// Hyperbolic Rogue // Copyright (C) 2011-2012 Zeno Rogue, see 'hyper.cpp' for details // cells the game is played on int fix6(int a) { return (a+96)% 6; } struct cell : gcell { char type; // 6 for hexagons, 7 for heptagons unsigned char spn[7]; heptagon *master; cell *mov[7]; // meaning very similar to heptagon::move }; int cellcount = 0; void initcell(cell *c); // from game.cpp cell *newCell(int type, heptagon *master) { cell *c = new cell; cellcount++; c->type = type; c->master = master; for(int i=0; i<7; i++) c->mov[i] = NULL; initcell(c); return c; } void merge(cell *c, int d, cell *c2, int d2) { c->mov[d] = c2; c->spn[d] = d2; c2->mov[d2] = c; c2->spn[d2] = d; } typedef unsigned short eucoord; cell*& euclideanAtCreate(eucoord x, eucoord y); union heptacoder { heptagon *h; struct { eucoord x; eucoord y; } c; }; void decodeMaster(heptagon *h, eucoord& x, eucoord& y) { heptacoder u; u.h = h; x = u.c.x; y = u.c.y; } heptagon* encodeMaster(eucoord x, eucoord y) { heptacoder u; u.c.x = x; u.c.y = y; return u.h; } // very similar to createMove in heptagon.cpp cell *createMov(cell *c, int d) { if(euclid && !c->mov[d]) { eucoord x, y; decodeMaster(c->master, x, y); for(int dx=-1; dx<=1; dx++) for(int dy=-1; dy<=1; dy++) euclideanAtCreate(x+dx, y+dy); if(!c->mov[d]) { printf("fail!\n"); } } if(c->mov[d]) return c->mov[d]; else if(c->type == 7) { cell *n = newCell(6, c->master); c->mov[d] = n; n->mov[0] = c; c->spn[d] = 0; n->spn[0] = d; heptspin hs; hs.h = c->master; hs.spin = d; heptspin hs2 = hsstep(hsspin(hs, 3), 3); // merge(hs2.h->c7, hs2.spin, n, 2); hs2.h->c7->mov[hs2.spin] = n; n->mov[2] = hs2.h->c7; hs2.h->c7->spn[hs2.spin] = 2; n->spn[2] = hs2.spin; hs2 = hsstep(hsspin(hs, 4), 4); // merge(hs2.h->c7, hs2.spin, n, 4); hs2.h->c7->mov[hs2.spin] = n; n->mov[4] = hs2.h->c7; hs2.h->c7->spn[hs2.spin] = 4; n->spn[4] = hs2.spin; } else if(d == 5) { int di = fixrot(c->spn[0]+1); cell *c2 = createMov(c->mov[0], di); merge(c, 5, c2, fix6(c->mov[0]->spn[di] + 1)); // c->mov[5] = c->mov[0]->mov[fixrot(c->spn[0]+1)]; // c->spn[5] = fix6(c->mov[0]->spn[fixrot(c->spn[0]+1)] + 1); } else if(d == 1) { int di = fixrot(c->spn[0]-1); cell *c2 = createMov(c->mov[0], di); merge(c, 1, c2, fix6(c->mov[0]->spn[di] - 1)); // c->mov[1] = c->mov[0]->mov[fixrot(c->spn[0]-1)]; // c->spn[1] = fix6(c->mov[0]->spn[fixrot(c->spn[0]-1)] - 1); } else if(d == 3) { int di = fixrot(c->spn[2]-1); cell *c2 = createMov(c->mov[2], di); merge(c, 3, c2, fix6(c->mov[2]->spn[di] - 1)); // c->mov[3] = c->mov[2]->mov[fixrot(c->spn[2]-1)]; // c->spn[3] = fix6(c->mov[2]->spn[fixrot(c->spn[2]-1)] - 1); } return c->mov[d]; } // similar to heptspin from heptagon.cpp struct cellwalker { cell *c; int spin; cellwalker(cell *c, int spin) : c(c), spin(spin) {} cellwalker() {} }; void cwspin(cellwalker& cw, int d) { cw.spin = (cw.spin+d + 42) % cw.c->type; } bool cwstepcreates(cellwalker& cw) { return cw.c->mov[cw.spin] == NULL; } void cwstep(cellwalker& cw) { createMov(cw.c, cw.spin); int nspin = cw.c->spn[cw.spin]; cw.c = cw.c->mov[cw.spin]; cw.spin = nspin; } void eumerge(cell* c1, cell *c2, int s1, int s2) { if(!c2) return; c1->mov[s1] = c2; c1->spn[s1] = s2; c2->mov[s2] = c1; c2->spn[s2] = s1; } struct euclideanSlab { cell* a[256][256]; euclideanSlab() { for(int y=0; y<256; y++) for(int x=0; x<256; x++) a[y][x] = NULL; } ~euclideanSlab() { for(int y=0; y<256; y++) for(int x=0; x<256; x++) if(a[y][x]) delete a[y][x]; } }; euclideanSlab* euclidean[256][256]; // map, cell*> euclidean; cell*& euclideanAt(eucoord x, eucoord y) { euclideanSlab*& slab(euclidean[y>>8][x>>8]); if(!slab) slab = new euclideanSlab; return slab->a[y&255][x&255]; } cell*& euclideanAtCreate(eucoord x, eucoord y) { cell*& c ( euclideanAt(x,y) ); if(!c) { c = newCell(6, &origin); c->master = encodeMaster(x,y); euclideanAt(x,y) = c; eumerge(c, euclideanAt(x+1,y), 0, 3); eumerge(c, euclideanAt(x,y+1), 1, 4); eumerge(c, euclideanAt(x-1,y+1), 2, 5); eumerge(c, euclideanAt(x-1,y), 3, 0); eumerge(c, euclideanAt(x,y-1), 4, 1); eumerge(c, euclideanAt(x+1,y-1), 5, 2); } return c; } // initializer (also inits origin from heptagon.cpp) void initcells() { origin.s = hsOrigin; origin.fjordval = 98; for(int i=0; i<7; i++) origin.move[i] = NULL; origin.alt = NULL; origin.distance = 0; if(euclid) origin.c7 = euclideanAtCreate(0,0); else origin.c7 = newCell(7, &origin); // origin.fjordval = } #define DEBMEM(x) // { x fflush(stdout); } void clearcell(cell *c) { if(!c) return; DEBMEM ( printf("c%d %p\n", c->type, c); ) for(int t=0; ttype; t++) if(c->mov[t]) { DEBMEM ( printf("mov %p [%p] S%d\n", c->mov[t], c->mov[t]->mov[c->spn[t]], c->spn[t]); ) if(c->mov[t]->mov[c->spn[t]] != NULL && c->mov[t]->mov[c->spn[t]] != c) { printf("cell error\n"); exit(1); } c->mov[t]->mov[c->spn[t]] = NULL; } DEBMEM ( printf("DEL %p\n", c); ) delete c; } heptagon deletion_marker; #include void clearfrom(heptagon *at) { queue q; q.push(at); at->alt = &deletion_marker; //int maxq = 0; while(!q.empty()) { at = q.front(); // if(q.size() > maxq) maxq = q.size(); q.pop(); DEBMEM ( printf("from %p\n", at); ) for(int i=0; i<7; i++) if(at->move[i]) { if(at->move[i]->alt != &deletion_marker) q.push(at->move[i]); at->move[i]->alt = &deletion_marker; DEBMEM ( printf("!mov %p [%p]\n", at->move[i], at->move[i]->move[at->spin[i]]); ) if(at->move[i]->move[at->spin[i]] != NULL && at->move[i]->move[at->spin[i]] != at) { printf("hept error\n"); exit(1); } at->move[i]->move[at->spin[i]] = NULL; at->move[i] = NULL; } DEBMEM ( printf("at %p\n", at); ) if(at->c7) { for(int i=0; i<7; i++) clearcell(at->c7->mov[i]); clearcell(at->c7); } DEBMEM ( printf("!DEL %p\n", at); ) if(at != &origin) delete at; } //printf("maxq = %d\n", maxq); } void verifycell(cell *c) { int t = c->type; for(int i=0; imov[i]; if(c2) { if(t == 7) verifycell(c2); if(c2->mov[c->spn[i]] && c2->mov[c->spn[i]] != c) printf("cell error %p %p\n", c, c2); } } } void verifycells(heptagon *at) { for(int i=0; i<7; i++) if(at->move[i] && at->spin[i] == 0 && at->move[i] != &origin) verifycells(at->move[i]); for(int i=0; i<7; i++) if(at->move[i] && at->move[i]->move[at->spin[i]] && at->move[i]->move[at->spin[i]] != at) { printf("hexmix error %p %p %p\n", at, at->move[i], at->move[i]->move[at->spin[i]]); } verifycell(at->c7); } bool ishept(cell *c) { // EUCLIDEAN if(euclid) { eucoord x, y; decodeMaster(c->master, x, y); return (short(y+2*x))%3 == 0; } else return c->type == 7; } void clearMemory() { extern void clearGameMemory(); clearGameMemory(); // EUCLIDEAN if(euclid) { for(int y=0; y<256; y++) for(int x=0; x<256; x++) if(euclidean[y][x]) { delete euclidean[y][x]; euclidean[y][x] = NULL; } } else { DEBMEM ( verifycells(&origin); ) clearfrom(&origin); for(int i=0; itype == 7) return c->master->fjordval >> 3; else { return fjord_hexagon( fjordval(createMov(c,0)), fjordval(createMov(c,2)), fjordval(createMov(c,4)) ); } } int eudist(short sx, short sy) { int z0 = abs(sx); int z1 = abs(sy); int z2 = abs(sx+sy); return max(max(z0,z1), z2); } int celldist(cell *c) { if(euclid) { eucoord x, y; decodeMaster(c->master, x, y); return eudist(x, y); } if(c->type == 7) return c->master->distance; int dx[3]; for(int u=0; u<3; u++) dx[u] = createMov(c, u+u)->master->distance; int mi = min(min(dx[0], dx[1]), dx[2]); if(dx[0] > mi+2 || dx[1] > mi+2 || dx[2] > mi+2) return -1; // { printf("cycle error!\n"); exit(1); } if(dx[0] == mi+2 || dx[1] == mi+2 || dx[2] == mi+2) return mi+1; return mi; } #define ALTDIST_BOUNDARY 99999 #define ALTDIST_UNKNOWN 99998 // defined in 'game' int euclidAlt(short x, short y); int celldistAlt(cell *c) { if(euclid) { eucoord x, y; decodeMaster(c->master, x, y); return euclidAlt(x, y); } if(c->type == 7) return c->master->alt->distance; int dx[3]; for(int u=0; u<3; u++) if(createMov(c, u+u)->master->alt == NULL) return ALTDIST_UNKNOWN; for(int u=0; u<3; u++) dx[u] = createMov(c, u+u)->master->alt->distance; int mi = min(min(dx[0], dx[1]), dx[2]); if(dx[0] > mi+2 || dx[1] > mi+2 || dx[2] > mi+2) return ALTDIST_BOUNDARY; // { printf("cycle error!\n"); exit(1); } if(dx[0] == mi+2 || dx[1] == mi+2 || dx[2] == mi+2) return mi+1; return mi; } #define GRAIL_FOUND 0x4000 #define GRAIL_RADIUS_MASK 0x3FFF