// Hyperbolic Rogue - Floor Shapes // Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details /** \file floorshapes.cpp * \brief Adjusting the floor shapes to various geometries. */ namespace hr { #if CAP_SHAPES #if HDR struct qfloorinfo { transmatrix spin; const struct hpcshape *shape; floorshape *fshape; struct textureinfo *tinf; int usershape; }; extern qfloorinfo qfi; #endif EX vector floor_texture_vertices; EX struct renderbuffer *floor_textures; void geometry_information::init_floorshapes() { all_escher_floorshapes.clear(); all_plain_floorshapes = { &shFloor, &shMFloor, &shMFloor2, &shMFloor3, &shMFloor4, &shFullFloor, &shBigTriangle, &shTriheptaFloor, &shBigHepta }; for(auto s: all_plain_floorshapes) s->is_plain = true; auto init_escher = [this] (escher_floorshape& sh, int s0, int s1, int noft=0, int s2=0) { sh.shapeid0 = s0; sh.shapeid1 = s1; sh.noftype = noft; sh.shapeid2 = s2; sh.scale = 1; sh.is_plain = false; all_escher_floorshapes.push_back(&sh); }; init_escher(shStarFloor, 1,2); init_escher(shCloudFloor, 3, 4); init_escher(shCrossFloor, 5, 6, 2, 54); init_escher(shChargedFloor, 7, 385, 1, 10); init_escher(shSStarFloor, 11, 12); init_escher(shOverFloor, 13, 15, 1, 14); init_escher(shTriFloor, 17, 18, 0, 385); init_escher(shFeatherFloor, 19, 21, 1, 20); init_escher(shBarrowFloor, 23, 24, 1, 25); init_escher(shNewFloor, 26, 27, 2, 54); init_escher(shTrollFloor, 28, 29); init_escher(shButterflyFloor, 325, 326, 1, 178); init_escher(shLavaFloor, 359, 360, 1, 178); init_escher(shLavaSeabed, 386, 387, 1, 178); init_escher(shSeabed, 334, 335); init_escher(shCloudSeabed, 336, 337); init_escher(shCaveSeabed, 338, 339, 2, 54); init_escher(shPalaceFloor, 45, 46, 0, 385); init_escher(shDemonFloor, 51, 50, 1, 178); init_escher(shCaveFloor, 52, 53, 2, 54); init_escher(shDesertFloor, 55, 56, 0, 4); init_escher(shPowerFloor, 57, 58, 0, 12); /* dragon */ init_escher(shRoseFloor, 174, 175, 1, 173); init_escher(shSwitchFloor, 377, 378, 1, 379); init_escher(shTurtleFloor, 176, 177, 1, 178); for(int i: {0,1,2}) init_escher(shRedRockFloor[i], 55, 56); init_escher(shDragonFloor, 181, 182, 2, 183); /* dragon */ int ids = 0; for(auto sh: all_plain_floorshapes) sh->id = ids++; for(auto sh: all_escher_floorshapes) sh->id = ids++; } typedef pair> matrixitem; struct mesher { eGeometry g; int sym; ld bspi; hyperpoint lcorner, rcorner, mfar[2], vfar[4]; }; mesher msh(eGeometry g, int sym, ld main, ld v0, ld v1, ld bspi, ld scale) { main *= scale; v0 *= scale; v1 *= scale; mesher m; m.sym = sym; m.bspi = bspi; dynamicval dg(geometry, g); hyperpoint rot = xpush(v0) * xspinpush0(M_PI - M_PI/sym, main); hyperpoint bnlfar = xpush(v0) * spin(M_PI) * rspintox(rot) * rspintox(rot) * rspintox(rot) * xpush0(hdist0(rot)); hyperpoint bnrfar = xpush(v0) * spin(M_PI) * spintox(rot) * spintox(rot) * spintox(rot) * xpush0(hdist0(rot)); m.lcorner = xspinpush0 (bspi-M_PI/sym, main); m.rcorner = xspinpush0 (bspi+M_PI/sym, main); m.mfar[0] = xspinpush0 (bspi, v0); m.mfar[1] = xspinpush0 (bspi, v1); m.vfar[0] = spin(bspi) * bnlfar; m.vfar[2] = spin(bspi) * bnrfar; m.vfar[1] = spin(-2*M_PI/sym) * m.vfar[2]; m.vfar[3] = spin(+2*M_PI/sym) * m.vfar[0]; return m; } struct matrixlist { mesher o, n; vector v; }; matrixitem genitem(const transmatrix& m1, const transmatrix& m2, int nsym) { matrixitem mi; mi.first = m1; for(int i=0; i lst; for(int i=0; i dg(geometry, gNormal); lst.push_back(hpxy(polydata[whereis+2*i], polydata[whereis+2*i+1])); } if(sym == 2) for(int i=qty-1; i>=0; i--) { dynamicval dg(geometry, gNormal); lst.push_back(hpxy(polydata[whereis+2*i], -polydata[whereis+2*i+1])); } hyperpoint lstmid = hpxyz(0,0,0); for(auto pp: lst) lstmid += pp; transmatrix T = spin(-m.o.bspi); while((spin(2*M_PI / rots) * T* lstmid)[0] < (T*lstmid)[0]) T = spin(2*M_PI / rots) * T; while((spin(-2*M_PI / rots) * T* lstmid)[0] < (T*lstmid)[0]) T = spin(-2*M_PI / rots) * T; T = spin(m.o.bspi) * T; for(auto &pp: lst) pp = T * pp; if(osym % rots && rots % osym) printf("warning: rotation oddity (shapeid %d, osym=%d rots=%d)\n", shapeid, osym, rots); if(rots > osym && rots % osym == 0) { int rep = rots / osym; int s = lst.size(); for(int i=0; i -1e-5 && z[1] > -1e-5 && z[GDIM] > -1e-5) { nh = m.second[r] * z, mapped++; } } if(mapped == 0) printf("warning: not mapped (shapeid %d)\n", shapeid); hpcpush(mid(nh, nh)); } } hpcpush(hpc[last->s]); } void geometry_information::bshape_regular(floorshape &fsh, int id, int sides, int shift, ld size, cell *c) { fsh.b.resize(2); fsh.shadow.resize(2); #if CAP_BT if(binarytiling) { const int STEP = vid.texture_step; for(int t=0; t<2; t++) { if(t == 0) bshape(fsh.b[id], fsh.prio); if(t == 1) bshape(fsh.shadow[id], fsh.prio); for(int i=0; is]); } for(int k=0; ktype; i++) { fsh.gpside[k][i].resize(2); bshape(fsh.gpside[k][i][id], PPR::LAKEWALL); hyperpoint h0 = binary::get_corner_horo_coordinates(c, i) * size; hyperpoint h1 = binary::get_corner_horo_coordinates(c, i+1) * size; hyperpoint hd = (h1 - h0) / STEP; for(int j=0; j<=STEP; j++) hpcpush(iddspin(c, i) * binary::get_horopoint(h0 + hd * j)); chasmifyPoly(dlow_table[k], dhi_table[k], k); } } return; } #endif bshape(fsh.b[id], fsh.prio); for(int t=0; t<=sides; t++) hpcpush(xspinpush0(t*2 * M_PI / sides + shift * M_PI / S42, size)); bshape(fsh.shadow[id], fsh.prio); for(int t=0; t<=sides; t++) hpcpush(xspinpush0(t*2 * M_PI / sides + shift * M_PI / S42, size * SHADMUL)); for(int k=0; k void sizeto(T& t, int n) { if(isize(t) <= n) t.resize(n+1); } // !siid equals pseudohept(c) void geometry_information::generate_floorshapes_for(int id, cell *c, int siid, int sidir) { DEBBI(DF_POLY, ("generate_floorshapes_for ", id)); for(auto pfsh: all_plain_floorshapes) { auto& fsh = *pfsh; if(STDVAR && !archimedean && !penrose) { // standard and binary ld hexside = fsh.rad0, heptside = fsh.rad1; for(int k=0; k cornerlist; int cor = c->type; if(&fsh == &shTriheptaFloor) { if(!siid) { for(int i=0; ic.fix(ri); cornerlist.push_back(mid(get_corner_position(c, ri, 3.1), get_corner_position(c, c->c.fix(ri+1), 3.1))); } } } else if(&fsh == &shBigTriangle) { if(!siid) { for(int i=0; ic.fix(ri); hyperpoint nc = nearcorner(c, ri); cornerlist.push_back(mid_at(hpxy(0,0), nc, .94)); } } } else if(&fsh == &shBigHepta) { if(!siid) { for(int i=0; itype; m.n.sym = cor; int v = sidir+siid; for(int ii=0; ii<2; ii++) { int i = 0; for(int d=0; d= 4 if(WDIM == 2 && GDIM == 3) { finishshape(); for(auto pfsh: all_plain_floorshapes) { auto& fsh = *pfsh; for(int i=fsh.shadow[id].s; iflags |= POLY_TRIANGLES; last->tinf = &floor_texture_vertices[fsh.id]; last->texture_offset = 0; #if CAP_BT if(binarytiling) for(int t=0; ttype; t++) texture_order([&] (ld x, ld y) { hyperpoint left = binary::get_corner_horo_coordinates(c, t); hyperpoint right = binary::get_corner_horo_coordinates(c, t+1); hpcpush(orthogonal_move(binary::get_horopoint(left * x + right * y), dfloor_table[k])); }); else #endif if(1) { int s = fsh.b[id].s; int e = fsh.b[id].e-1; for(int t=0; tflags |= POLY_TRIANGLES; last->tinf = &floor_texture_vertices[fsh.id]; last->texture_offset = 0; ld h = (FLOOR - WALL) / (co+1); ld top = co ? (FLOOR + WALL) / 2 : WALL; #if CAP_BT if(binarytiling) for(int t=0; ttype; t++) texture_order([&] (ld x, ld y) { hyperpoint left = binary::get_corner_horo_coordinates(c, t); hyperpoint right = binary::get_corner_horo_coordinates(c, t+1); hpcpush(orthogonal_move(binary::get_horopoint(left * x + right * y), top + h * (x+y))); }); else #endif if(1) { int s = fsh.b[id].s; int e = fsh.b[id].e-1; for(int t=0; t ncor(approx_nearcorner, true); heptagon master; cell model; model.master = &master; model.type = 4; for(int i=0; i<2; i++) { master.s = hstate(i); /* kite/dart shape */ generate_floorshapes_for(i, &model, 0, 0); } } #endif #if CAP_ARCM else if(archimedean) { heptagon master; cell model; model.master = &master; arcm::parent_index_of(&master) = 0; auto &ac = arcm::current; for(int i=0; i<2*ac.N + 2; i++) { arcm::id_of(&master) = i; model.type = isize(ac.triangles[i]); if(DUAL) model.type /= 2, arcm::parent_index_of(&master) = !(i&1); if(BITRUNCATED) generate_floorshapes_for(i, &model, !arcm::pseudohept(&model), arcm::pseudohept(&model) ? 0 : 1^(i&1)); else if(geosupport_football() == 2) generate_floorshapes_for(i, &model, !arcm::pseudohept(&model), i >= 4 ? 1 : 0); else generate_floorshapes_for(i, &model, 0, 0); } } #endif else if(geometry == gBinary4) { heptagon modelh; cell model; model.master = &modelh; model.type = S7; for(int i: {0,1}) { modelh.zebraval = i; generate_floorshapes_for(i, &model, 1, 0); } } else if(PURE && geometry != gBinaryTiling && geosupport_football() < 2) { cell model; model.type = S7; generate_floorshapes_for(0, &model, 1, 0); } else { cell model; model.type = S6; generate_floorshapes_for(0, &model, 0, 0); model.type = S7; generate_floorshapes_for(1, &model, binarytiling ? 0 : 1, 0); } } #if CAP_GP EX namespace gp { int pshid[3][8][32][32][8]; int nextid; EX void clear_plainshapes() { for(int m=0; m<3; m++) for(int sd=0; sd<8; sd++) for(int i=0; i<32; i++) for(int j=0; j<32; j++) for(int k=0; k<8; k++) pshid[m][sd][i][j][k] = -1; nextid = 0; } void build_plainshape(int& id, gp::local_info& li, cell *c0, int siid, int sidir) { id = nextid++; bool master = !(li.relative.first||li.relative.second); int cor = master ? S7 : SG6; if(master) li.last_dir = -1; DEBB(DF_GP, (format("last=%d at=%d,%d tot=%d siid=%d sidir=%d cor=%d id=%d\n", li.last_dir, li.relative.first, li.relative.second, li.total_dir, siid, sidir, cor, id))); cgi.generate_floorshapes_for(id, c0, siid, sidir); cgi.finishshape(); cgi.extra_vertices(); } int get_plainshape_id(cell *c) { int siid, sidir; if(geosupport_threecolor() == 2) { auto si = patterns::getpatterninfo(c, patterns::PAT_COLORING, patterns::SPF_NO_SUBCODES); siid = si.id>>2; // if(siid == 2) si.dir++; // if(siid != pattern_threecolor(c)) printf("threecolor mismatch\n"); // if(pattern_threecolor(createMov(c, c->fixd(si.dir))) != (siid+1)%3) printf("threecolor mismatch direction\n"); sidir = c->c.fix(si.dir); } else if(geosupport_football() == 2) { siid = !pseudohept(c); sidir = !ishex1(c); } else { siid = 0; sidir = 0; } auto& id = pshid[siid][sidir][draw_li.relative.first&31][draw_li.relative.second&31][gmod(draw_li.total_dir, S6)]; if(id == -1 && sphere && isize(cgi.shFloor.b) > 0) { forCellEx(c1, c) if(!gmatrix0.count(c1)) return 0; } if(id == -1) build_plainshape(id, draw_li, c, siid, sidir); return id; } EX } #endif qfloorinfo qfi; void set_no_floor() { qfi.fshape = NULL; qfi.shape = NULL; qfi.tinf = NULL; qfi.usershape = -1; } void set_floor(floorshape& sh) { qfi.fshape = &sh; qfi.shape = NULL; qfi.tinf = NULL; qfi.usershape = -1; } void set_floor(hpcshape& sh) { qfi.shape = &sh; qfi.fshape = NULL; qfi.spin = Id; qfi.tinf = NULL; qfi.usershape = -1; } void set_floor(const transmatrix& spin, hpcshape& sh) { qfi.shape = &sh; qfi.fshape = NULL; qfi.spin = spin; qfi.usershape = -1; } int shvid(cell *c) { if(geosupport_football() == 2) return pseudohept(c); else if(geometry == gBinaryTiling) return c->type-6; else if(penrose) return kite::getshape(c->master); else if(geometry == gBinary4) return c->master->zebraval; else if(PURE) return 0; else return ctof(c); } dqi_poly *draw_shapevec(cell *c, const transmatrix& V, const vector &shv, color_t col, PPR prio = PPR::DEFAULT) { if(!c) return &queuepolyat(V, shv[0], col, prio); else if(WDIM == 3) return NULL; #if CAP_GP else if(GOLDBERG) { int id = gp::get_plainshape_id(c); if(isize(shv) > id) return &queuepolyat(V, shv[id], col, prio); return NULL; } #endif #if CAP_IRR else if(IRREGULAR) { int id = irr::cellindex[c]; if(id < 0 || id >= isize(shv)) { return NULL; } return &queuepolyat(V, shv[id], col, prio); } #endif #if CAP_ARCM else if(archimedean) { return &queuepolyat(V, shv[arcm::id_of(c->master)], col, prio); } #endif else if((euclid || GOLDBERG) && ishex1(c) && !penrose) return &queuepolyat(V * pispin, shv[0], col, prio); else if(!(S7&1) && PURE && !penrose) { auto si = patterns::getpatterninfo(c, patterns::PAT_COLORING, 0); if(si.id == 8) si.dir++; transmatrix D = applyPatterndir(c, si); return &queuepolyat(V*D, shv[pseudohept(c)], col, prio); } else return &queuepolyat(V, shv[shvid(c)], col, prio); } void draw_floorshape(cell *c, const transmatrix& V, const floorshape &fsh, color_t col, PPR prio = PPR::DEFAULT) { draw_shapevec(c, V, fsh.b, col, prio); } void draw_qfi(cell *c, const transmatrix& V, color_t col, PPR prio = PPR::DEFAULT, vector floorshape::* tab = &floorshape::b) { if(qfi.shape) queuepolyat(V * qfi.spin, *qfi.shape, col, prio); else if(qfi.usershape >= 0) { mapeditor::drawUserShape(V * qfi.spin, mapeditor::sgFloor, qfi.usershape, col, c); } else if(!qfi.fshape) ; #if CAP_TEXTURE else if(qfi.tinf) { auto& poly = queuetable(V * qfi.spin, qfi.tinf->vertices, isize(qfi.tinf->vertices), texture::config.mesh_color, texture::config.recolor(col), prio == PPR::DEFAULT ? PPR::FLOOR : prio); poly.tinf = qfi.tinf; poly.offset_texture = 0; poly.flags = POLY_INVERSE; } #endif else draw_shapevec(c, V, (qfi.fshape->*tab), col, prio); } bool floorshape_debug; void viewmat() { if(floorshape_debug) { transmatrix V = ggmatrix(cwt.at); for(int i=0; itype; i++) { hyperpoint ci = V * get_corner_position(cwt.at, i); hyperpoint ci1 = V * get_corner_position(cwt.at, (i+1) % cwt.at->type); hyperpoint cn = V * nearcorner(cwt.at, i); hyperpoint cf0 = V * farcorner(cwt.at, i, 0); hyperpoint cf1 = V * farcorner(cwt.at, i, 1); queuestr(ci, 20, its(i), 0x0000FF, 1); if(vid.grid) queuestr(cn, 20, its(i), 0x00FF00, 1); else queuestr(gmatrix[cwt.at->move(i)] * C0, 20, its(i), 0x00FFFF, 1); queueline(V * C0, ci, 0xFFFFFFFF, 3); queueline(ci, ci1, 0xFFFF00FF, 3); queueline(ci, cn, 0xFF00FFFF, 3); queueline(ci1, cn, 0xFF0000FF, 3); queueline(ci, cf0, 0x00FFFFFF, 3); queueline(cn, cf0, 0x00FF00FF, 3); queueline(cn, cf1, 0x0000FFFF, 3); } } } #if CAP_COMMANDLINE auto floor_hook = addHook(hooks_args, 100, [] () { using namespace arg; if(argis("-floordebug")) { floorshape_debug = true; return 0; } else return 1; }); #endif #endif #if MAXMDIM >= 4 void draw_shape_for_texture(floorshape* sh) { int id = sh->id; ld gx = (id % 8) * 1.5 - 3.5 * 1.5; ld gy = (id / 8) * 1.5 - 3.5 * 1.5; if(1) { dynamicval v(vid.linewidth, 8); curvepoint(eupush(gx+.5, gy-.5) * C0); curvepoint(eupush(gx+.5, gy+.5) * C0); curvepoint(eupush(gx-.5, gy+.5) * C0); curvepoint(eupush(gx-.5, gy-.5) * C0); curvepoint(eupush(gx+.5, gy-.5) * C0); queuecurve(0x000000FF, 0xFFFFFFFF - 0x1010100 * (sh->pstrength * 24/10), PPR::LAKELEV); } poly_outline = 0xFFFFFFFF - 0x1010100 * (sh->pstrength * 3/2); for(int a=-1; a<=1; a++) for(int b=-1; b<=1; b++) queuepoly(eupush(gx+a/2., gy+b/2.), sh->b[0], 0xFFFFFFFF); if(sh == &cgi.shCrossFloor) { queuepoly(eupush(gx, gy) * spin(M_PI/4), cgi.shCross, 0x808080FF); } if(1) { dynamicval v(vid.linewidth, 8); curvepoint(eupush(gx+.25, gy-.25) * C0); curvepoint(eupush(gx+.25, gy+.25) * C0); curvepoint(eupush(gx-.25, gy+.25) * C0); curvepoint(eupush(gx-.25, gy-.25) * C0); curvepoint(eupush(gx+.25, gy-.25) * C0); queuecurve(0x40404000 + sh->fstrength * 192/10, 0, PPR::LINE); } auto& ftv = floor_texture_vertices[sh->id]; ftv.tvertices.clear(); ftv.texture_id = floor_textures->renderedTexture; hyperpoint center = eupush(gx, gy) * C0; hyperpoint v1 = hpxyz3(0.25, 0.25, 0, 0); hyperpoint v2 = hpxyz3(0.25, -0.25, 0, 0); for(int a=0; a vi(vid, vid); vid.xres = FLOORTEXTURESIZE; vid.yres = FLOORTEXTURESIZE; vid.scale = 0.25; vid.camera_angle = 0; vid.alpha = 1; dynamicval lw(vid.linewidth, 2); floor_textures = new renderbuffer(vid.xres, vid.yres, vid.usingGL); resetbuffer rb; floor_texture_vertices.resize(isize(all_escher_floorshapes) + isize(all_plain_floorshapes)); auto cd = current_display; cd->xtop = cd->ytop = 0; cd->xsize = cd->ysize = FLOORTEXTURESIZE; cd->xcenter = cd->ycenter = cd->scrsize = FLOORTEXTURESIZE/2; cd->radius = cd->scrsize * vid.scale; floor_textures->enable(); floor_textures->clear(0); // 0xE8E8E8 = 1 // gradient vertices vector gv; current_display->scrdist = 0; gv.emplace_back(-1, -1, 0, 0, 0); gv.emplace_back(+1, -1, 0, 0, 0); gv.emplace_back(+1, +1, 1, 1, 1); gv.emplace_back(-1, -1, 0, 0, 0); gv.emplace_back(+1, +1, 1, 1, 1); gv.emplace_back(-1, +1, 1, 1, 1); glhr::switch_mode(glhr::gmVarColored, glhr::shader_projection::standard); current_display->set_all(0); glhr::new_projection(); glhr::id_modelview(); glhr::prepare(gv); glhr::set_depthtest(false); glDrawArrays(GL_TRIANGLES, 0, isize(gv)); shOverFloor.pstrength = 20; shFeatherFloor.pstrength = 40; shFeatherFloor.fstrength = 5; shTrollFloor.pstrength = 25; shCaveFloor.pstrength = 40; shCaveFloor.fstrength = 0; shDesertFloor.pstrength = 30; shDesertFloor.fstrength =10; shRoseFloor.pstrength = 30; shDragonFloor.pstrength = 30; shBarrowFloor.pstrength = 40; // all using Tortoise for(auto v: all_escher_floorshapes) if(v->shapeid2 == 178) v->pstrength = 20; ptds.clear(); for(auto v: all_plain_floorshapes) draw_shape_for_texture(v); for(auto v: all_escher_floorshapes) draw_shape_for_texture(v); drawqueue(); /* SDL_Surface *sdark = floor_textures->render(); IMAGESAVE(sdark, "texture-test.png"); */ rb.reset(); last_texture_step = vid.texture_step; } EX void make_floor_textures() { DEBBI(DF_POLY, ("make_floor_textures")); dynamicval g(geometry, gEuclidSquare); dynamicval gm(pmodel, mdDisk); dynamicval va(variation, eVariation::pure); dynamicval a3(vid.always3, false); dynamicval hq(inHighQual, true); dynamicval hd(darken, 0); dynamicval gd(vid.depth, 1); dynamicval gc(vid.camera, 1); dynamicval dcgip(cgip, cgip); dynamicval gvs(vid.stereo_mode, sOFF); dynamicval vgp(global_projection, 0); check_cgi(); cgi.make_floor_textures_here(); } #endif }