// Hyperbolic Rogue -- raycaster // Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details /** \file raycaster.cpp * \brief A raycaster to draw walls. */ #include "hyper.h" namespace hr { EX namespace ray { /** texture IDs */ GLuint txConnections = 0, txWallcolor = 0, txTextureMap = 0; EX bool in_use; EX bool comparison_mode; /** 0 - never use, 2 - always use, 1 = smart selection */ EX int want_use = 1; EX ld exp_start = 1, exp_decay_exp = 4, exp_decay_poly = 10; EX ld maxstep_sol = .02; EX ld maxstep_nil = .1; EX ld minstep = .001; EX ld reflect_val = 0; EX int max_iter_sol = 600, max_iter_iso = 60; EX int max_cells = 2048; EX bool rays_generate = true; ld& exp_decay_current() { return (solnih || hyperbolic) ? exp_decay_exp : exp_decay_poly; } int& max_iter_current() { if(nonisotropic) return max_iter_sol; else return max_iter_iso; } ld& maxstep_current() { if(solnih) return maxstep_sol; else return maxstep_nil; } #define IN_ODS 0 eGeometry last_geometry; /** is the raycaster available? */ EX bool available() { if(WDIM == 2) return false; if(hyperbolic && pmodel == mdPerspective && !penrose) return true; if((solnih || nil) && pmodel == mdGeodesic) return true; if(euclid && pmodel == mdPerspective && !binarytiling) return true; if(prod && PURE) return true; return false; } /** do we want to use the raycaster? */ EX bool requested() { if(!want_use) return false; if(!available()) return false; if(want_use == 2) return true; return racing::on || quotient; } struct raycaster : glhr::GLprogram { GLint uStart, uStartid, uM, uLength, uFovX, uFovY, uIPD; GLint uWallstart, uWallX, uWallY; GLint tConnections, tWallcolor, tTextureMap; GLint uBinaryWidth, uPLevel, uLP; GLint uLinearSightRange, uExpStart, uExpDecay; GLint uBLevel; raycaster(string vsh, string fsh) : GLprogram(vsh, fsh) { println(hlog, "assigning"); uStart = glGetUniformLocation(_program, "uStart"); uStartid = glGetUniformLocation(_program, "uStartid"); uM = glGetUniformLocation(_program, "uM"); uLength = glGetUniformLocation(_program, "uLength"); uFovX = glGetUniformLocation(_program, "uFovX"); uFovY = glGetUniformLocation(_program, "uFovY"); uIPD = glGetUniformLocation(_program, "uIPD"); uWallstart = glGetUniformLocation(_program, "uWallstart"); uWallX = glGetUniformLocation(_program, "uWallX"); uWallY = glGetUniformLocation(_program, "uWallY"); uBinaryWidth = glGetUniformLocation(_program, "uBinaryWidth"); uPLevel = glGetUniformLocation(_program, "uPLevel"); uLP = glGetUniformLocation(_program, "uLP"); uLinearSightRange = glGetUniformLocation(_program, "uLinearSightRange"); uExpDecay = glGetUniformLocation(_program, "uExpDecay"); uExpStart = glGetUniformLocation(_program, "uExpStart"); uBLevel = glGetUniformLocation(_program, "uBLevel"); tConnections = glGetUniformLocation(_program, "tConnections"); tWallcolor = glGetUniformLocation(_program, "tWallcolor"); tTextureMap = glGetUniformLocation(_program, "tTextureMap"); } }; shared_ptr our_raycaster; EX void reset_raycaster() { our_raycaster = nullptr; }; int deg; void enable_raycaster() { if(geometry != last_geometry) reset_raycaster(); last_geometry = geometry; deg = S7; if(prod) deg += 2; if(!our_raycaster) { bool use_reflect = reflect_val && !nil; string vsh = "attribute vec4 aPosition;\n" "uniform float uFovX, uFovY;\n" "varying vec4 at;\n" "void main() { \n" " gl_Position = aPosition; at = aPosition;\n" #if IN_ODS " at[0] *= PI; at[1] *= PI; \n" #else " at[0] *= uFovX; at[1] *= uFovY; \n" #endif " }\n"; string rays = its(isize(cgi.raywall)); string fsh = "varying vec4 at;\n" "uniform int uLength;\n" "uniform float uIPD;\n" "uniform mat4 uStart;\n" "uniform mat4 uM[84];\n" "uniform mat4 uTest;\n" "uniform vec2 uStartid;\n" "uniform sampler2D tConnections;\n" "uniform sampler2D tWallcolor;\n" "uniform sampler2D tTexture;\n" "uniform sampler2D tTextureMap;\n" "uniform vec4 uWallX["+rays+"];\n" "uniform vec4 uWallY["+rays+"];\n" "uniform vec4 uFogColor;\n" "uniform int uWallstart["+its(deg+1)+"];\n" "uniform float uLinearSightRange, uExpStart, uExpDecay;\n"; if(prod) fsh += "uniform float uPLevel;\n" "uniform mat4 uLP;\n"; int flat1 = 0, flat2 = S7; if(hyperbolic && binarytiling) { fsh += "uniform float uBLevel;\n"; flat1 = binary::dirs_outer(); flat2 -= binary::dirs_inner(); } if(IN_ODS || hyperbolic) fsh += "mat4 xpush(float x) { return mat4(" "cosh(x), 0., 0., sinh(x),\n" "0., 1., 0., 0.,\n" "0., 0., 1., 0.,\n" "sinh(x), 0., 0., cosh(x)" ");}\n"; if(IN_ODS) fsh += "mat4 xzspin(float x) { return mat4(" "cos(x), 0., sin(x), 0.,\n" "0., 1., 0., 0.,\n" "-sin(x), 0., cos(x), 0.,\n" "0., 0., 0., 1." ");}\n" "mat4 yzspin(float x) { return mat4(" "1., 0., 0., 0.,\n" "0., cos(x), sin(x), 0.,\n" "0., -sin(x), cos(x), 0.,\n" "0., 0., 0., 1." ");}\n"; fsh += "vec2 map_texture(vec4 pos, int which) {\n"; if(nil) fsh += "if(which == 2 || which == 5) pos.z = 0.;\n"; else if(hyperbolic && binarytiling) fsh += "pos = vec4(-log(pos.w-pos.x), pos.y, pos.z, 1);\n" "pos.yz *= exp(pos.x);\n"; else if(hyperbolic) fsh += "pos /= pos.w;\n"; else if(prod) fsh += "pos = vec4(pos.x/pos.z, pos.y/pos.z, pos.w, 0);\n"; fsh += "int s = uWallstart[which];\n" "int e = uWallstart[which+1];\n" "for(int i=s; i= 0. && v.y >= 0. && v.x + v.y <= 1.) return vec2(v.x+v.y, v.x-v.y);\n" "}\n" "return vec2(1, 1);\n" "}\n"; string fmain = "void main() {\n"; if(use_reflect) fmain += " bool depthtoset = true;\n"; if(IN_ODS) fmain += " float lambda = at[0];\n" // -PI to PI " float phi;\n" " float eye;\n" " if(at.y < 0.) { phi = at.y + PI/2.; eye = uIPD / 2.; }\n" // right " else { phi = at.y - PI/2.; eye = -uIPD / 2.; }\n" " mat4 vw = uStart * xzspin(-lambda) * xpush(eye) * yzspin(phi);\n" " vec4 at0 = vec4(0., 0., 1., 0.);\n"; else fmain += " mat4 vw = uStart;\n" " vec4 at0 = at;\n" " gl_FragColor = vec4(0,0,0,1);\n" " float left = 1.;\n" " at0.y = -at.y;\n" " at0.w = 0.;\n" " at0.xyz = at0.xyz / length(at0.xyz);\n"; if(hyperbolic) fsh += " float len(vec4 x) { return x[3]; }\n"; else fsh += " float len(vec4 x) { return length(x.xyz); }\n"; if(nonisotropic) fmain += " const float maxstep = " + fts(maxstep_current()) + ";\n" " const float minstep = " + fts(minstep) + ";\n" " float next = maxstep;\n"; if(prod) { string sgn=in_h2xe() ? "-" : "+"; fmain += " vec4 position = vw * vec4(0., 0., 1., 0.);\n" " vec4 at1 = uLP * at0;\n" " float zpos = log(position.z*position.z"+sgn+"position.x*position.x"+sgn+"position.y*position.y)/2.;\n" " position *= exp(-zpos);\n" " float zspeed = at1.z;\n" " float xspeed = length(at1.xy);\n" " vec4 tangent = vw * exp(-zpos) * vec4(at1.xy, 0, 0) / xspeed;\n"; } else fmain += " vec4 position = vw * vec4(0., 0., 0., 1.);\n" " vec4 tangent = vw * at0;\n"; fmain += " float go = 0.;\n" " vec2 cid = uStartid;\n" " for(int iter=0; iter<" + its(max_iter_current()) + "; iter++) {\n"; fmain += " float dist = 100.;\n"; fmain += " int which = -1;\n"; if(IN_ODS) fmain += " if(go == 0.) {\n" " float best = len(position);\n" " for(int i=0; i<"+its(S7)+"; i++) {\n" " float cand = len(uM[i] * position);\n" " if(cand < best - .001) { dist = 0.; best = cand; which = i; }\n" " }\n" " }\n"; if(!nonisotropic) { fmain += " if(which == -1) {\n"; fmain += "for(int i="+its(flat1)+"; i<"+its(flat2)+"; i++) {\n"; if(in_h2xe()) fmain += " float v = ((position - uM[i] * position)[2] / (uM[i] * tangent - tangent)[2]);\n" " if(v > 1. || v < -1.) continue;\n" " float d = atanh(v);\n" " vec4 next_tangent = position * sinh(d) + tangent * cosh(d);\n" " if(next_tangent[2] < (uM[i] * next_tangent)[2]) continue;\n" " d /= xspeed;\n"; else if(in_s2xe()) fmain += " float v = ((position - uM[i] * position)[2] / (uM[i] * tangent - tangent)[2]);\n" " float d = atan(v);\n" " vec4 next_tangent = tangent * cos(d) - position * sin(d);\n" " if(next_tangent[2] > (uM[i] * next_tangent)[2]) continue;\n" " d /= xspeed;\n"; else if(hyperbolic) fmain += " float v = ((position - uM[i] * position)[3] / (uM[i] * tangent - tangent)[3]);\n" " if(v > 1. || v < -1.) continue;\n" " float d = atanh(v);\n" " vec4 next_tangent = position * sinh(d) + tangent * cosh(d);\n" " if(next_tangent[3] < (uM[i] * next_tangent)[3]) continue;\n"; else fmain += " float deno = dot(position, tangent) - dot(uM[i]*position, uM[i]*tangent);\n" " if(deno < 1e-6 && deno > -1e-6) continue;\n" " float d = (dot(uM[i]*position, uM[i]*position) - dot(position, position)) / 2. / deno;\n" " if(d < 0.) continue;\n" " vec4 next_position = position + d * tangent;\n" " if(dot(next_position, tangent) < dot(uM[i]*next_position, uM[i]*tangent)) continue;\n"; fmain += " if(d < dist) { dist = d; which = i; }\n" "}\n"; // 20: get to horosphere +uBLevel (take smaller root) // 21: get to horosphere -uBLevel (take larger root) if(hyperbolic && binarytiling) { fmain += "for(int i=20; i<22; i++) {\n" "float sgn = i == 20 ? -1. : 1.;\n" "vec4 zpos = xpush(uBLevel*sgn) * position;\n" "vec4 ztan = xpush(uBLevel*sgn) * tangent;\n" "float Mp = zpos.w - zpos.x;\n" "float Mt = ztan.w - ztan.x;\n" "float a = (Mp*Mp-Mt*Mt);\n" "float b = Mp/a;\n" "float c = (1.+Mt*Mt) / a;\n" "if(b*b < c) continue;\n" "if(sgn < 0. && Mt > 0.) continue;\n" "float zsgn = (Mt > 0. ? -sgn : sgn);\n" "float u = sqrt(b*b-c)*zsgn + b;\n" "float v = -(Mp*u-1.) / Mt;\n" "float d = asinh(v);\n" "if(d < 0. && abs(log(position.w*position.w-position.x*position.x)) < uBLevel) continue;\n" "if(d < dist) { dist = d; which = i; }\n" "}\n"; } if(prod) fmain += "if(zspeed > 0.) { float d = (uPLevel - zpos) / zspeed; if(d < dist) { dist = d; which = "+its(S7)+"+1; }}\n" "if(zspeed < 0.) { float d = (-uPLevel - zpos) / zspeed; if(d < dist) { dist = d; which = "+its(S7)+"; }}\n"; fmain += "}\n"; fmain += " if(dist < 0.) { dist = 0.; }\n"; fmain += " if(which == -1 && dist == 0.) return;"; } // shift d units if(use_reflect) fmain += "bool reflect = false;\n"; if(in_h2xe()) fmain += " float ch = cosh(dist*xspeed); float sh = sinh(dist*xspeed);\n" " vec4 v = position * ch + tangent * sh;\n" " tangent = tangent * ch + position * sh;\n" " position = v;\n" " zpos += dist * zspeed;\n"; else if(in_s2xe()) fmain += " float ch = cos(dist*xspeed); float sh = sin(dist*xspeed);\n" " vec4 v = position * ch + tangent * sh;\n" " tangent = tangent * ch - position * sh;\n" " position = v;\n" " zpos += dist * zspeed;\n"; else if(hyperbolic) fmain += " float ch = cosh(dist); float sh = sinh(dist);\n" " vec4 v = position * ch + tangent * sh;\n" " tangent = tangent * ch + position * sh;\n" " position = v;\n"; else if(nonisotropic) { if(sol && nih) fsh += "vec4 christoffel(vec4 pos, vec4 vel, vec4 tra) {\n" " return vec4(-(vel.z*tra.x + vel.x*tra.z)*log(2.), (vel.z*tra.y + vel.y * tra.z)*log(3.), vel.x*tra.x * exp(2.*log(2.)*pos.z)*log(2.) - vel.y * tra.y * exp(-2.*log(3.)*pos.z)*log(3.), 0.);\n" " }\n"; else if(nih) fsh += "vec4 christoffel(vec4 pos, vec4 vel, vec4 tra) {\n" " return vec4((vel.z*tra.x + vel.x*tra.z)*log(2.), (vel.z*tra.y + vel.y * tra.z)*log(3.), -vel.x*tra.x * exp(-2.*log(2.)*pos.z)*log(2.) - vel.y * tra.y * exp(-2.*log(3.)*pos.z)*log(3.), 0.);\n" " }\n"; else if(sol) fsh += "vec4 christoffel(vec4 pos, vec4 vel, vec4 tra) {\n" " return vec4(-vel.z*tra.x - vel.x*tra.z, vel.z*tra.y + vel.y * tra.z, vel.x*tra.x * exp(2.*pos.z) - vel.y * tra.y * exp(-2.*pos.z), 0.);\n" " }\n"; else fsh += "vec4 christoffel(vec4 pos, vec4 vel, vec4 tra) {\n" " float x = pos.x;\n" " return vec4(x*vel.y*tra.y - 0.5*dot(vel.yz,tra.zy), -.5*x*dot(vel.yx,tra.xy) + .5 * dot(vel.zx,tra.xz), -.5*(x*x-1.)*dot(vel.yx,tra.xy)+.5*x*dot(vel.zx,tra.xz), 0.);\n" // " return vec4(0.,0.,0.,0.);\n" " }\n"; if(solnih) fsh += "uniform float uBinaryWidth;\n"; fmain += " dist = next < minstep ? 2.*next : next;\n"; if(nil) fsh += "vec4 translate(vec4 a, vec4 b) {\n" "return vec4(a[0] + b[0], a[1] + b[1], a[2] + b[2] + a[0] * b[1], b[3]);\n" "}\n" "vec4 translatev(vec4 a, vec4 t) {\n" "return vec4(t[0], t[1], t[2] + a[0] * t[1], 0.);\n" "}\n" "vec4 itranslate(vec4 a, vec4 b) {\n" "return vec4(-a[0] + b[0], -a[1] + b[1], -a[2] + b[2] - a[0] * (b[1]-a[1]), b[3]);\n" "}\n" "vec4 itranslatev(vec4 a, vec4 t) {\n" "return vec4(t[0], t[1], t[2] - a[0] * t[1], 0.);\n" "}\n"; if(nil) fmain += "tangent = translate(position, itranslate(position, tangent));\n"; if(solnih) fmain += "vec4 acc = christoffel(position, tangent, tangent);\n" "vec4 pos2 = position + tangent * dist / 2.;\n" "vec4 tan2 = tangent + acc * dist / 2.;\n" "vec4 acc2 = christoffel(pos2, tan2, tan2);\n" "vec4 nposition = position + tangent * dist + acc2 / 2. * dist * dist;\n"; if(nil) { fmain += "vec4 xp, xt;\n" "vec4 back = itranslatev(position, tangent);\n" "if(back.x == 0. && back.y == 0.) {\n" " xp = vec4(0., 0., back.z*dist, 1.);\n" " xt = back;\n" " }\n" "else if(abs(back.z) == 0.) {\n" " xp = vec4(back.x*dist, back.y*dist, back.x*back.y*dist*dist/2., 1.);\n" " xt = vec4(back.x, back.y, dist*back.x*back.y, 0.);\n" " }\n" "else if(abs(back.z) < 1e-1) {\n" // we use the midpoint method here, because the formulas below cause glitches due to float precision " vec4 acc = christoffel(vec4(0,0,0,1), back, back);\n" " vec4 pos2 = back * dist / 2.;\n" " vec4 tan2 = back + acc * dist / 2.;\n" " vec4 acc2 = christoffel(pos2, tan2, tan2);\n" " xp = vec4(0,0,0,1) + back * dist + acc2 / 2. * dist * dist;\n" " xt = back + acc * dist;\n" " }\n" "else {\n" " float alpha = atan2(back.y, back.x);\n" " float w = back.z * dist;\n" " float c = length(back.xy) / back.z;\n" " xp = vec4(2.*c*sin(w/2.) * cos(w/2.+alpha), 2.*c*sin(w/2.)*sin(w/2.+alpha), w*(1.+(c*c/2.)*((1.-sin(w)/w)+(1.-cos(w))/w * sin(w+2.*alpha))), 1.);\n" " xt = back.z * vec4(" "c*cos(alpha+w)," "c*sin(alpha+w)," "1. + c*c*2.*sin(w/2.)*sin(alpha+w)*cos(alpha+w/2.)," "0.);\n" " }\n" "vec4 nposition = translate(position, xp);\n"; } if(nil) fmain += "float rz = (abs(nposition.x) > abs(nposition.y) ? -nposition.x*nposition.y : 0.) + nposition.z;\n"; fmain += "if(next >= minstep) {\n"; if(nih) fmain += "if(abs(nposition.x) > uBinaryWidth || abs(nposition.y) > uBinaryWidth || abs(nposition.z) > .5) {\n"; else if(sol) fmain += "if(abs(nposition.x) > uBinaryWidth || abs(nposition.y) > uBinaryWidth || abs(nposition.z) > log(2.)/2.) {\n"; else fmain += "if(abs(nposition.x) > .5 || abs(nposition.y) > .5 || abs(rz) > .5) {\n"; fmain += "next = dist / 2.; continue;\n" "}\n" "if(next < maxstep) next = next / 2.;\n" "}\n" "else {\n"; if(solnih) { if(sol && !nih) fmain += "if(nposition.x > uBinaryWidth) which = 0;\n" "if(nposition.x <-uBinaryWidth) which = 4;\n" "if(nposition.y > uBinaryWidth) which = 1;\n" "if(nposition.y <-uBinaryWidth) which = 5;\n"; if(nih) fmain += "if(nposition.x > uBinaryWidth) which = 0;\n" "if(nposition.x <-uBinaryWidth) which = 2;\n" "if(nposition.y > uBinaryWidth) which = 1;\n" "if(nposition.y <-uBinaryWidth) which = 3;\n"; if(sol && nih) fmain += "if(nposition.z > .5) which = nposition.x > 0. ? 5 : 4;\n" "if(nposition.z <-.5) which = nposition.y > uBinaryWidth/3. ? 8 : nposition.y < -uBinaryWidth/3. ? 6 : 7;\n"; if(nih && !sol) fmain += "if(nposition.z > .5) which = 4;\n" "if(nposition.z < -.5) which = (nposition.y > uBinaryWidth/3. ? 9 : nposition.y < -uBinaryWidth/3. ? 5 : 7) + (nposition.x>0.?1:0);\n"; if(sol && !nih) fmain += "if(nposition.z > log(2.)/2.) which = nposition.x > 0. ? 3 : 2;\n" "if(nposition.z <-log(2.)/2.) which = nposition.y > 0. ? 7 : 6;\n"; } else fmain += "if(nposition.x > .5) which = 3;\n" "if(nposition.x <-.5) which = 0;\n" "if(nposition.y > .5) which = 4;\n" "if(nposition.y <-.5) which = 1;\n" "if(rz > .5) which = 5;\n" "if(rz <-.5) which = 2;\n"; fmain += "next = maxstep;\n" "}\n"; if(nil) fmain += "tangent = translatev(position, xt);\n"; fmain += "position = nposition;\n"; if(!nil) fmain += "tangent = tangent + acc * dist;\n"; } else fmain += "position = position + tangent * dist;\n"; if(hyperbolic && binarytiling) { fmain += "if(which == 20) {\n" " float best = 999.;\n" " for(int i="+its(flat2)+"; i<"+its(S7)+"; i++) {\n" " float cand = len(uM[i] * position);\n" " if(cand < best) { best = cand; which = i; }\n" " }\n" "}\n" "if(which == 21) {\n" "float best = 999.;\n" "for(int i=0; i<"+its(flat1)+"; i++) {\n" " float cand = len(uM[i] * position);\n" " if(cand < best) { best = cand; which = i; }\n" " }\n" // "gl_FragColor = vec4(.5 + .5 * sin((go+dist)*100.), 1, float(which)/3., 1); return;\n" "}\n"; } fmain += " go = go + dist;\n"; fmain += "if(which == -1) continue;\n"; if(prod) fmain += "position.w = -zpos;\n"; // apply wall color fmain += " vec2 u = cid + vec2(float(which) / float(uLength), 0);\n" " vec4 col = texture2D(tWallcolor, u);\n" " if(col[3] > 0.0) {\n" " vec2 inface = map_texture(position, which);\n" " vec3 tmap = texture2D(tTextureMap, u).rgb;\n" " if(tmap.z == 0.) col.xyz *= min(1., (1.-inface.x)/ tmap.x);\n" " else {\n" " vec2 inface2 = tmap.xy + tmap.z * inface;\n" " col.xyz *= texture2D(tTexture, inface2).rgb;\n" " }\n" " float d = max(1. - go / uLinearSightRange, uExpStart * exp(-go / uExpDecay));\n" " col.xyz = col.xyz * d + uFogColor.xyz * (1.-d);\n"; if(nil) fmain += " if(abs(abs(position.x)-abs(position.y)) < .005) col.xyz /= 2.;\n"; if(use_reflect) fmain += " if(col.w == 1.) {\n" " col.w = float("+fts(1-reflect_val)+");\n" " reflect = true;\n" " }\n"; ld vnear = glhr::vnear_default; ld vfar = glhr::vfar_default; fmain += " gl_FragColor.xyz += left * col.xyz * col.w;\n"; if(use_reflect) fmain += " if(reflect && depthtoset) {\n"; else fmain += " if(col.w == 1.) {\n"; if(hyperbolic) fmain += " float z = at0.z * sinh(go);\n" " float w = 1.;\n"; else fmain += " float z = at0.z * go;\n" " float w = 1.;\n"; fmain += " gl_FragDepth = (-float("+fts(vnear+vfar)+")+w*float("+fts(2*vnear*vfar)+")/z)/float("+fts(vnear-vfar)+");\n" " gl_FragDepth = (gl_FragDepth + 1.) / 2.;\n"; if(!use_reflect) fmain += " return;\n"; else fmain += " depthtoset = false;\n"; fmain += " }\n" " left *= (1. - col.w);\n" " }\n"; if(use_reflect) { if(prod) fmain += "if(reflect && which >= "+its(S7)+") { zspeed = -zspeed; continue; }\n"; if(hyperbolic && binarytiling) fmain += "if(reflect && (which < "+its(flat1)+" || which >= "+its(flat2)+")) {\n" " float x = -log(position.w - position.x);\n" " vec4 xtan = xpush(-x) * tangent;\n" " float diag = (position.y*position.y+position.z*position.z)/2.;\n" " vec4 normal = vec4(1.-diag, -position.y, -position.z, -diag);\n" " float mdot = dot(xtan.xyz, normal.xyz) - xtan.w * normal.w;\n" " xtan = xtan - normal * mdot * 2.;\n" " tangent = xpush(x) * xtan;\n" " continue;\n" " }\n"; if(sol && !nih) fmain += " if(reflect) {\n" " if(which == 0 || which == 4) tangent.x = -tangent.x;\n" " else if(which == 1 || which == 5) tangent.y = -tangent.y;\n" " else tangent.z = -tangent.z;\n" " continue;\n" " }\n"; else if(nih) fmain += " if(reflect) {\n" " if(which == 0 || which == 2) tangent.x = -tangent.x;\n" " else if(which == 1 || which == 3) tangent.y = -tangent.y;\n" " else tangent.z = -tangent.z;\n" " continue;\n" " }\n"; else fmain += " if(reflect) {\n" " tangent = uM["+its(deg)+"+which] * tangent;\n" " continue;\n" " }\n"; } // next cell fmain += " vec4 connection = texture2D(tConnections, u);\n" " cid = connection.xy;\n"; if(prod) fmain += " if(which == "+its(S7)+") { zpos += uPLevel+uPLevel; continue; }\n" " if(which == "+its(S7)+"+1) { zpos -= uPLevel+uPLevel; continue; }\n"; fmain += " int mid = int(connection.z * 1024.);\n" " position = uM[mid] * uM[which] * position;\n" " tangent = uM[mid] * uM[which] * tangent;\n"; fmain += " }\n" " gl_FragColor.xyz += left * uFogColor.xyz;\n"; if(use_reflect) fmain += " if(depthtoset) gl_FragDepth = 1.;\n"; else fmain += " gl_FragDepth = 1.;\n"; fmain += " }"; fsh += fmain; our_raycaster = make_shared (vsh, fsh); } full_enable(our_raycaster); } int length, per_row, rows; void bind_array(vector>& v, GLint t, GLuint& tx, int id) { if(t == -1) println(hlog, "bind to nothing"); glUniform1i(t, id); if(tx == 0) glGenTextures(1, &tx); glActiveTexture(GL_TEXTURE0 + id); glBindTexture(GL_TEXTURE_2D, tx); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexImage2D(GL_TEXTURE_2D, 0, 0x8814 /* GL_RGBA32F */, length, isize(v)/length, 0, GL_RGBA, GL_FLOAT, &v[0]); GLERR("bind_array"); } void uniform2(GLint id, array fl) { glUniform2f(id, fl[0], fl[1]); } array enc(int i, int a) { array res; res[0] = ((i%per_row) * deg + a + .5) / length; res[1] = ((i / per_row) + .5) / rows; return res; }; color_t color_out_of_range = 0xFF0080FF; EX void cast() { enable_raycaster(); if(comparison_mode) glColorMask( GL_TRUE,GL_FALSE,GL_FALSE,GL_TRUE ); auto& o = our_raycaster; vector screen = { glhr::makevertex(-1, -1, 1), glhr::makevertex(-1, +1, 1), glhr::makevertex(+1, -1, 1), glhr::makevertex(-1, +1, 1), glhr::makevertex(+1, -1, 1), glhr::makevertex(+1, +1, 1) }; auto& cd = current_display; glUniform1f(o->uFovX, cd->tanfov); glUniform1f(o->uFovY, cd->tanfov * cd->ysize / cd->xsize); deg = S7; if(prod) deg += 2; length = 4096; per_row = length / deg; vector lst; cell *cs = viewcenter(); transmatrix T = cview(); if(nonisotropic) T = nisot::local_perspective * T; if(prod) T = actualV(viewctr, T); T = inverse(T); virtualRebase(cs, T, true); if(true) { manual_celllister cl; cl.add(cs); bool optimize = !isWall3(cs); for(int i=0; i 0 && c->wall == waBarrier) continue; if(optimize && isWall3(c)) continue; forCellCM(c2, c) { if(rays_generate) setdist(c2, 7, c); cl.add(c2); if(isize(cl.lst) >= max_cells) goto finish; } } finish: lst = cl.lst; } rows = next_p2((isize(lst)+per_row-1) / per_row); map ids; for(int i=0; iuLength, length); GLERR("uniform length"); glUniformMatrix4fv(o->uStart, 1, 0, glhr::tmtogl_transpose3(T).as_array()); if(o->uLP != -1) glUniformMatrix4fv(o->uLP, 1, 0, glhr::tmtogl_transpose3(inverse(nisot::local_perspective)).as_array()); GLERR("uniform start"); uniform2(o->uStartid, enc(ids[cs], 0)); GLERR("uniform startid"); glUniform1f(o->uIPD, vid.ipd); GLERR("uniform IPD"); vector ms; for(int j=0; jrelative_matrix(cwt.at, cwt.at->cmove(j), Hypc) : currentmap->relative_matrix(cwt.at->master, cwt.at->cmove(j)->master)); if(prod) ms.push_back(Id); if(prod) ms.push_back(Id); if(!sol && !nil && reflect_val) { for(int j=0; j> connections(length * rows); vector> wallcolor(length * rows); vector> texturemap(length * rows); if(1) for(cell *c: lst) { int id = ids[c]; forCellIdEx(c1, i, c) { int u = (id/per_row*length) + (id%per_row * deg) + i; if(!ids.count(c1)) { wallcolor[u] = glhr::acolor(color_out_of_range | 0xFF); texturemap[u] = glhr::makevertex(0.1,0,0); continue; } auto code = enc(ids[c1], 0); connections[u][0] = code[0]; connections[u][1] = code[1]; if(isWall3(c1)) { celldrawer dd; dd.cw.at = c1; dd.setcolors(); transmatrix Vf; dd.set_land_floor(Vf); color_t wcol = darkena(dd.wcol, 0, 0xFF); int dv = get_darkval(c1, c->c.spin(i)); float p = 1 - dv / 16.; wallcolor[u] = glhr::acolor(wcol); for(int a: {0,1,2}) wallcolor[u][a] *= p; if(qfi.fshape) { texturemap[u] = floor_texture_map[qfi.fshape->id]; } else texturemap[u] = glhr::makevertex(0.1,0,0); } else { color_t col = transcolor(c, c1, winf[c->wall].color) | transcolor(c1, c, winf[c1->wall].color); if(col == 0) wallcolor[u] = glhr::acolor(0); else { int dv = get_darkval(c1, c->c.spin(i)); float p = 1 - dv / 16.; wallcolor[u] = glhr::acolor(col); for(int a: {0,1,2}) wallcolor[u][a] *= p; texturemap[u] = glhr::makevertex(0.001,0,0); } } if(prod && i >= S7) { connections[u][2] = (S7+.5) / 1024.; continue; } transmatrix T = (prod ? currentmap->relative_matrix(c, c1, C0) : currentmap->relative_matrix(c->master, c1->master)) * inverse(ms[i]); for(int k=0; k<=isize(ms); k++) { if(k < isize(ms) && !eqmatrix(ms[k], T)) continue; if(k == isize(ms)) ms.push_back(T); connections[u][2] = (k+.5) / 1024.; break; } } } vector wallstart; for(auto i: cgi.wallstart) wallstart.push_back(i); glUniform1iv(o->uWallstart, isize(wallstart), &wallstart[0]); vector wallx, wally; for(auto& m: cgi.raywall) { wallx.push_back(glhr::pointtogl(m[0])); wally.push_back(glhr::pointtogl(m[1])); } glUniform4fv(o->uWallX, isize(wallx), &wallx[0][0]); glUniform4fv(o->uWallY, isize(wally), &wally[0][0]); if(o->uBinaryWidth != -1) glUniform1f(o->uBinaryWidth, vid.binary_width/2 * (nih?1:log(2))); if(o->uPLevel != -1) glUniform1f(o->uPLevel, cgi.plevel / 2); if(o->uBLevel != -1) glUniform1f(o->uBLevel, log(binary::expansion()) / 2); glUniform1f(o->uLinearSightRange, sightranges[geometry]); glUniform1f(o->uExpDecay, exp_decay_current()); glUniform1f(o->uExpStart, exp_start); vector gms; for(auto& m: ms) gms.push_back(glhr::tmtogl_transpose3(m)); glUniformMatrix4fv(o->uM, isize(gms), 0, gms[0].as_array()); bind_array(wallcolor, o->tWallcolor, txWallcolor, 4); bind_array(connections, o->tConnections, txConnections, 3); bind_array(texturemap, o->tTextureMap, txTextureMap, 5); auto cols = glhr::acolor(darkena(backcolor, 0, 0xFF)); glUniform4f(o->uFogColor, cols[0], cols[1], cols[2], cols[3]); glVertexAttribPointer(hr::aPosition, 4, GL_FLOAT, GL_FALSE, sizeof(glvertex), &screen[0]); if(ray::comparison_mode) glhr::set_depthtest(false); else { glhr::set_depthtest(true); glhr::set_depthwrite(true); } glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glActiveTexture(GL_TEXTURE0 + 0); glBindTexture(GL_TEXTURE_2D, floor_textures->renderedTexture); glDrawArrays(GL_TRIANGLES, 0, 6); GLERR("finish"); } EX void configure() { cmode = sm::SIDE | sm::MAYDARK; gamescreen(0); dialog::init(XLAT("raycasting configuration")); dialog::addBoolItem(XLAT("available in current geometry"), available(), 0); dialog::addBoolItem(XLAT("use raycasting?"), want_use == 2 ? true : in_use, 'u'); if(want_use == 1) dialog::lastItem().value = XLAT("SMART"); dialog::add_action([] { want_use++; want_use %= 3; }); dialog::addBoolItem_action(XLAT("comparison mode"), comparison_mode, 'c'); dialog::addSelItem(XLAT("exponential range"), fts(exp_decay_current()), 'r'); dialog::add_action([&] { dialog::editNumber(exp_decay_current(), 0, 40, 0, 5, XLAT("exponential range"), XLAT("brightness formula: max(1-d/sightrange, s*exp(-d/r))") ); }); dialog::addSelItem(XLAT("exponential start"), fts(exp_start), 's'); dialog::add_action([&] { dialog::editNumber(exp_start, 0, 1, 0.1, 1, XLAT("exponential start"), XLAT("brightness formula: max(1-d/sightrange, s*exp(-d/r))\n") ); }); if(!nil) { dialog::addSelItem(XLAT("reflective walls"), fts(reflect_val), 'R'); dialog::add_action([&] { dialog::editNumber(reflect_val, 0, 1, 0.1, 0, XLAT("reflective walls"), ""); dialog::reaction = reset_raycaster; }); } if(nonisotropic) { dialog::addSelItem(XLAT("max step"), fts(maxstep_current()), 'x'); dialog::add_action([] { dialog::editNumber(maxstep_current(), 1e-6, 1, 0.1, sol ? 0.03 : 0.1, XLAT("max step"), "affects the precision of solving the geodesic equation in Solv"); dialog::scaleLog(); dialog::bound_low(1e-9); dialog::reaction = reset_raycaster; }); dialog::addSelItem(XLAT("min step"), fts(minstep), 'n'); dialog::add_action([] { dialog::editNumber(minstep, 1e-6, 1, 0.1, 0.001, XLAT("min step"), "how precisely should we find out when do cross the cell boundary"); dialog::scaleLog(); dialog::bound_low(1e-9); dialog::reaction = reset_raycaster; }); } dialog::addSelItem(XLAT("iterations"), its(max_iter_current()), 's'); dialog::add_action([&] { dialog::editNumber(max_iter_current(), 0, 600, 1, 60, XLAT("iterations"), "in H3/H2xE/E3 this is the number of cell boundaries; in nonisotropic, the number of simulation steps"); dialog::reaction = reset_raycaster; }); dialog::addSelItem(XLAT("max cells"), its(max_cells), 's'); dialog::add_action([&] { dialog::editNumber(max_cells, 16, 131072, 0.1, 4096, XLAT("max cells"), ""); dialog::scaleLog(); dialog::extra_options = [] { dialog::addBoolItem_action("generate", rays_generate, 'G'); dialog::addColorItem(XLAT("out-of-range color"), color_out_of_range, 'X'); dialog::add_action([] { dialog::openColorDialog(color_out_of_range); dialog::dialogflags |= sm::SIDE; }); }; }); dialog::addBack(); dialog::display(); } #if CAP_COMMANDLINE int readArgs() { using namespace arg; if(0) ; else if(argis("-ray-do")) { PHASEFROM(2); want_use = 2; } else if(argis("-ray-dont")) { PHASEFROM(2); want_use = 0; } else if(argis("-ray-smart")) { PHASEFROM(2); want_use = 1; } else if(argis("-ray-comp")) { PHASEFROM(2); comparison_mode = true; } else if(argis("-ray-cells")) { PHASEFROM(2); shift(); rays_generate = true; max_cells = argi(); } else if(argis("-ray-reflect")) { PHASEFROM(2); shift_arg_formula(reflect_val); } else if(argis("-ray-cells-no")) { PHASEFROM(2); shift(); rays_generate = false; max_cells = argi(); } else return 1; return 0; } auto hook = addHook(hooks_args, 100, readArgs); #endif EX } }