// Hyperbolic Rogue -- Arbitrary Tilings // Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details /** \file arbitrile.cpp * \brief Arbitrary tilings * * Arbitrary tilings, defined in .tes files. */ #include "hyper.h" namespace hr { EX namespace arb { #if HDR struct shape { int id; vector vertices; vector angles; vector edges; vector> connections; int size() { return isize(vertices); } void build_from_angles_edges(); }; struct arbi_tiling { vector shapes; geometryinfo1& get_geometry(); eGeometryClass get_class() { return get_geometry().kind; } ld scale(); }; #endif EX arbi_tiling current; /** id of vertex in the arbitrary tiling */ EX short& id_of(heptagon *h) { return h->zebraval; } void shape::build_from_angles_edges() { hyperpoint at(0, 0, 1, 0); hyperpoint direction(1, 0, 0, 0); vertices.clear(); int n = isize(angles); hyperpoint ctr = Hypc; for(int i=0; i(f); println(hlog, "type = ", s); auto& c = current; c.shapes.clear(); int N = scan(f); int tc = 0; for(int i=0; i(f); for(int s=0; s(f)); cc.angles.push_back(scan(f)); } println(hlog, cc.edges); println(hlog, cc.angles); cc.build_from_angles_edges(); cc.connections.resize(cc.size()); tc += siz; } while(true) { int ai = scan(f); if(ai < 0) break; int as = scan(f); int bi = scan(f); int bs = scan(f); int m = scan(f); c.shapes[ai].connections[as] = {bi, bs, m}; c.shapes[bi].connections[bs] = {ai, as, m}; } println(hlog, "loaded"); } geometryinfo1& arbi_tiling::get_geometry() { return ginf[gEuclid].g; } map > > altmap; EX map> arbi_matrix; EX hrmap *current_altmap; heptagon *build_child(heptspin p, pair adj); struct hrmap_arbi : hrmap { heptagon *origin; heptagon *getOrigin() override { return origin; } hrmap_arbi() { dynamicval curmap(currentmap, this); origin = tailored_alloc (current.shapes[0].size()); origin->s = hsOrigin; origin->emeraldval = 0; origin->zebraval = 0; origin->fiftyval = 0; origin->fieldval = 0; origin->rval0 = origin->rval1 = 0; origin->cdata = NULL; origin->alt = NULL; origin->c7 = newCell(origin->type, origin); origin->distance = 0; heptagon *alt = NULL; /* if(hyperbolic) { dynamicval g(geometry, gNormal); alt = tailored_alloc (S7); alt->s = hsOrigin; alt->emeraldval = 0; alt->zebraval = 0; alt->distance = 0; alt->c7 = NULL; alt->alt = alt; alt->cdata = NULL; current_altmap = newAltMap(alt); } */ transmatrix T = xpush(.01241) * spin(1.4117) * xpush(0.1241) * Id; arbi_matrix[origin] = make_pair(alt, T); altmap[alt].emplace_back(origin, T); cgi.base_distlimit = 0; celllister cl(origin->c7, 1000, 200, NULL); ginf[geometry].distlimit[0] = cgi.base_distlimit = cl.dists.back(); if(sphere) cgi.base_distlimit = SEE_ALL; } ~hrmap_arbi() { /* if(hyperbolic) for(auto& p: arbi_matrix) if(p.second.first->cdata) { delete p.second.first->cdata; p.second.first->cdata = NULL; } */ clearfrom(origin); altmap.clear(); arbi_matrix.clear(); if(current_altmap) { dynamicval g(geometry, gNormal); delete current_altmap; current_altmap = NULL; } } void verify() override { } transmatrix adj(heptagon *h, int dl) override { auto& c = current; int t = id_of(h); auto& sh = c.shapes[t]; int dr = gmod(dl+1, sh.size()); auto& co = sh.connections[dl]; int xt = get<0>(co); int xdl = get<1>(co); // int m = get<2>(co); auto& xsh = c.shapes[xt]; int xdr = gmod(xdl+1, xsh.size()); hyperpoint vl = sh.vertices[dl]; hyperpoint vr = sh.vertices[dr]; hyperpoint vm = mid(vl, vr); transmatrix rm = gpushxto0(vm); hyperpoint xvl = xsh.vertices[xdl]; hyperpoint xvr = xsh.vertices[xdr]; hyperpoint xvm = mid(xvl, xvr); transmatrix xrm = gpushxto0(xvm); transmatrix Res = rgpushxto0(vm) * rspintox(rm*vr) * spintox(xrm*xvl) * xrm; if(hdist(vl, Res*xvr) + hdist(vr, Res*xvl) > .1) { println(hlog, "s1 = ", kz(spintox(rm*vr)), " s2 = ", kz(rspintox(xrm*xvr))); println(hlog, tie(t, dl), " = ", kz(Res)); println(hlog, hdist(vl, Res * xvr), " # ", hdist(vr, Res * xvl)); exit(3); } return Res; } heptagon *create_step(heptagon *h, int d) override { int t = id_of(h); const auto& p = arbi_matrix[h]; heptagon *alt = p.first; auto& sh = current.shapes[t]; auto& co = sh.connections[d]; int xt = get<0>(co); int e = get<1>(co); int m = get<2>(co); println(hlog, h, "@", p.second, " dir ", d, ":"); println(hlog, "adj = ", adj(h, d)); transmatrix T = p.second * adj(h, d); if(hyperbolic) { dynamicval g(geometry, gNormal); dynamicval cm(currentmap, current_altmap); // transmatrix U = T; current_altmap->virtualRebase(alt, T); // U = U * inverse(T); } if(euclid) { /* hash the rough coordinates as heptagon* alt */ size_t s = size_t(T[0][LDIM]+.261) * 124101 + size_t(T[1][LDIM]+.261) * 82143; alt = (heptagon*) s; } for(auto& p2: altmap[alt]) if(eqmatrix(p2.second, T)) { println(hlog, "reuse ", p2.first, " at ", T); h->c.connect(d, p2.first, e, m); return p2.first; } auto h1 = tailored_alloc (current.shapes[xt].size()); println(hlog, "create ", h1, " at ", T); h1->distance = h->distance + 1; h1->zebraval = xt; h1->c7 = newCell(h1->type, h1); h1->alt = nullptr; h->c.connect(d, h1, e, m); arbi_matrix[h1] = make_pair(alt, T); altmap[alt].emplace_back(h1, T); return h1; } void draw() override { dq::visited.clear(); dq::enqueue(centerover->master, cview()); while(!dq::drawqueue.empty()) { auto& p = dq::drawqueue.front(); heptagon *h = get<0>(p); transmatrix V = get<1>(p); dynamicval b(band_shift, get<2>(p)); dq::drawqueue.pop(); if(do_draw(h->c7, V)) drawcell(h->c7, V); for(int i=0; itype; i++) { transmatrix V1 = V * adj(h, i); bandfixer bf(V1); dq::enqueue(h->move(i), V1); } } } transmatrix adj(cell *c, int dir) override { return adj(c->master, dir); } ld spin_angle(cell *c, int d) override { return SPIN_NOT_AVAILABLE; } }; EX hrmap *new_map() { return new hrmap_arbi; } #if CAP_COMMANDLINE int readArgs() { using namespace arg; if(0) ; else if(argis("-arbi")) { PHASEFROM(2); stop_game(); shift(); set_geometry(gArbitrary); load(args()); } else return 1; return 0; } auto hook = addHook(hooks_args, 100, readArgs); #endif EX bool in() { return geometry == gArbitrary; } EX } }