// Hyperbolic Rogue // Copyright (C) 2011-2017 Zeno and Tehora Rogue, see 'hyper.cpp' for details // Kohonen's self-organizing networks. // This is a part of RogueViz, not a part of HyperRogue. namespace kohonen { int cols; typedef vector kohvec; struct sample { kohvec val; string name; }; vector data; vector samples_shown; int whattodraw[3]; struct neuron { kohvec net; cell *where; double udist; int lpbak; int col; int samples, csample; }; kohvec weights; vector net; int neuronId(neuron& n) { return &n - &(net[0]); } void alloc(kohvec& k) { k.resize(cols); } bool neurons_indexed = false; int samples; template T sqr(T x) { return x*x; } vector whowon; void normalize() { alloc(weights); for(int k=0; klandparam, n.where->landparam = neuronId(n); } else { for(neuron& n: net) n.where->landparam = n.lpbak; } } neuron *getNeuron(cell *c) { if(!c) return NULL; setindex(true); if(c->landparam < 0 || c->landparam >= cells) return NULL; neuron& ret = net[c->landparam]; if(ret.where != c) return NULL; return &ret; } neuron *getNeuronSlow(cell *c) { if(neurons_indexed) return getNeuron(c); for(neuron& n: net) if(n.where == c) return &n; return NULL; } double maxudist; neuron *distfrom; void coloring() { setindex(false); for(int pid=0; pid<3; pid++) { int c = whattodraw[pid]; vector listing; for(neuron& n: net) switch(c) { case -4: listing.push_back(n.samples); break; case -3: if(distfrom) listing.push_back(vnorm(n.net, distfrom->net)); else listing.push_back(0); break; case -2: listing.push_back(n.udist); break; case -1: listing.push_back(-n.udist); break; default: listing.push_back(n.net[c]); break; } double minl = listing[0], maxl = listing[0]; for(double& d: listing) minl = min(minl, d), maxl = max(maxl, d); if(maxl-minl < 1e-3) maxl = minl+1e-3; for(int i=0; ilandparam, pid) = (255 * (listing[i] - minl)) / (maxl - minl); } } void analyze() { setindex(true); maxudist = 0; for(neuron& n: net) { int qty = 0; double total = 0; forCellEx(c2, n.where) { neuron *n2 = getNeuron(c2); if(!n2) continue; qty++; total += sqrt(vnorm(n.net, n2->net)); } n.udist = total / qty; maxudist = max(maxudist, n.udist); } whowon.resize(samples); for(neuron& n: net) n.samples = 0; for(int id=0; idbase = w.where; vdata[id].m->at = spin(2*M_PI*w.csample / w.samples) * xpush(.25 * (w.samples-1) / w.samples); w.csample++; } shmup::fixStorage(); setindex(false); coloring(); } struct cellcrawler { struct cellcrawlerdata { cellwalker orig; int from, spin, dist; cellwalker target; cellcrawlerdata(const cellwalker& o, int fr, int sp) : orig(o), from(fr), spin(sp) {} }; vector data; void store(const cellwalker& o, int from, int spin) { if(eq(o.c->aitmp, sval)) return; o.c->aitmp = sval; data.emplace_back(o, from, spin); } void build(const cellwalker& start) { sval++; data.clear(); store(start, 0, 0); for(int i=0; itype; j++) { cellwalker cw = cw0; cwspin(cw, j); cwstep(cw); if(!getNeuron(cw.c)) continue; store(cw, i, j); } } for(cellcrawlerdata& s: data) s.dist = celldistance(s.orig.c, start.c); } void sprawl(const cellwalker& start) { data[0].target = start; for(int i=1; i> dispersion[2]; int dispersion_count; #endif void buildcellcrawler(cell *c) { int sccid = c->type != 6; cellcrawler& cr = scc[sccid]; cr.build(cellwalker(c,0)); #if GAUSSIAN==0 vector curtemp; vector newtemp; vector qty; vector > pairs; int N = size(net); curtemp.resize(N, 0); newtemp.resize(N, 0); qty.resize(N, 0); for(int i=0; i vmin * 1.5; iter++) { if(iter % dispersion_each == 0) { d.emplace_back(N); auto& dispvec = d.back(); for(int i=0; i vmax) vmax = curtemp[i]; } dispersion_count = size(d); printf("Dispersion count = %d\n", dispersion_count); #endif } bool finished() { return t == 0; } void step() { if(t == 0) return; #if GAUSSIAN==1 double sigma = maxdist * t / (perdist*(double) mul); #else int dispid = int(dispersion_count * (t-1.) / tmax); #endif // double sigma = maxdist * exp(-t / t1); int pct = (int) (100 * ((t*(double) mul) / perdist)); if(pct != lpct) { lpct = pct; analyze(); #if GAUSSIAN==1 printf("t = %6d/%2dx%6d pct = %3d sigma=%10.7lf maxudist=%10.7lf\n", t, mul, perdist, pct, sigma, maxudist); #else printf("t = %6d/%2dx%6d pct = %3d dispid=%5d maxudist=%10.7lf\n", t, mul, perdist, pct, dispid, maxudist); #endif } int id = hrand(samples); neuron& n = winner(id); whowon[id] = &n; /* for(neuron& n2: net) { int d = celldistance(n.where, n2.where); double nu = maxfac; // nu *= exp(-t*(double)maxdist/perdist); // nu *= exp(-t/t2); nu *= exp(-sqr(d/sigma)); for(int k=0; ktype != 6; cellcrawler& s = scc[sccid]; s.sprawl(cellwalker(n.where, 0)); #if GAUSSIAN==0 auto it = dispersion[sccid][dispid].begin(); #endif for(auto& sd: s.data) { neuron *n2 = getNeuron(sd.target.c); if(!n2) continue; double nu = maxfac; #if GAUSSIAN==0 nu *= *(it++); #else nu *= exp(-sqr(sd.dist/sigma)); #endif for(int k=0; knet[k] += nu * (data[id].val[k] - n2->net[k]); } t--; if(t == 0) analyze(); } void run(const char *fname, int _perdist, double _maxfac) { perdist = _perdist; maxfac = _maxfac; init(); kind = kKohonen; loadsamples(fname); /* if(geometry != gQuotient1) { targetGeometry = gQuotient1; restartGame('g'); } if(!purehepta) restartGame('7'); */ #define Z 1 vector& allcells = currentmap->allcells(); cells = size(allcells); net.resize(cells); for(int i=0; ilandparam = i; for(int i=0; iland = laCanvas; alloc(net[i].net); for(int k=0; k=7; d--) setdist(n.where, d, NULL); cell *c1 = net[cells/2].where; vector mapdist; for(neuron &n2: net) mapdist.push_back(celldistance(c1,n2.where)); sort(mapdist.begin(), mapdist.end()); maxdist = mapdist[size(mapdist)*5/6]; printf("samples = %d cells = %d maxdist = %d\n", samples, cells, maxdist); #if GAUSSIAN==0 dispersion_count = 0; #endif c1 = currentmap->gamestart(); cell *c2 = createMov(c1, 0); buildcellcrawler(c1); if(c1->type != c2->type) buildcellcrawler(c2); lpct = -46130; mul = 1; tmax = t = perdist*mul; step(); for(int i=0; i<3; i++) whattodraw[i] = -2; analyze(); } void describe(cell *c) { if(cmode & sm::HELP) return; neuron *n = getNeuronSlow(c); if(!n) return; help += "cell number: " + its(neuronId(*n)) + "\n"; help += "parameters:"; for(int k=0; knet[k]); help += ", u-matrix = " + fts(n->udist); help += "\n"; int qty = 0; for(int s=0; s= 20) break; } } void ksave(const char *fname) { FILE *f = fopen(fname, "wt"); fprintf(f, "%d %d\n", cells, t); for(neuron& n: net) { for(int k=0; k= '1' && uni <= '3') { int i = uni - '1'; whattodraw[i]++; if(whattodraw[i] == cols) whattodraw[i] = -4; coloring(); return true; } if(uni == '0') { for(char x: {'1','2','3'}) handleMenu(x, x); return true; } return false; } } void mark(cell *c) { using namespace kohonen; distfrom = getNeuronSlow(c); coloring(); }