// Hyperbolic Rogue -- Euclidean geometry, including 2D, 3D, and quotient spaces // Copyright (C) 2011-2018 Zeno Rogue, see 'hyper.cpp' for details namespace hr { // 2D Euclidean space // --- euclidean geometry --- // NOTE: patterns assume that pair_to_vec(0,1) % 3 == 2! // Thus, pair_to_vec(0,1) must not be e.g. a power of four EX int cell_to_vec(cell *c); EX int pair_to_vec(int x, int y) { return x + (y << 15); } EX pair vec_to_pair(int vec) { int x = vec & ((1<<15)-1); int y = (vec >> 15); if(x >= (1<<14)) x -= (1<<15), y++; return {x, y}; } namespace torusconfig { // the configuration of the torus topology. // torus cells are indexed [0..qty), // where the cell to the right from i is indexed i+dx, // and the cell to the down-right is numbered i+dy // Changed with command line option: -tpar ,, // Ideally, qty, dx, and dy should have the same "modulo 3" // values as the default -- otherwise the three-color // pattern breaks. Also, they should have no common // prime divisor. int def_qty = 127*3, dx = 1, def_dy = -11*2; int qty = def_qty, dy = def_dy; int sdx = 12, sdy = 12; // new values to change int newqty, newdy, newsdx, newsdy; int torus_cx, torus_cy; vector tmodes = { {"single row (hex)", TF_SINGLE | TF_HEX}, {"single row (squares)", TF_SINGLE | TF_SQUARE}, {"parallelogram (hex)", TF_SIMPLE | TF_HEX}, {"rectangle (squares)", TF_SIMPLE | TF_SQUARE}, {"rectangle (hex)", TF_WEIRD | TF_HEX}, {"Klein bottle (squares)", TF_SIMPLE | TF_KLEIN | TF_SQUARE}, {"Klein bottle (hex)", TF_WEIRD | TF_KLEIN | TF_HEX}, {"cylinder (squares)", TF_SIMPLE | TF_CYL }, {"cylinder (hex)", TF_SIMPLE | TF_CYL | TF_HEX}, {"Möbius band (squares)", TF_SIMPLE | TF_CYL | TF_KLEIN}, {"Möbius band (hex)", TF_SIMPLE | TF_CYL | TF_HEX | TF_KLEIN}, }; eTorusMode torus_mode, newmode; flagtype tmflags() { return tmodes[torus_mode].flags; } int getqty() { if(tmflags() & TF_SINGLE) return qty; else return sdx * sdy; } int getvec(int x, int y) { if(tmflags() & TF_SINGLE) return x * dx + y * dy; else if(tmflags() & TF_SIMPLE) return pair_to_vec(x, y); else return pair_to_vec(-y - 2 * x, 3 * y); } int id_to_vec(int id, bool mirrored = false) { if(tmflags() & TF_SINGLE) return id; else { int dx = id % sdx; int dy = id / sdx; if(mirrored) dy = -dy, dx += sdx; if(tmflags() & TF_SIMPLE) return pair_to_vec(dx, dy); else return pair_to_vec(- 2 * dx - (dy & 1), 3 * dy); } } pair vec_to_id_mirror(int vec) { if(tmflags() & TF_SINGLE) { return {gmod(vec, qty), false}; } else { int x, y; tie(x,y) = vec_to_pair(vec); bool mirror = false; if(tmflags() & TF_KLEIN) { if(tmflags() & TF_WEIRD) { x = gmod(x, 4 * sdx); mirror = x > 0 && x <= 2 * sdx; } else { x = gmod(x, 2 * sdx); mirror = x >= sdx; } if(mirror) y = -y; } if(tmflags() & TF_WEIRD) { y /= 3; x = (x + (y&1)) / -2; } x = gmod(x, sdx), y = gmod(y, sdy); return {y * sdx + x, mirror}; } } int vec_to_id(int vec) { return vec_to_id_mirror(vec).first; } void torus_test() { printf("Testing torus vec_to_pair/pair_to_vec...\n"); for(int x=-10; x<=10; x++) for(int y=-10; y<=10; y++) { auto p = vec_to_pair(pair_to_vec(x, y)); if(p.first != x || p.second != y) printf("Failed for (%d,%d) -> [%d] -> (%d,%d)\n", x, y, pair_to_vec(x,y), p.first, p.second); } printf("Testing id_to_vec / vec_to_id...\n"); for(int i=0; i < getqty(); i++) for(int m=0; m< (torus_mode == tmKlein ? 2 : 1); m++) if(vec_to_id_mirror(id_to_vec(i, m)) != pair (i,m)) printf("Failed for id %d.%d [%d] (%d.%d)\n", i, m, id_to_vec(i,m), vec_to_id(id_to_vec(i,m)), vec_to_id_mirror(id_to_vec(i,m)).second); } int tester = addHook(hooks_tests, 0, torus_test); void activate() { auto& gi(ginf[gTorus]); if(tmflags() & TF_HEX) gi.vertex = 3, gi.sides = 6, gi.tiling_name = "{6,3}"; else gi.vertex = 4, gi.sides = 4, gi.tiling_name = "{4,4}"; flagtype& flags = gi.flags; set_flag(flags, qNONORIENTABLE, tmflags() & TF_KLEIN); set_flag(flags, qBOUNDED, !(tmflags() & TF_CYL)); int i = 0; if(tmflags() & TF_KLEIN) i++; if(tmflags() & TF_CYL) i+=2; const char *quonames[4] = {"torus", "Klein bottle", "cylinder", "Möbius band"}; gi.quotient_name = quonames[i]; } int dscalar(gp::loc e1, gp::loc e2) { return 2 * (e1.first * e2.first + e1.second*e2.second) + (S3 == 3 ? e1.first*e2.second + e2.first * e1.second : 0); } int dcross(gp::loc e1, gp::loc e2) { return e1.first * e2.second - e1.second*e2.first; } gp::loc sdxy() { return gp::loc(sdx, sdy); } int mobius_dir_basic() { int dscalars[6]; for(int a=0; a g(geometry, square ? gEuclidSquare : gEuclid); dynamicval gx(sdx, dx); dynamicval gy(sdy, dy); return mobius_dir_basic() != -1; } void mobius_flip(int&x, int& y) { int d = mobius_dir_basic(); int a, b; if(d == 0) a = 1, b = SG6-1; else a = 0, b = d; auto p1 = gp::eudir(a); auto p2 = gp::eudir(b); // x = sdx * s + px * t // y = sdy * s + py * t // py * x = py * sdx * s + px * py * t // px * y = px * sdy * s + px + py * t // py * x - px * y = py * sdx * s - px * sdy * s // s = (py * x - px * y) / (py * sdx - px * sdy) int det = p1.second * sdx - p1.first * sdy; int smul = p1.second * x - p1.first * y; int tmul = sdx * y - sdy * x; x = (tmul * p2.first + smul * sdx) / det; y = (tmul * p2.second + smul * sdy) / det; // println(hlog, make_pair(ox,oy), " [", d, "] ", make_pair(x,y), " p1 = ", p1, " p2 = ", p2, " det = ", det, " smul = ", smul, " tmul = ", tmul); } int mobius_dir(cell *c) { if(c->type == 8) return mobius_dir_basic() * 2; else return mobius_dir_basic(); } bool be_canonical(int& x, int& y) { using namespace torusconfig; int periods = gdiv(dscalar(gp::loc(x,y), sdxy()), dscalar(sdxy(), sdxy())); y -= sdy * periods; x -= sdx * periods; bool b = false; if(nonorientable && (periods & 1)) { mobius_flip(x, y); b = true; } return b; } int cyldist(int id1, int id2) { int x1, y1, x2, y2; tie(x1, y1) = vec_to_pair(id1); tie(x2, y2) = vec_to_pair(id2); be_canonical(x1, y1); be_canonical(x2, y2); int dist = 1000000000; for(int a1=-1; a1<=1; a1++) for(int a2=-1; a2<=1; a2++) { int ax1 = x1 + sdx * a1; int ay1 = y1 + sdy * a1; if(nonorientable && a1) mobius_flip(ax1, ay1); int ax2 = x2 + sdx * a2; int ay2 = y2 + sdy * a2; if(nonorientable && a2) mobius_flip(ax2, ay2); dist = min(dist, eudist(ax1 - ax2, ay1 - ay2)); } return dist; } } int euclid_getvec(int dx, int dy) { if(euwrap) return torusconfig::getvec(dx, dy); else return pair_to_vec(dx, dy); } template void build_euclidean_moves(cell *c, int vec, const T& builder) { int x, y; tie(x,y) = vec_to_pair(vec); c->type = a4 ? (PURE || ((x^y^1) & 1) ? 4 : 8) : 6; if(c->type == 4) { int m = PURE ? 1 : 2; builder(euclid_getvec(+1,+0), 0, 2 * m); builder(euclid_getvec(+0,+1), 1, 3 * m); builder(euclid_getvec(-1,+0), 2, 0 * m); builder(euclid_getvec(+0,-1), 3, 1 * m); } else if(c->type == 8) { builder(euclid_getvec(+1,+0), 0, 2); builder(euclid_getvec(+1,+1), 1, 5); builder(euclid_getvec(+0,+1), 2, 3); builder(euclid_getvec(-1,+1), 3, 7); builder(euclid_getvec(-1,+0), 4, 0); builder(euclid_getvec(-1,-1), 5, 1); builder(euclid_getvec(+0,-1), 6, 1); builder(euclid_getvec(+1,-1), 7, 3); } else /* 6 */ { builder(euclid_getvec(+1,+0), 0, 3); builder(euclid_getvec(+0,+1), 1, 4); builder(euclid_getvec(-1,+1), 2, 5); builder(euclid_getvec(-1,+0), 3, 0); builder(euclid_getvec(+0,-1), 4, 1); builder(euclid_getvec(+1,-1), 5, 2); } } struct hrmap_euclid_any : hrmap { void draw() override; }; struct hrmap_torus : hrmap_euclid_any { vector all; vector dists; virtual vector& allcells() { return all; } cell *gamestart() { return all[0]; } hrmap_torus() { using namespace torusconfig; int q = getqty(); all.resize(q); for(int i=0; imove(d) = all[im.first]; all[i]->c.setspin(d, im.second, false); }); } for(cell *c: all) for(int d=0; dtype; d++) { cell *c2 = c->move(d); for(int d2=0; d2type; d2++) if(c2->move(d2) == c) c->c.setspin(d, d2, c->c.spin(d)); } celllister cl(gamestart(), 100, 100000000, NULL); dists.resize(q); for(int i=0; imaster)] = cl.dists[i]; } ~hrmap_torus() { for(cell *c: all) tailored_delete(c); } transmatrix relative_matrix(cell *c2, cell *c1, const hyperpoint& point_hint) { transmatrix t = Id; // if(whateveri) printf("[%p,%d] ", c2, celldistance(c2, c1)); int d = celldistance(c2, c1); while(d) { forCellIdEx(cc, i, c1) { int d1 = celldistance(cc, c2); if(d1 < d) { t = t * cellrelmatrix(c1, i); c1 = cc; d = d1; goto again; } } printf("ERROR not reached\n"); break; again: ; } return t; } }; hrmap_torus *torusmap() { return dynamic_cast (currentmap); } /* cell *getTorusId(int id) { hrmap_torus *cur = torusmap(); if(!cur) return NULL; return cur->all[id]; } */ struct hrmap_euclidean : hrmap_euclid_any { cell *gamestart() { return *(euclideanAtCreate(0).first); } struct euclideanSlab { cell* a[256][256]; euclideanSlab() { for(int y=0; y<256; y++) for(int x=0; x<256; x++) a[y][x] = NULL; } ~euclideanSlab() { for(int y=0; y<256; y++) for(int x=0; x<256; x++) if(a[y][x]) tailored_delete(a[y][x]); } }; static const int slabs = max_vec / 256; euclideanSlab* euclidean[slabs][slabs]; hrmap_euclidean() { for(int y=0; y>8)&(slabs-1)][(x>>8)&(slabs-1)]; if(!slab) slab = new hrmap_euclidean::euclideanSlab; return make_pair(&(slab->a[y&255][x&255]), mobius); } map eucdata; ~hrmap_euclidean() { for(int y=0; yall[p.first], 0, p.second); } } int cellwalker_to_vec(cellwalker cw) { int id = decodeId(cw.at->master); if(!fulltorus) { if(nonorientable) { auto ep = euclideanAt(id); if(ep.second != cw.mirrored) { int x, y; tie(x, y) = vec_to_pair(id); x += torusconfig::sdx; y += torusconfig::sdy; torusconfig::mobius_flip(x, y); return pair_to_vec(x, y); } } return id; } return torusconfig::id_to_vec(id, cw.mirrored); } EX int cell_to_vec(cell *c) { int id = decodeId(c->master); if(!fulltorus) return id; return torusconfig::id_to_vec(id, false); } EX pair cell_to_pair(cell *c) { return vec_to_pair(cell_to_vec(c)); } union heptacoder { heptagon *h; int id; }; EX int decodeId(heptagon* h) { heptacoder u; u.h = h; return u.id; } EX heptagon* encodeId(int id) { heptacoder u; u.id = id; return u.h; } // 3D Euclidean space #if MAXMDIM == 4 EX namespace euclid3 { typedef long long coord; static const long long COORDMAX = (1<<16); typedef array axes; typedef array, 3> intmatrix; static const axes main_axes = make_array(1, COORDMAX, COORDMAX * COORDMAX ); array getcoord(coord x) { array res; for(int k=0; k<3; k++) { int next = x % COORDMAX; if(next>COORDMAX/2) next -= COORDMAX; if(next<-COORDMAX/2) next += COORDMAX; res[k] = next; x -= next; x /= COORDMAX; } return res; } vector get_shifttable() { static const coord D0 = main_axes[0]; static const coord D1 = main_axes[1]; static const coord D2 = main_axes[2]; vector shifttable; switch(geometry) { case gCubeTiling: shifttable = { +D0, +D1, +D2 }; break; case gRhombic3: shifttable = { D0+D1, D0+D2, D1+D2, D1-D2, D0-D2, D0-D1 }; break; case gBitrunc3: shifttable = { 2*D0, 2*D1, 2*D2, D0+D1+D2, D0+D1-D2, D0-D1-D2, D0-D1+D2 }; break; default: printf("euclid3::get_shifttable() called in geometry that is not euclid3"); exit(1); } // reverse everything int s = isize(shifttable); for(int i=0; i shifttable; vector tmatrix; map spacemap; map ispacemap; cell *camelot_center; vector toruscells; vector& allcells() override { if(bounded) { if(isize(toruscells) == 0) { celllister cl(getOrigin()->c7, 1000, 1000000, NULL); toruscells = cl.lst; } return toruscells; } return hrmap::allcells(); } hrmap_euclid3() { shifttable = get_shifttable(); tmatrix.resize(S7); for(int i=0; i (S7); h->c7 = newCell(S7, h); h->distance = 0; h->cdata = NULL; h->alt = NULL; auto co = getcoord(at); if(S7 != 14) h->zebraval = gmod(co[0] + co[1] * 2 + co[2] * 4, 5); else h->zebraval = co[0] & 1; spacemap[at] = h; ispacemap[h] = at; return h; } } heptagon *build(heptagon *parent, int d, coord at) { auto h = get_at(at); int d1 = (d+S7/2)%S7; if(twisted) { coord a = ispacemap[parent]; coord b = ispacemap[h]; for(int i=0; ic.connect(d1, parent, d, false); return h; } heptagon *create_step(heptagon *parent, int d) override { return build(parent, d, canonicalize(ispacemap[parent] + shifttable[d])); } transmatrix get_move(cell *c, int i) { if(!twisted) return tmatrix[i]; transmatrix res = tmatrix[i]; coord id = ispacemap[c->master]; id += shifttable[i]; twist(id, res); return res; } void draw() override { dq::visited_by_matrix.clear(); dq::enqueue_by_matrix(viewctr.at, cview()); while(!dq::drawqueue.empty()) { auto& p = dq::drawqueue.front(); heptagon *h = get<0>(p); transmatrix V = get<1>(p); dynamicval b(band_shift, get<2>(p)); bandfixer bf(V); dq::drawqueue.pop(); cell *c = h->c7; if(!do_draw(c, V)) continue; drawcell(c, V, 0, false); for(int i=0; imove(i), V * get_move(h->c7, i)); } } transmatrix warppush(coord dif) { auto v = getcoord(dif); for(int i: {0, 1}) if(T0[i][i]) v[i] = gmod(v[i] + T0[i][i] / 2, T0[i][i]) - T0[i][i] / 2; return eupush3(v[0], v[1], v[2]); } transmatrix relative_matrix(heptagon *h2, heptagon *h1) override { if(twisted) { coord c1 = ispacemap[h1]; coord c2 = ispacemap[h2]; transmatrix T = warppush(c2 - c1); for(int d: {-1, 1}) { transmatrix I = Id; coord cs = c1; for(int s=0; s<3; s++) { cs += d * T0[2][2] * main_axes[2]; I = I * eupush3(0, 0, d * T0[2][2]); cs = twist(cs, I); transmatrix T1 = I * warppush(c2 - cs); if(hdist0(tC0(T1)) < hdist0(tC0(T))) T = T1; } } return T; } auto d = ispacemap[h2] - ispacemap[h1]; d = canonicalize(d); auto v = getcoord(d); return eupush3(v[0], v[1], v[2]); } vector get_vertices(cell* c) override { vector res; if(S7 < 14) for(ld a: {-.5,.5}) for(ld b: {-.5,.5}) for(ld c: {-.5, .5}) res.push_back(hpxy3(a,b,c)); if(S7 == 12) { res.push_back(hpxy3(1,0,0)); res.push_back(hpxy3(-1,0,0)); res.push_back(hpxy3(0,1,0)); res.push_back(hpxy3(0,-1,0)); res.push_back(hpxy3(0,0,1)); res.push_back(hpxy3(0,0,-1)); } if(S7 == 14) { for(ld a: {-1.,-.5,0.,.5,1.}) for(ld b: {-1.,-.5,0.,.5,1.}) for(ld c: {-1.,-.5,0.,.5,1.}) if(a == 0 || b == 0 || c == 0) if(a == .5 || a == -.5 || b == .5 || b == -.5 || c == .5 || c == -.5) if(a == 1 || a == -1 || b == 1 || b == -1 || c == 1 || c == -1) res.push_back(hpxy3(a,b,c)); } return res; } }; hrmap_euclid3* cubemap() { return ((hrmap_euclid3*) currentmap); } EX hrmap* new_map() { return new hrmap_euclid3; } transmatrix move_matrix(cell *c, int i) { return cubemap()->get_move(c, i); } bool pseudohept(cell *c) { coord co = cubemap()->ispacemap[c->master]; auto v = getcoord(co); if(S7 == 12) { for(int i=0; i<3; i++) if((v[i] & 1)) return false; } else { for(int i=0; i<3; i++) if(!(v[i] & 1)) return false; } return true; } int dist_alt(cell *c) { if(specialland == laCamelot) return dist_relative(c) + roundTableRadius(c); coord co = cubemap()->ispacemap[c->master]; auto v = getcoord(co); if(S7 == 6) return v[2]; else if(S7 == 12) return (v[0] + v[1] + v[2]) / 2; else return v[2]/2; } bool get_emerald(cell *c) { auto v = getcoord(cubemap()->ispacemap[c->master]); int s0 = 0, s1 = 0; for(int i=0; i<3; i++) { v[i] = gmod(v[i], 6); int d = min(v[i], 6-v[i]);; s0 += min(v[i], 6-v[i]); s1 += 3-d; } if(s0 == s1) println(hlog, "equality"); return s0 > s1; } bool cellvalid(coord co) { auto v = getcoord(co); if(S7 == 6) return true; if(S7 == 12) return (v[0] + v[1] + v[2]) % 2 == 0; if(S7 == 14) return v[0] % 2 == v[1] % 2 && v[0] % 2 == v[2] % 2; return false; } int celldistance(coord co) { auto v = getcoord(co); if(S7 == 6) return abs(v[0]) + abs(v[1]) + abs(v[2]); else { for(int i=0; i<3; i++) v[i] = abs(v[i]); sort(v.begin(), v.end()); int dist = 0; if(S7 == 12) { int d = v[1] - v[0]; v[1] -= d; v[2] -= d; dist += d; int m = min((v[2] - v[0]), v[0]); dist += 2 * m; v[0] -= m; v[1] -= m; v[2] -= m * 2; if(v[0]) dist += (v[0] + v[1] + v[2]) / 2; else dist += v[2]; } else { dist = v[0] + (v[1] - v[0]) / 2 + (v[2] - v[0]) / 2; } return dist; } } int celldistance(cell *c1, cell *c2) { auto cm = cubemap(); return celldistance(cm->ispacemap[c1->master] - cm->ispacemap[c2->master]); } void set_land(cell *c) { setland(c, specialland); auto m = cubemap(); auto co = getcoord(m->ispacemap[c->master]); int dv = 1; if(geometry != gCubeTiling) dv = 2; int hash = 0; for(int a=0; a<3; a++) hash = 1317 * hash + co[a] / 4; set_euland3(c, co[0]*120, co[1]*120, (co[1]+co[2]) / dv, hash); } EX int dist_relative(cell *c) { auto m = cubemap(); auto& cc = m->camelot_center; int r = roundTableRadius(NULL); cell *start = m->gamestart(); if(!cc) { cc = start; while(euclid3::celldistance(cc, start) < r + 5) cc = cc->cmove(hrand(cc->type)); } return euclid3::celldistance(cc, c) - r; } /* quotient spaces */ intmatrix make_intmatrix(axes a) { intmatrix T; T[0] = getcoord(a[0]); T[1] = getcoord(a[1]); T[2] = getcoord(a[2]); return T; } int determinant(const intmatrix T) { int det = 0; for(int i=0; i<3; i++) det += T[0][i] * T[1][(i+1)%3] * T[2][(i+2)%3]; for(int i=0; i<3; i++) det -= T[0][i] * T[1][(i+2)%3] * T[2][(i+1)%3]; return det; } intmatrix scaled_inverse(const intmatrix T) { intmatrix T2; for(int i=0; i<3; i++) for(int j=0; j<3; j++) T2[j][i] = (T[(i+1)%3][(j+1)%3] * T[(i+2)%3][(j+2)%3] - T[(i+1)%3][(j+2)%3] * T[(i+2)%3][(j+1)%3]); return T2; } axes user_axes; axes optimal_axes; axes regular_axes; intmatrix T, T2, T0, T_edit; int det; int coords; int twisted, twisted0, twisted_edit; EX void clear_torus3() { for(int i=0; i<3; i++) user_axes[i] = 0; } unordered_map canonical_hash; vector canonical_seq; int canonical_index; coord compute_cat(coord co) { auto coo = getcoord(co); coord cat = 0; for(int i=0; i<3; i++) { int val = T2[0][i] * coo[0] + T2[1][i] * coo[1] + T2[2][i] * coo[2]; if(i < coords) val = gmod(val, det); cat += val * main_axes[i]; } return cat; }; void add_canonical(coord val) { auto cat = compute_cat(val); if(canonical_hash.count(cat)) return; canonical_hash[cat] = isize(canonical_seq); canonical_seq.push_back(val); } void build_torus3() { for(int i=0; i<3; i++) { user_axes[i] = 0; for(int j=0; j<3; j++) user_axes[i] += main_axes[j] * T0[i][j]; } optimal_axes = user_axes; again: for(int i=0; i<3; i++) if(optimal_axes[i] < 0) optimal_axes[i] = -optimal_axes[i]; if(optimal_axes[0] < optimal_axes[1]) swap(optimal_axes[0], optimal_axes[1]); if(optimal_axes[1] < optimal_axes[2]) swap(optimal_axes[1], optimal_axes[2]); if(optimal_axes[0] < optimal_axes[1]) swap(optimal_axes[0], optimal_axes[1]); for(int i=0; i<3; i++) { int i1 = (i+1) % 3; int i2 = (i+2) % 3; for(int a=-10; a<=10; a++) for(int b=-10; b<=10; b++) { coord cand = optimal_axes[i] + optimal_axes[i1] * a + optimal_axes[i2] * b; if(celldistance(cand) < celldistance(optimal_axes[i])) { optimal_axes[i] = cand; goto again; } } } regular_axes = optimal_axes; coords = 0; for(int i=0; i<3; i++) if(optimal_axes[i]) coords++; int attempt = 0; next_attempt: for(int i=coords; i<3; i++) regular_axes[i] = main_axes[(attempt+i)%3]; T = make_intmatrix(regular_axes); det = determinant(T); if(det == 0) { attempt++; if(attempt == 3) { println(hlog, "weird singular!\n"); exit(1); } goto next_attempt; } if(det < 0) det = -det; T2 = scaled_inverse(T); canonical_hash.clear(); canonical_seq.clear(); canonical_index = 0; add_canonical(0); twisted = twisted0; if(geometry != gCubeTiling && ((T0[0][0]+T0[2][2]) & 1)) twisted &=~ 1; if(geometry != gCubeTiling && ((T0[1][1]+T0[2][2]) & 1)) twisted &=~ 2; for(int i=0; i<3; i++) for(int j=0; j<3; j++) if(i != j && T0[i][j]) twisted = 0; if(T0[2][2] == 0) twisted = 0; if(T0[0][0] != T0[1][1]) twisted &= 3; for(eGeometry g: {gCubeTiling, gRhombic3, gBitrunc3}) { set_flag(ginf[g].flags, qANYQ, coords); set_flag(ginf[g].flags, qBOUNDED, coords == 3); bool nonori = false; if(twisted&1) nonori = !nonori; if(twisted&2) nonori = !nonori; if(twisted&4) nonori = !nonori; set_flag(ginf[g].flags, qNONORIENTABLE, nonori); } } void swap01(transmatrix& M) { for(int i=0; i<4; i++) swap(M[i][0], M[i][1]); } coord twist(coord x, transmatrix& M) { auto coo = getcoord(x); while(coo[2] >= T0[2][2]) { coo[2] -= T0[2][2]; if(twisted & 1) coo[0] *= -1, M = M * MirrorX; if(twisted & 2) coo[1] *= -1, M = M * MirrorY; if(twisted & 4) swap(coo[0], coo[1]), swap01(M); } while(coo[2] < 0) { coo[2] += T0[2][2]; if(twisted & 4) swap(coo[0], coo[1]), swap01(M); if(twisted & 1) coo[0] *= -1, M = M * MirrorX; if(twisted & 2) coo[1] *= -1, M = M * MirrorY; } for(int i: {0,1}) if(T0[i][i]) coo[i] = gmod(coo[i], T0[i][i]); return coo[0] * main_axes[0] + coo[1] * main_axes[1] + coo[2] * main_axes[2]; } coord canonicalize(coord x) { if(twisted) { transmatrix M = Id; return twist(x, M); } if(coords == 0) return x; if(coords == 1) { while(celldistance(x + optimal_axes[0]) <= celldistance(x)) x += optimal_axes[0]; while(celldistance(x - optimal_axes[0]) < celldistance(x)) x -= optimal_axes[0]; return x; } auto cat = compute_cat(x); auto& st = cubemap()->shifttable; while(!canonical_hash.count(cat)) { if(canonical_index == isize(canonical_seq)) throw hr_exception(); auto v = canonical_seq[canonical_index++]; for(auto s: st) add_canonical(v + s); } return canonical_seq[canonical_hash[cat]]; } void prepare_torus3() { T_edit = T0; twisted_edit = twisted0; } EX void show_torus3() { cmode = sm::SIDE | sm::MAYDARK; gamescreen(1); dialog::init(XLAT("3D Euclidean spaces")); for(int y=0; y<4; y++) dialog::addBreak(100); dialog::addBreak(50); bool nondiag = false; for(int i=0; i<3; i++) for(int j=0; j<3; j++) if(T_edit[i][j] && i != j) nondiag = true; if(nondiag) { dialog::addInfo(XLAT("twisting implemented only for diagonal matrices")); dialog::addBreak(200); } else if(T_edit[2][2] == 0) { dialog::addInfo(XLAT("nothing to twist")); dialog::addInfo(XLAT("change the bottom left corner")); dialog::addBreak(100); } else { if(geometry == gCubeTiling || (T_edit[0][0]+T_edit[2][2]) % 2 == 0) dialog::addBoolItem(XLAT("flip X coordinate"), twisted_edit & 1, 'x'); else dialog::addBoolItem(XLAT("flipping X impossible"), twisted_edit & 1, 'x'); dialog::add_action([] { twisted_edit ^= 1; }); if(geometry == gCubeTiling || (T_edit[1][1]+T_edit[2][2]) % 2 == 0) dialog::addBoolItem(XLAT("flip Y coordinate"), twisted_edit & 2, 'y'); else dialog::addBoolItem(XLAT("flipping Y impossible"), twisted_edit & 2, 'y'); dialog::add_action([] { twisted_edit ^= 2; }); if(T_edit[0][0] == T_edit[1][1]) dialog::addBoolItem(XLAT("swap X and Y"), twisted_edit & 4, 'z'); else dialog::addBoolItem(XLAT("swapping impossible"), twisted_edit & 4, 'z'); dialog::add_action([] { twisted_edit ^= 4; }); } dialog::addBreak(50); char xch = 'p'; for(eGeometry g: {gCubeTiling, gRhombic3, gBitrunc3}) { dialog::addItem(XLAT(ginf[g].menu_displayed_name), xch++); dialog::add_action([g] { stop_game(); set_geometry(g); T0 = T_edit; twisted0 = twisted_edit; start_game(); }); } dialog::addBreak(50); dialog::addBack(); dialog::display(); int i = -1; for(auto& v: dialog::items) if(v.type == dialog::diBreak) { if(i >= 0 && i < 3) { for(int j=0; j<3; j++) { char ch = 'a' + i * 3 + j; if(displayfr(dialog::dcenter + dialog::dfspace * 4 * (j-1), v.position, 2, dialog::dfsize, its(T_edit[j][i]), 0xFFFFFF, 8)) getcstat = ch; dialog::add_key_action(ch, [=] { dialog::editNumber(T_edit[j][i], -10, +10, 1, 0, "", XLAT( "This matrix lets you play on the quotient spaces of three-dimensional. " "Euclidean space. Every column specifies a translation vector which " "takes you back to the starting point. For example, if you put " "set 2, 6, 0 on the diagonal, you get back to the starting point " "if you move 2 steps in the X direction, 6 steps in the Y direction " "(the quotient space is infinite in the Z direction).\n\n" "You can also introduce twists for diagonal matrices: after going " "the given number of steps in the Z direction, the space is also " "mirrored or rotated. (More general 'twisted' spaces are currently " "not implemented.)" ) ); }); } } i++; } } #if CAP_COMMANDLINE int euArgs() { using namespace arg; if(0) ; else if(argis("-t3")) { PHASEFROM(2); stop_game(); for(int i=0; i<3; i++) for(int j=0; j<3; j++) { shift(); T0[i][j] = argi(); } build_torus3(); } else if(argis("-twist3")) { PHASEFROM(2); stop_game(); for(int i=0; i<3; i++) for(int j=0; j<3; j++) T0[i][j] = 0; for(int i=0; i<3; i++) { shift(); T0[i][i] = argi(); } shift(); twisted0 = argi(); build_torus3(); } else if(argis("-twisttest")) { start_game(); celllister cl(cwt.at, 10000, 10000, NULL); for(cell *c: cl.lst) { for(int i=0; imove(i) && c->move(k) && c->move(i)->move(j) == c->move(k)->move(l) && c->move(i)->move(j)) { transmatrix T1 = move_matrix(c, i) * move_matrix(c->move(i), j); transmatrix T2 = move_matrix(c, k) * move_matrix(c->move(k), l); if(!eqmatrix(T1, T2)) { println(hlog, c, " @ ", getcoord(cubemap()->ispacemap[c->master]), " : ", i, "/", j, "/", k, "/", l, " :: ", T1, " vs ", T2); exit(1); } } } } else return 1; return 0; } auto euhook = addHook(hooks_args, 100, euArgs); #endif EX } #endif EX ld matrixnorm(const transmatrix& Mat) { return Mat[0][DIM] * Mat[0][DIM] + Mat[1][DIM] * Mat[1][DIM] + Mat[2][DIM] * Mat[2][DIM]; } void hrmap_euclid_any::draw() { DEBB(DF_GRAPH, ("drawEuclidean\n")); sphereflip = Id; if(!centerover.at) centerover = cwt; // printf("centerover = %p player = %p [%d,%d]-[%d,%d]\n", lcenterover, cwt.c, // mindx, mindy, maxdx, maxdy); int pvec = cellwalker_to_vec(centerover); typedef pair euspot; const euspot zero = {0,0}; set visited = {zero}; vector dfs = {zero}; ld centerd = matrixnorm(View); auto View0 = cview(); for(int i=0; itype) * Mirror : Mat, cw.spin, cw.mirrored); for(int x=-1; x<=+1; x++) for(int y=-1; y<=+1; y++) { euspot p(dx+x, dy+y); if(!visited.count(p)) visited.insert(p), dfs.push_back(p); } } } } }