// Hyperbolic Rogue // Copyright (C) 2011-2018 Zeno Rogue, see 'hyper.cpp' for details // heptagon here refers to underlying heptagonal tesselation // (which you can see by changing the conditions in graph.cpp) namespace hr { #define MIRR(x) x.mirrored int heptacount = 0; struct cell; cell *newCell(int type, heptagon *master); // spintable functions // the automaton is used to generate each heptagon in an unique way // (you can see the tree obtained by changing the conditions in graph.cpp) // from the origin we can go further in any direction, and from other heptagons // we can go in directions 3 and 4 (0 is back to origin, so 3 and 4 go forward), // and sometimes in direction 5 hstate transition(hstate s, int dir) { if(sphere) { if(S7 == 4) { if(s == hsOrigin) return dir == 0 ? hsB0 : hsB1; } if(S7 == 3) { if(s == hsOrigin) return hsB1; } if(s == hsOrigin) return dir == 0 ? hsA0 : hsA1; if(s == hsA0 && dir == 2) return hsB0; if(s == hsA1 && dir == 2) return hsB1; if(s == hsB0 && dir == S7-2) return hsC; return hsError; } else if(S6 == 8) { if(s == hsOrigin) return hsA; if(s == hsA && (dir >= 2 && dir < S7-1)) return hsA; if(s == hsA && (dir == S7-1)) return hsB; if(s == hsB && (dir >= 2 && dir < S7-2)) return hsA; if(s == hsB && (dir == S7-2)) return hsB; } else { if(s == hsOrigin) return hsA; if(s == hsA && dir >= 3 && dir <= S7-3) return hsA; if(s == hsA && dir == S7-2) return hsB; if(s == hsB && dir >= 3 && dir <= S7-4) return hsA; if(s == hsB && dir == S7-3) return hsB; } return hsError; } /* int indent = 0; struct indenter { indenter() { indent += 2; } ~indenter() { indent -= 2; } }; template auto iprintf(T... t) { for(int i=0; ialt = NULL; h->s = s; for(int i=0; imove[i] = NULL; h->spintable = 0; h->move[pard] = parent; tsetspin(h->spintable, pard, d); parent->move[d] = h; tsetspin(parent->spintable, d, pard); if(parent->c7) { h->c7 = newCell(S7, h); h->rval0 = h->rval1 = 0; h->cdata = NULL; h->emeraldval = emerald_heptagon(parent->emeraldval, d); h->zebraval = zebra_heptagon(parent->zebraval, d); h->fieldval = currfp.connections[fieldpattern::btspin(parent->fieldval, d)]; if(a38) h->fiftyval = fifty_38(parent->fiftyval, d); else if(parent->s == hsOrigin) h->fiftyval = firstfiftyval(d); else h->fiftyval = nextfiftyval(parent->fiftyval, parent->move[0]->fiftyval, d); } else { h->c7 = NULL; h->emeraldval = 0; h->fiftyval = 0; h->cdata = NULL; } //generateEmeraldval(parent); //generateEmeraldval(h); if(pard == 0) { h->dm4 = parent->dm4+1; if(fixdistance != COMPUTE) h->distance = fixdistance; else if(S3 == 4 && !nonbitrunc) { h->distance = parent->distance + 2; if(h->spin(0) == 2 || (h->spin(0) == 3 && S7 <= 5)) h->distance = min(h->distance, createStep(h->move[0], 0)->distance + 3); if(h->spin(0) == 2 && h->move[0]) { int d = h->spin(0); int d1 = (d+S7-1)%S7; heptagon* h1 = createStep(h->move[0], d1); if(h1->distance <= h->move[0]->distance) h->distance = h->move[0]->distance+1; } if((h->s == hsB && h->move[0]->s == hsB) || h->move[0]->s == hsA) { int d = h->spin(0); heptagon* h1 = createStep(h->move[0], (d+1)%S7); if(h1->distance <= h->move[0]->distance) h->distance = h->move[0]->distance+1; } if(h->spin(0) == S7-1 && h->move[0]->distance != 0) h->distance = min( h->move[0]->move[0]->distance + 2, createStep(h, S7-1)->distance + 1 ); } else if(parent->s == hsOrigin) h->distance = parent->distance + gp::dist_2(); else if(h->spin(0) == S7-2) { if(!gp::on) h->distance = parent->distance + gp::dist_1(); else { int d0 = parent->distance; int d1 = createStep(parent, S7-1)->distance; int dm = createStep(parent, 0)->distance; h->distance = gp::solve_triangle(dm, d0, d1, gp::operator* (gp::param, gp::loc(1,1))); } } else if(h->spin(0) == S7-3 && h->move[0]->s == hsB) { if(!gp::on) { h->distance = createStep(h->move[0], (h->spin(0)+2)%S7)->distance + gp::dist_3(); } else { int d0 = parent->distance; int d1 = createStep(parent, S7-2)->distance; int dm = createStep(parent, S7-1)->distance; h->distance = gp::solve_triangle(dm, d0, d1, gp::operator* (gp::param, gp::loc(1,1))); } } else h->distance = parent->distance + gp::dist_2(); } else { h->distance = parent->distance - gp::dist_2(); if(S3 == 4 && S7 == 5) { if(h->s == hsOrigin) { printf("had to cheat!\n"); h->distance = parent->distance - 2; } else { h->distance = parent->distance - 1; buildHeptagon(h, 2, hsA, 0, h->distance + 2); buildHeptagon(h, 4, hsB, 0, h->distance); } } h->dm4 = parent->dm4-1; } return h; } void connectHeptagons(heptagon *h1, int d1, heptagon *h2, int d2) { h1->move[d1] = h2; h1->setspin(d1, d2); h2->move[d2] = h1; h2->setspin(d2, d1); } int recsteps; void addSpin(heptagon *h, int d, heptagon *from, int rot, int spin) { rot = fixrot(rot); createStep(from, rot); int fr = fixrot(from->spin(rot) + spin); connectHeptagons(h, d, from->move[rot], fr); /* h->move[d] = from->move[rot]; h->setspin(d, fr); h->move[d]->move[fr] = h; h->move[d]->setspin(fr, d); */ //generateEmeraldval(h->move[d]); generateEmeraldval(h); } extern int hrand(int); // a structure used to walk on the heptagonal tesselation // (remembers not only the heptagon, but also direction) heptspin& operator += (heptspin& hs, int spin) { hs.spin = fixrot(hs.spin + (MIRR(hs)?-spin:spin)); return hs; } heptspin operator + (const heptspin& hs, wstep_t) { createStep(hs.h, hs.spin); heptspin res; res.h = hs.h->move[hs.spin]; res.mirrored = hs.mirrored ^ hs.h->mirror(hs.spin); res.spin = hs.h->spin(hs.spin); return res; } heptspin operator + (heptspin h, int spin) { return h += spin; } heptspin operator - (heptspin h, int spin) { return h += -spin; } heptspin& operator += (heptspin& h, wstep_t) { h = h + wstep; return h; } heptagon *createStep(heptagon *h, int d) { d = fixrot(d); if(!h->move[0] && h->s != hsOrigin) { // cheating: int pard=0; if(S3 == 3) pard = 3 + hrand(2); else if(S3 == 4 && S7 == 5) pard = 3; // to do: randomize else if(S3 == 4) pard = 3; buildHeptagon(h, 0, h->distance < -10000 ? hsOrigin : hsA, pard); } if(h->move[d]) return h->move[d]; if(h->s == hsOrigin) { buildHeptagon(h, d, hsA); } else if(S3 == 4) { if(d == 1) { heptspin hs; hs.h = h; hs.spin = 0; hs.mirrored = false; hs = hs + wstep - 1 + wstep - 1 + wstep - 1; connectHeptagons(h, d, hs.h, hs.spin); } else if(h->s == hsB && d == S7-1) { heptspin hs; hs.h = h; hs.spin = 0; hs.mirrored = false; hs = hs + wstep + 1 + wstep + 1 + wstep + 1; connectHeptagons(h, d, hs.h, hs.spin); } else buildHeptagon(h, d, transition(h->s, d)); } else if(d == 1) { addSpin(h, d, h->move[0], h->spin(0)-1, -1); } else if(d == S7-1) { addSpin(h, d, h->move[0], h->spin(0)+1, +1); } else if(d == 2) { createStep(h->move[0], h->spin(0)-1); addSpin(h, d, h->move[0]->modmove(h->spin(0)-1), S7-2 + h->move[0]->gspin(h->spin(0)-1), -1); } else if(d == S7-2 && h->s == hsB) { createStep(h->move[0], h->spin(0)+1); addSpin(h, d, h->move[0]->modmove(h->spin(0)+1), 2 + h->move[0]->gspin(h->spin(0)+1), +1); } else buildHeptagon(h, d, (d == S7-2 || (h->s == hsB && d == S7-3)) ? hsB : hsA); return h->move[d]; } // display the coordinates of the heptagon void backtrace(heptagon *pos) { if(pos->s == hsOrigin) return; backtrace(pos->move[0]); printf(" %d", pos->spin(0)); } void hsshow(const heptspin& t) { printf("ORIGIN"); backtrace(t.h); printf(" (spin %d)\n", t.spin); } // create h->move[d] if not created yet heptagon *createStep(heptagon *h, int d); }