// Hyperbolic Rogue // geometrical constants // Copyright (C) 2011-2012 Zeno Rogue, see 'hyper.cpp' for details ld tessf, crossf, hexf, hcrossf, hexhexdist; // tessf: distance from heptagon center to another heptagon center // hexf: distance from heptagon center to heptagon vertex // crossf: distance from heptagon center to adjacent hexagon center // hexhexdist: distance between adjacent hexagon vertices #define ALPHA (M_PI*2/S7) hyperpoint Crad[42]; transmatrix heptmove[7], hexmove[7]; transmatrix invheptmove[7], invhexmove[7]; transmatrix spinmatrix[84]; const transmatrix& getspinmatrix(int id) { while(id>=S84) id -= S84; while(id<0) id += S84; return spinmatrix[id]; } // the results are: // hexf = 0.378077 hcrossf = 0.620672 tessf = 1.090550 // hexhexdist = 0.566256 // the distance between two hexagon centers void precalc() { DEBB(DF_INIT, (debugfile,"precalc\n")); if(euclid) return; ld fmin = 1, fmax = 2; for(int p=0; p<100; p++) { ld f = (fmin+fmax) / 2; hyperpoint H = xpush(f) * C0; ld v1 = intval(H, C0), v2 = intval(H, spin(2*M_PI/S7)*H); if(sphere ? v1 < v2 : v1 > v2) fmin = f; else fmax = f; } tessf = fmin; fmin = 0, fmax = sphere ? M_PI / 2 : 2; for(int p=0; p<100; p++) { ld f = (fmin+fmax) / 2; hyperpoint H = spin(M_PI/S7) * xpush(f) * C0; ld v1 = intval(H, C0), v2 = intval(H, xpush(tessf) * C0); if(v1 < v2) fmin = f; else fmax = f; } hcrossf = fmin; crossf = purehepta ? tessf : hcrossf; fmin = 0, fmax = tessf; for(int p=0; p<100; p++) { ld f = (fmin+fmax) / 2; hyperpoint H = xpush(f) * C0; hyperpoint H1 = spin(2*M_PI/S7) * H; hyperpoint H2 = xpush(tessf-f) * C0; ld v1 = intval(H, H1), v2 = intval(H, H2); if(v1 < v2) fmin = f; else fmax = f; } hexf = fmin; // printf("hexf = %.6Lf cross = %.6Lf tessf = %.6Lf\n", hexf, crossf, tessf); for(int i=0; i<S42; i++) Crad[i] = spin(2*M_PI*i/S42) * xpush(.4) * C0; for(int d=0; d<S7; d++) heptmove[d] = spin(-d * ALPHA) * xpush(tessf) * spin(M_PI); for(int d=0; d<S7; d++) hexmove[d] = spin(-d * ALPHA) * xpush(-crossf)* spin(M_PI); for(int d=0; d<S7; d++) invheptmove[d] = inverse(heptmove[d]); for(int d=0; d<S7; d++) invhexmove[d] = inverse(hexmove[d]); hexhexdist = hdist(xpush(crossf) * C0, spin(M_PI*2/S7) * xpush(crossf) * C0); for(int i=0; i<S84; i++) spinmatrix[i] = spin(i * M_PI / S42); } transmatrix ddi(ld dir, ld dist) { if(euclid) return eupush(cos(M_PI*dir/S42) * dist, -sin(M_PI*dir/S42) * dist); else return spin(M_PI*dir/S42) * xpush(dist) * spin(-M_PI*dir/S42); } hyperpoint ddi0(ld dir, ld dist) { if(euclid) return hpxy(cos(M_PI*dir/S42) * dist, -sin(M_PI*dir/S42) * dist); else return xspinpush0(M_PI*dir/S42, dist); } namespace geom3 { int tc_alpha=3, tc_depth=1, tc_camera=2; ld depth = 1; // world below the plane ld camera = 1; // camera above the plane ld wall_height = .3; ld slev = .08; ld lake_top = .25, lake_bottom = .9; ld rock_wall_ratio = .9; ld human_wall_ratio = .7; ld human_height; ld highdetail = 8, middetail = 8; // Here we convert between the following parameters: // abslev: level below the plane // lev: level above the world (abslev = depth-lev) // projection: projection parameter // factor: zoom factor ld abslev_to_projection(ld abslev) { if(sphere || euclid) return camera+abslev; return tanh(abslev) / tanh(camera); } ld projection_to_abslev(ld proj) { if(sphere || euclid) return proj-camera; // tanh(abslev) / tanh(camera) = proj return atanh(proj * tanh(camera)); } ld lev_to_projection(ld lev) { return abslev_to_projection(depth - lev); } ld projection_to_factor(ld proj) { return lev_to_projection(0) / proj; } ld factor_to_projection(ld fac) { return lev_to_projection(0) / fac; } ld lev_to_factor(ld lev) { return projection_to_factor(lev_to_projection(lev)); } ld factor_to_lev(ld fac) { return depth - projection_to_abslev(factor_to_projection(fac)); } // how should we scale at level lev ld scale_at_lev(ld lev) { if(sphere || euclid) return 1; return cosh(depth - lev); } ld INFDEEP, BOTTOM, HELLSPIKE, LAKE, WALL, SLEV[4], FLATEYE, LEG1, LEG, LEG3, GROIN, GROIN1, GHOST, BODY, NECK1, NECK, NECK3, HEAD, ABODY, AHEAD, BIRD; string invalid; void compute() { // tanh(depth) / tanh(camera) == vid.alpha invalid = ""; if(tc_alpha < tc_depth && tc_alpha < tc_camera) vid.alpha = tanh(depth) / tanh(camera); else if(tc_depth < tc_alpha && tc_depth < tc_camera) { ld v = vid.alpha * tanh(camera); if(v<-1 || v>1) invalid = "cannot adjust depth", depth = camera; else depth = atanh(v); } else { ld v = tanh(depth) / vid.alpha; if(v<-1 || v>1) invalid = "cannot adjust camera", camera = depth; else camera = atanh(v); } if(fabs(vid.alpha) < 1e-6) invalid = "does not work with perfect Klein"; if(invalid != "") { INFDEEP = .7; BOTTOM = .8; HELLSPIKE = .85; LAKE = .9; WALL = 1.25; SLEV[0] = 1; SLEV[1] = 1.08; SLEV[2] = 1.16; SLEV[3] = 1.24; FLATEYE = 1.03; LEG1 = 1.025; LEG = 1.05; LEG3 = 1.075; GROIN = 1.09; GROIN1 = 1.105; GHOST = 1.1; BODY = 1.15; NECK1 = 1.16; NECK = 1.17; NECK3 = 1.18; HEAD = 1.19; ABODY = 1.08; AHEAD = 1.12; BIRD = 1.20; } else { INFDEEP = (euclid || sphere) ? 0.01 : lev_to_projection(0) * tanh(camera); WALL = lev_to_factor(wall_height); human_height = human_wall_ratio * wall_height; LEG1 = lev_to_factor(human_height * .1); LEG = lev_to_factor(human_height * .2); LEG3 = lev_to_factor(human_height * .3); GROIN = lev_to_factor(human_height * .4); GROIN1= lev_to_factor(human_height * .5); BODY = lev_to_factor(human_height * .6); NECK1 = lev_to_factor(human_height * .7); NECK = lev_to_factor(human_height * .8); NECK3 = lev_to_factor(human_height * .9); HEAD = lev_to_factor(human_height); ABODY = lev_to_factor(human_height * .4); AHEAD = lev_to_factor(human_height * .6); BIRD = lev_to_factor((human_wall_ratio+1)/2 * wall_height * .8); GHOST = lev_to_factor(human_height * .5); FLATEYE = lev_to_factor(human_height * .15); slev = rock_wall_ratio * wall_height / 3; for(int s=0; s<=3; s++) SLEV[s] = lev_to_factor(rock_wall_ratio * wall_height * s/3); LAKE = lev_to_factor(-lake_top); HELLSPIKE = lev_to_factor(-(lake_top+lake_bottom)/2); BOTTOM = lev_to_factor(-lake_bottom); } } } void initgeo() { // printf("%Lf\n", (ld) hdist0(xpush(-1)*ypush(0.01)*xpush(1)*C0)); precalc(); }