } struct hrmap_hybrid : hrmap { hrmap *underlying_map; map, cell*> at; map> where; heptagon *getOrigin() override { return underlying_map->getOrigin(); } template auto in_underlying(const T& t) -> decltype(t()) { pcgip = cgip; dynamicval gpm(pmap, this); dynamicval gag(actual_geometry, geometry); dynamicval g(geometry, underlying); dynamicval gc(cgip, underlying_cgip); dynamicval gu(currentmap, underlying_map); return t(); } cell *getCell(cell *u, int h) { if(cgi.steps) h = gmod(h, cgi.steps); cell*& c = at[make_pair(u, h)]; if(!c) { c = newCell(u->type+2, u->master); where[c] = {u, h}; } return c; } cell* gamestart() override { return getCell(underlying_map->gamestart(), 0); } hrmap_hybrid() { in_underlying([this] { initcells(); underlying_map = currentmap; }); for(hrmap*& m: allmaps) if(m == underlying_map) m = NULL; } ~hrmap_hybrid() { in_underlying([] { delete currentmap; }); for(auto& p: at) tailored_delete(p.second); } }; hrmap_hybrid* hmap() { return (hrmap_hybrid*) currentmap; } EX cell *get_at(cell *base, int level) { return hmap()->getCell(base, level); } EX pair get_where(cell *c) { return hmap()->where[c]; } EX void find_cell_connection(cell *c, int d) { auto m = hmap(); if(d >= c->type - 2) { int s = cgi.single_step; cell *c1 = get_at(m->where[c].first, m->where[c].second + (d == c->type-1 ? s : -s)); c->c.connect(d, c1, c1->type - 3 + c->type - d, false); } else { auto cu = m->where[c].first; auto cu1 = m->in_underlying([&] { return cu->cmove(d); }); int d1 = cu->c.spin(d); int s = cgi.steps ? d*cgi.steps / cu->type - d1*cgi.steps / cu1->type + cgi.steps/2 : 0; cell *c1 = get_at(cu1, m->where[c].second + s); c->c.connect(d, c1, d1, cu->c.mirror(d)); } } EX void in_underlying_map(const reaction_t& f) { if(!hybri) f(); else hmap()->in_underlying(f); } #if HDR template auto in_underlying_geometry(const T& f) -> decltype(f()) { if(!hybri) return f(); dynamicval g(geometry, underlying); dynamicval gc(cgip, underlying_cgip); return f(); } #define PIU(x) hr::hybrid::in_underlying_geometry([&] { return (x); }) #endif EX hyperpoint get_corner(cell *c, int i, int next, ld z) { ld lev = cgi.plevel * z / 2; if(prod) { dynamicval g(geometry, hybrid::underlying); dynamicval gc(cgip, hybrid::underlying_cgip); return mscale(get_corner_position(c, i+next), exp(lev)); } else { ld tf, he, alpha; in_underlying_map([&] { hyperpoint h1 = get_corner_position(c, i); hyperpoint h2 = get_corner_position(c, i+1); hyperpoint hm = mid(h1, h2); tf = hdist0(hm)/2; he = hdist(hm, h2)/2; alpha = atan2(hm[1], hm[0]); }); return spin(alpha) * rots::uxpush(tf) * rots::uypush(next?he:-he) * rots::uzpush(lev) * C0; } } EX int wall_offset(cell *c) { int id = hybrid::underlying == gArchimedean ? arcm::id_of(c->master) + 20 * arcm::parent_index_of(c->master) : shvid(c); if(isize(cgi.walloffsets) <= id) cgi.walloffsets.resize(id+1, -1); int &wo = cgi.walloffsets[id]; if(wo == -1) { cell *c1 = hybrid::get_where(c).first; wo = isize(cgi.shWall3D); int won = wo + c->type; cgi.reserve_wall3d(won); if(prod) for(int i=0; itype; i++) { hyperpoint w; hybrid::in_underlying_geometry([&] { /* mirror image of C0 in the axis h1-h2 */ hyperpoint h1 = get_corner_position(c1, i); hyperpoint h2 = get_corner_position(c1, i+1); transmatrix T = gpushxto0(h1); T = spintox(T * h2) * T; w = T * C0; w[1] = -w[1]; w = inverse(T) * w; }); cgi.walltester[wo + i] = w; } for(int i=0; itype; i++) cgi.make_wall(wo + i, {hybrid::get_corner(c1, i, 0, -1), hybrid::get_corner(c1, i, 0, +1), hybrid::get_corner(c1, i, 1, +1), hybrid::get_corner(c1, i, 1, -1)}); for(int a: {0,1}) { vector l; int z = a ? 1 : -1; hyperpoint ctr = zpush0(z * cgi.plevel/2); for(int i=0; itype; i++) if(prod) l.push_back(hybrid::get_corner(c1, i, 0, z)); else { l.push_back(ctr); l.push_back(hybrid::get_corner(c1, i, 0, z)); l.push_back(hybrid::get_corner(c1, i+1, 1, z)); l.push_back(ctr); l.push_back(hybrid::get_corner(c1, i, 1, z)); l.push_back(hybrid::get_corner(c1, i, 0, z)); } if(a == 0) std::reverse(l.begin()+1, l.end()); cgi.make_wall(won-2+a, l); } cgi.compute_cornerbonus(); cgi.extra_vertices(); } return wo; } EX bool do_draw(cell *c, const transmatrix& T) { return in_actual([&] { return hr::do_draw(hybrid::get_at(c, hybrid::current_view_level), T); }); } EX } EX namespace product { struct hrmap_product : hybrid::hrmap_hybrid { transmatrix relative_matrix(cell *c2, cell *c1, const hyperpoint& point_hint) override { return in_underlying([&] { return calc_relative_matrix(where[c2].first, where[c1].first, point_hint); }) * mscale(Id, cgi.plevel * (where[c2].second - where[c1].second)); } void draw() override { actual_view_level = hybrid::current_view_level - floor(zlevel(tC0(cview())) / cgi.plevel + .5); in_underlying([] { currentmap->draw(); }); } }; EX int cwall_offset, cwall_mask, actual_view_level; EX void drawcell_stack(cell *c, transmatrix V, int spinv, bool mirrored) { if(sphere) gmatrix[c] = V; /* some computations need gmatrix0 for underlying geometry */ bool s = sphere; hybrid::in_actual([&] { cell *c0 = hybrid::get_at(c, hybrid::current_view_level); cwall_offset = hybrid::wall_offset(c0); if(s) cwall_mask = (1<type) - 1; else { cwall_mask = 0; ld d = V[2][2]; for(int i=0; itype; i++) { ld d1 = (V * cgi.walltester[cwall_offset + i])[2]; if(d1 < d - 1e-6) cwall_mask |= (1<type); int flat_distance = hdist0(product_decompose(tC0(V)).second); int max_z = flat_distance > sightranges[gProduct] ? 0 : sqrt(sightranges[gProduct] * sightranges[gProduct] - flat_distance * flat_distance) + 1; for(int z=-max_z; z<=max_z; z++) { if(z == 0) cwall_mask ^= (2<type); if(z == 1) cwall_mask ^= (1<type); cell *c1 = hybrid::get_at(c, actual_view_level+z); setdist(c1, 7, NULL); drawcell(c1, V * mscale(Id, cgi.plevel * (z+actual_view_level - hybrid::current_view_level)), spinv, mirrored); } }); } EX hyperpoint inverse_exp(hyperpoint h) { hyperpoint res; res[2] = zlevel(h); h = zshift(h, -res[2]); ld r = hypot_d(2, h); if(r < 1e-6) { res[0] = h[0]; res[1] = h[1]; } else { auto c = acos_auto_clamp(h[2]); r = c / r; res[0] = h[0] * r; res[1] = h[1] * r; } return res; } EX hyperpoint direct_exp(hyperpoint h) { hyperpoint res; ld d = hypot_d(2, h); ld cd = d == 0 ? 0 : sinh(d) / d; res[0] = h[0] * cd; res[1] = h[1] * cd; res[2] = cos_auto(d); return zshift(res, h[2]); } EX } EX namespace slr { /* This implementation is based on: // https://pdfs.semanticscholar.org/bf46/824df892593a1b6d1c84a5f99e90eece7c54.pdf // However, to make it consistent with the conventions in HyperRogue, // coordinates 0<->2 and 1<->3 are swapped, // then coordinates 2<->3 are swapped */ EX ld range_xy = 2; EX int steps = 15; EX hyperpoint from_phigans(hyperpoint h) { ld r = asinh(hypot_d(2, h)); ld x = h[0]; ld y = h[1]; ld z = h[2]; return hyperpoint(x * cos(z) + y * sin(z), y * cos(z) - x * sin(z), cosh(r) * sin(z), cosh(r) * cos(z)); } EX hyperpoint to_phigans(hyperpoint h) { ld z = atan2(h[2], h[3]); ld x = h[0]; ld y = h[1]; return point31(x * cos(z) - y * sin(z), y * cos(z) + x * sin(z), z); } /** in the 'phigans' model */ hyperpoint christoffel(const hyperpoint Position, const hyperpoint Velocity, const hyperpoint Transported) { ld x = Position[0]; ld y = Position[1]; ld s = x*x + y*y + 1; ld x2 = x * x; ld y2 = y * y; ld x4 = x2 * x2; ld y4 = y2 * y2; return point3( + Velocity[ 0 ] * Transported[ 0 ] * (x*(4*x2*y2 + 4*y4 + 9*y2 + 1)) + Velocity[ 0 ] * Transported[ 1 ] * (-y*(4*x4 + 4*x2*y2 + 9*x2 + 2)) + Velocity[ 0 ] * Transported[ 2 ] * (-x*y*(x2 + y2 + 2)) + Velocity[ 1 ] * Transported[ 0 ] * (-y*(4*x4 + 4*x2*y2 + 9*x2 + 2)) + Velocity[ 1 ] * Transported[ 1 ] * (x*(4*x4 + 4*x2*y2 + 9*x2 + 5)) + Velocity[ 1 ] * Transported[ 2 ] * (x4 + x2*y2 + 2*x2 + 1) + Velocity[ 2 ] * Transported[ 0 ] * (-x*y*(x2 + y2 + 2)) + Velocity[ 2 ] * Transported[ 1 ] * (x4 + x2*y2 + 2*x2 + 1), + Velocity[ 0 ] * Transported[ 0 ] * (y*(4*x2*y2 + 4*y4 + 9*y2 + 5)) + Velocity[ 0 ] * Transported[ 1 ] * (-x*(4*x2*y2 + 4*y4 + 9*y2 + 2)) + Velocity[ 0 ] * Transported[ 2 ] * (-x2*y2 - y4 - 2*y2 - 1) + Velocity[ 1 ] * Transported[ 0 ] * (-x*(4*x2*y2 + 4*y4 + 9*y2 + 2)) + Velocity[ 1 ] * Transported[ 1 ] * (y*(4*x4 + 4*x2*y2 + 9*x2 + 1)) + Velocity[ 1 ] * Transported[ 2 ] * (x*y*(x2 + y2 + 2)) + Velocity[ 2 ] * Transported[ 0 ] * (-x2*y2 - y4 - 2*y2 - 1) + Velocity[ 2 ] * Transported[ 1 ] * (x*y*(x2 + y2 + 2)), + Velocity[ 0 ] * Transported[ 0 ] * (-4*x*y) + Velocity[ 0 ] * Transported[ 1 ] * (2*x2 - 2*y2) + Velocity[ 0 ] * Transported[ 2 ] * x + Velocity[ 1 ] * Transported[ 0 ] * (2*x2 - 2*y2) + Velocity[ 1 ] * Transported[ 1 ] * 4*x*y + Velocity[ 1 ] * Transported[ 2 ] * y + Velocity[ 2 ] * Transported[ 0 ] * x + Velocity[ 2 ] * Transported[ 1 ] * y ) / s; } EX transmatrix translate(hyperpoint h) { return matrix4( h[3], -h[2], h[1], h[0], h[2], h[3], -h[0], h[1], h[1], -h[0], h[3], h[2], h[0], h[1], -h[2], h[3] ); } EX hyperpoint polar(ld r, ld theta, ld phi) { return hyperpoint(sinh(r) * cos(theta-phi), sinh(r) * sin(theta-phi), cosh(r) * sin(phi), cosh(r) * cos(phi)); } EX hyperpoint xyz_point(ld x, ld y, ld z) { ld r = hypot(x, y); ld f = r ? sinh(r) / r : 1; return hyperpoint(x * f * cos(z) + y * f * sin(z), y * f * cos(z) - x * f * sin(z), cosh(r) * sin(z), cosh(r) * cos(z)); } ld rootsin(ld square, ld s) { if(square > 0) return sinh(sqrt(square) * s) / sqrt(square); else if(square < 0) return sin(sqrt(-square) * s) / sqrt(-square); else return s; } /** it==0 is standard asin, it==1 is the next solution (PI-asin) */ ld asin_it(ld z, int it) { auto ans = asin(z); if(it & 1) ans = M_PI - ans; return ans; } ld arootsin(ld square, ld v, int it) { if(square > 0) return asinh(v * sqrt(square)) / sqrt(square); else if(square < 0) return asin_it(v * sqrt(-square), it) / sqrt(-square); else return v; } ld roottan(ld square, ld s) { if(square > 0) return tanh(sqrt(square) * s) / sqrt(square); else if(square < 0) return tan(sqrt(-square) * s) / sqrt(-square); else return s; } hyperpoint geodesic_polar(ld alpha, ld beta, ld s) { auto c = cos(2*alpha); ld t; if(c > 0) t = atan(sin(alpha) * tanh(sqrt(c) * s) / sqrt(c)); else if(c < 0) { /* the formula in the paper is roughly atan(k*tan(s)) * however, atan is not always to be taken in [-PI/2,PI/2]: * if s is in [kPI-PI/2, kPI+PI/2], we should also increase the result by kPI */ ld x = sqrt(-c) * s; ld steps = floor(x/M_PI + 0.5); t = atan(sin(alpha) * tan(sqrt(-c) * s) / sqrt(-c)) + M_PI * steps; } else t = atan(sin(alpha) * s); return polar( asinh(cos(alpha) * rootsin(c, s)), beta - t, 2*sin(alpha)*s - t ); } EX hyperpoint formula_exp(hyperpoint h) { ld s = hypot_d(3, h); ld beta = atan2(h[1], h[0]); ld alpha = asin(h[2] / s); return geodesic_polar(alpha, beta, s); } void find_alpha(ld phi, ld r, ld theta, ld &alpha, ld &s, ld &beta) { if(phi < 0) { find_alpha(-phi, r, -theta, alpha, s, beta); alpha = -alpha; beta = -beta; return; } ld mina = 0, maxa = M_PI/2; bool next_nan = true; ld c; for(int it=0; it<40; it++) { alpha = (mina + maxa) / 2; c = cos(2 * alpha); s = arootsin(c, sinh(r) / cos(alpha), 0); if(isnan(s)) { next_nan = true, maxa = alpha; continue; } ld got_phi = 2*sin(alpha)*s - atan(sin(alpha) * roottan(c, s)); if(got_phi > phi) next_nan = false, maxa = alpha; else mina = alpha; } if(next_nan) { mina = M_PI/4; for(int it=0; it<40; it++) { alpha = (mina + maxa) / 2; c = cos(2 * alpha); s = arootsin(c, sinh(r) / cos(alpha), 1); ld got_phi = 2*sin(alpha)*s - atan(sin(alpha) * roottan(c, s)) - M_PI; if(got_phi < phi) maxa = alpha; else mina = alpha; } beta = theta + atan(sin(alpha) * roottan(c, s)) + M_PI; } else beta = theta + atan(sin(alpha) * roottan(c, s)); } EX hyperpoint get_inverse_exp(hyperpoint h, ld index IS(0)) { if(sqhypot_d(2, h) < 1e-12) return point3(0, 0, atan2(h[2], h[3]) + index); ld r = asinh(hypot_d(2, h)); ld phi = atan2(h[2], h[3]) + index; ld theta = atan2(h[1], h[0]) + phi + index; ld alpha, s, beta; find_alpha(phi, r, theta, alpha, s, beta); return point3(s * cos(beta) * cos(alpha), s * sin(beta) * cos(alpha), s * sin(alpha)); } EX string slshader = "float atan2(float y, float x) {" " if(x == 0.) return y > 0. ? PI/2. : -PI/2.;" " if(x > 0.) return atan(y / x);" " if(y >= 0.) return atan(y / x) + PI;" " if(y < 0.) return atan(y / x) - PI;" " }" "uniform mediump float uIndexSL;" "uniform mediump int uIterations;" "vec4 inverse_exp(vec4 h) {" "if(h[0]*h[0] + h[1] * h[1] < 1e-6) return vec4(0, 0, atan(h[2], h[3]) + uIndexSL, 1);" "float r = asinh(sqrt(h[0] * h[0] + h[1] * h[1]));" "float phi = atan2(h[2], h[3]) + uIndexSL;" "float theta = atan2(h[1], h[0]) + phi + uIndexSL;" "float alpha;" "float s;" "float beta;" "float sgn = 1.;" "float bound = .999;" "if(phi < 0.) { phi = -phi; theta = -theta; sgn = -1.; }" "float c;" "s = sinh(r) / cos(PI/4.);" "float gphi = 2.*sin(PI/4.)*s - atan(sin(PI/4.) * s);" "float lo_gphi = gphi;" "float lo_s = s;" "float lo_alpha = PI/4.;" "float lx_gphi = gphi;" "float lx_s = s;" "float lx_alpha = PI/4.;" "float hi_gphi = gphi;" "float hi_s = s;" "float hi_alpha = PI/4.;" "if(gphi > phi) {" " float mina = 0.;" " float maxa = PI/4.;" " lo_gphi = 0.; lo_s = r; lo_alpha = 0.;" #if ISWEB " for(int it=0; it<50; it++) { if(it >= uIterations) break; " #else " for(int it=0; it phi) { maxa = alpha; hi_alpha = alpha; hi_s = s; hi_gphi = gphi; }" " else { mina = alpha; lo_alpha = alpha; lo_s = s; lo_gphi = gphi; }" " }" " }" "else {" " hi_gphi = phi; hi_s = phi; hi_alpha = 9.;" " int next_nan = 1;" " float mina = PI/4.;" " float maxa = PI/2.;" #if ISWEB " for(int it=0; it<50; it++) { if(it >= uIterations) break; " #else " for(int it=0; it bound * cos(alpha)) { next_nan = 1; maxa = alpha; continue; }" " s = asin(sinh(r) * c / cos(alpha)) / c;" " gphi = 2.*sin(alpha)*s - atan(sin(alpha) * tan(c*s) / c);" " if(gphi > phi) { next_nan = 0; maxa = alpha; hi_gphi = gphi; hi_s = s; hi_alpha = alpha; }" " else { mina = alpha; lx_gphi = lo_gphi; lx_s = lo_s; lx_alpha = lo_alpha; lo_gphi = gphi; lo_s = s; lo_alpha = alpha; }" " }" " if(next_nan != 0) {" " mina = PI/4.; " #if ISWEB " for(int it=0; it<50; it++) { if(it >= uIterations) break; " #else " for(int it=0; itbound) { maxa = alpha; next_nan = 1; continue; }" " float s1 = PI - asin(z);" " s = s1 / c;" " gphi = 2.*sin(alpha)*s - atan(sin(alpha) * tan(s1) / c) - PI;" " if(gphi < phi) { next_nan = 0; maxa = alpha; hi_gphi = gphi; hi_s = s; hi_alpha = alpha; }" " else { mina = alpha; lo_gphi = gphi; lo_s = s; lo_alpha = alpha; }" " }" " }" " }" "if(hi_alpha <= 9.) { hi_gphi = lx_gphi; hi_s = lx_s; hi_alpha = lx_alpha; } " "float fr = (phi-lo_gphi) / (hi_gphi-lo_gphi);" "alpha = lo_alpha + (hi_alpha-lo_alpha) * fr;" "s = lo_s + (hi_s-lo_s) * fr;" "beta = theta - phi + 2.*sin(alpha)*s;" "alpha = alpha * sgn; beta = beta * sgn;" "return vec4(s * cos(beta) * cos(alpha), s * sin(beta) * cos(alpha), s * sin(alpha), 1.);" "}"; EX } EX namespace rots { EX transmatrix uxpush(ld x) { if(sl2) return xpush(x); return cspin(1, 3, x) * cspin(0, 2, x); } EX transmatrix uypush(ld y) { if(sl2) return ypush(y); return cspin(0, 3, -y) * cspin(1, 2, y); } EX transmatrix uzpush(ld z) { if(sl2) return zpush(z); return cspin(3, 2, -z) * cspin(0, 1, -z); } struct hrmap_rotation_space : hybrid::hrmap_hybrid { std::unordered_map saved_matrices; transmatrix get_relative_matrix(cell *c1, int i) { if(i == c1->type-2) return uzpush(-cgi.plevel) * spin(-2*cgi.plevel); if(i == c1->type-1) return uzpush(+cgi.plevel) * spin(+2*cgi.plevel); cell *c2 = c1->cmove(i); int id1 = hybrid::underlying == gArchimedean ? arcm::id_of(c1->master) + 20 * arcm::parent_index_of(c1->master) : shvid(c1); int id2 = hybrid::underlying == gArchimedean ? arcm::id_of(c2->master) + 20 * arcm::parent_index_of(c2->master) : shvid(c2); int j = c1->c.spin(i); int id = id1 + (id2 << 10) + (i << 20) + (j << 26); auto &M = saved_matrices[id]; if(M[3][3]) return M; /*if(PURE && hybrid::underlying != gArchimedean) { ld A = master_to_c7_angle(); transmatrix Q = spin(-A + 2 * M_PI * i / S7) * uxpush(cgi.tessf) * spin(M_PI - 2 * M_PI * j / S7 + A); return Q; } */ hyperpoint d; ld alpha, beta, distance; transmatrix Spin; cell *cw = where[c1].first; in_underlying([&] { transmatrix T = cellrelmatrix(cw, i); hyperpoint h = tC0(T); Spin = inverse(gpushxto0(h) * T); d = hr::inverse_exp(h, iTable); alpha = atan2(Spin[0][1], Spin[0][0]); distance = hdist0(h); beta = atan2(h[1], h[0]); }); for(int k=0; k<3; k++) Spin[3][k] = Spin[k][3] = 0; Spin[3][3] = 1; return M = spin(beta) * uxpush(distance/2) * spin(-beta+alpha); } virtual transmatrix relative_matrix(cell *c2, cell *c1, const struct hyperpoint& point_hint) override { if(c1 == c2) return Id; if(gmatrix0.count(c2) && gmatrix0.count(c1)) return inverse(gmatrix0[c1]) * gmatrix0[c2]; for(int i=0; itype; i++) if(c1->move(i) == c2) return get_relative_matrix(c1, i); return Id; // not implemented yet } void draw() override { set visited; cell* start = viewcenter(); vector> dq; visited.insert(start); dq.emplace_back(start, cview()); for(int i=0; itype; i++) { cell *c1 = c->cmove(i); if(visited.count(c1)) continue; visited.insert(c1); dq.emplace_back(c1, V * get_relative_matrix(c, i)); } } } }; /** reinterpret the given point of rotspace as a rotation matrix in the underlying geometry */ EX transmatrix qtm(hyperpoint h) { if(hyperbolic) { hyperpoint k = slr::to_phigans(h); ld z = k[2]; k[2] = 0; ld r = hypot_d(2, k); // k[1] = -k[1]; k[0] = -k[0]; if(r) k = tangent_length(k, asinh(r) * 2); return spin(-z * 2) * rgpushxto0(direct_exp(k, 0)); } double sq0 = h[0]*h[0]; double sq1 = h[1]*h[1]; double sq2 = h[2]*h[2]; double sq3 = h[3]*h[3]; transmatrix M; M[0][0] = sq0 - sq1 - sq2 + sq3; M[1][1] = -sq0 + sq1 - sq2 + sq3; M[2][2] = -sq0 - sq1 + sq2 + sq3; double tmp1 = h[0]*h[1]; double tmp2 = h[2]*h[3]; M[0][1] = -2 * (tmp1 + tmp2); M[1][0] = -2 * (tmp1 - tmp2); tmp1 = h[0]*h[2]; tmp2 = h[1]*h[3]; M[0][2] = 2 * (tmp1 - tmp2); M[2][0] = 2 * (tmp1 + tmp2); tmp1 = h[1]*h[2]; tmp2 = h[0]*h[3]; M[1][2] = -2 * (tmp1 + tmp2); M[2][1] = -2 * (tmp1 - tmp2); return M; } EX ld underlying_scale = 0; EX void draw_underlying(bool cornermode) { if(underlying_scale <= 0) return; ld d = hybrid::current_view_level; d *= cgi.plevel; transmatrix T = rots::uzpush(-d) * spin(-2*d); if(det(T) < 0) T = centralsym * T; hyperpoint h = inverse(View * spin(master_to_c7_angle()) * T) * C0; auto g = std::move(gmatrix); auto g0 = std::move(gmatrix0); hybrid::in_underlying_map([&] { cgi.require_shapes(); dynamicval pcc(corner_centering, cornermode ? 1 : 2); dynamicval pf(playerfound, true); dynamicval m5(centerover, viewctr.at->c7); dynamicval m2(View, ypush(0) * qtm(h)); dynamicval m3(playerV, Id); dynamicval m4(actual_view_transform, Id); dynamicval pm(pmodel, mdDisk); dynamicval pss(vid.scale, (sphere ? 10 : 1) * underlying_scale); dynamicval psa(vid.alpha, sphere ? 10 : 1); dynamicval p(hybrid::pmap, NULL); dynamicval psr(sightrange_bonus, 0); calcparam(); reset_projection(); current_display->set_all(0); ptds.clear(); drawthemap(); drawqueue(); displaychr(current_display->xcenter, current_display->ycenter, 0, 24, '+', 0xFFFFFFFF); glflush(); }); gmatrix = std::move(g); gmatrix0 = std::move(g0); calcparam(); reset_projection(); current_display->set_all(0); } EX } EX namespace nisot { EX hyperpoint christoffel(const hyperpoint at, const hyperpoint velocity, const hyperpoint transported) { if(nil) return nilv::christoffel(at, velocity, transported); #if CAP_SOLV else if(solnih) return solnihv::christoffel(at, velocity, transported); #endif else if(sl2) return slr::christoffel(at, velocity, transported); else return point3(0, 0, 0); } EX bool in_table_range(hyperpoint h) { #if CAP_SOLV if(sol) return solnihv::in_table_range(h); #endif return true; } EX void geodesic_step(hyperpoint& at, hyperpoint& velocity) { auto acc = christoffel(at, velocity, velocity); auto at2 = at + velocity / 2; auto velocity2 = velocity + acc / 2; auto acc2 = christoffel(at2, velocity2, velocity2); at = at + velocity + acc2 / 2; velocity = velocity + acc; } EX hyperpoint numerical_exp(hyperpoint v, int steps) { hyperpoint at = point31(0, 0, 0); v /= steps; v[3] = 0; for(int i=0; i g(geometry, gSphere); hr::fixmatrix(gtl); } T = push * gtl; } EX transmatrix parallel_transport(const transmatrix Position, const hyperpoint direction) { auto P = Position; nisot::fixmatrix(P); if(!geodesic_movement) return inverse(eupush(Position * translate(-direction) * inverse(Position) * C0)) * Position; return parallel_transport_bare(P, direction); } EX transmatrix spin_towards(const transmatrix Position, const hyperpoint goal) { hyperpoint at = tC0(Position); transmatrix push_back = inverse(translate(at)); hyperpoint back_goal = push_back * goal; back_goal = inverse_exp(back_goal, iTable); transmatrix back_Position = push_back * Position; return rspintox(inverse(back_Position) * back_goal); } EX hrmap *new_map() { #if CAP_SOLV if(solnih) return new solnihv::hrmap_solnih; #endif if(nil) return new nilv::hrmap_nil; if(prod) return new product::hrmap_product; if(hybri) return new rots::hrmap_rotation_space; return NULL; } auto config = addHook(hooks_args, 0, [] () { using namespace arg; #if CAP_SOLV if(argis("-solrange")) { shift_arg_formula(solnihv::solrange_xy); shift_arg_formula(solnihv::solrange_z); return 0; } #endif if(argis("-slrange")) { shift_arg_formula(slr::range_xy); return 0; } #if CAP_SOLV else if(argis("-fsol")) { shift(); solnihv::solt.fname = args(); return 0; } else if(argis("-nihsol")) { shift(); solnihv::niht.fname = args(); return 0; } #endif else if(argis("-solgeo")) { geodesic_movement = true; pmodel = mdGeodesic; return 0; } else if(argis("-solnogeo")) { geodesic_movement = false; pmodel = mdPerspective; return 0; } else if(argis("-product")) { PHASEFROM(2); set_geometry(gProduct); return 0; } else if(argis("-s2xe")) { PHASEFROM(2); shift(); s2xe::qrings = argi(); return 0; } else if(argis("-rotspace")) { PHASEFROM(2); set_geometry(gRotSpace); return 0; } else if(argis("-rot_uscale")) { PHASEFROM(2); shift_arg_formula(rots::underlying_scale); return 0; } return 1; }); } }