// Hyperbolic Rogue -- models of hyperbolic geometry // Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details /** \file models.cpp * \brief models of hyperbolic geometry: their properties, projection menu * * The actual models are implemented in hypgraph.cpp. Also shaders.cpp, * drawing.cpp, and basegraph.cpp are important. */ namespace hr { EX namespace polygonal { #if ISMOBWEB typedef double precise; #else typedef long double precise; #endif #if HDR static const int MSI = 120; #endif typedef long double xld; typedef complex cxld; EX int SI = 4; EX ld STAR = 0; EX int deg = ISMOBWEB ? 2 : 20; precise matrix[MSI][MSI]; precise ans[MSI]; cxld coef[MSI]; EX ld coefr[MSI], coefi[MSI]; EX int maxcoef, coefid; EX void solve() { if(pmodel == mdPolynomial) { for(int i=0; i 0 ? (1+STAR) : 1) - sin(i0 * (j + 1./SI)) * (STAR > 0 ? STAR : STAR/(1+STAR)); } for(int i=0; i=0; i--) { for(int j=0; j compute(ld x, ld y, int prec) { if(x*x+y*y > 1) { xld r = hypot(x,y); x /= r; y /= r; } if(pmodel == mdPolynomial) { cxld z(x,y); cxld res (0,0); for(int i=maxcoef; i>=0; i--) { res += coef[i]; if(i) res *= z; } return make_pair(real(res), imag(res)); } cxld z(x, y); cxld res (0,0); cxld zp = 1; for(int i=0; i0; i--) { res += ans[i]; res *= zp; } res += ans[0]; res *= z; return make_pair(real(res), imag(res)); } pair compute(ld x, ld y) { return compute(x,y,deg); } EX } #if HDR inline bool mdAzimuthalEqui() { return among(pmodel, mdEquidistant, mdEquiarea, mdEquivolume); } inline bool mdBandAny() { return mdinf[pmodel].flags & mf::pseudoband; } inline bool mdPseudocylindrical() { return mdBandAny() && !(mdinf[pmodel].flags & mf::cylindrical); } #endif EX namespace models { EX string formula = "z^2"; EX eModel basic_model; EX ld rotation = 0; EX ld rotation_xz = 90; EX ld rotation_xy2 = 90; EX int do_rotate = 1; EX ld model_orientation, halfplane_scale, model_orientation_yz; EX ld clip_min, clip_max; EX ld ocos, osin, ocos_yz, osin_yz; EX ld cos_ball, sin_ball; EX bool model_straight, model_straight_yz; EX ld top_z = 5; EX ld model_transition = 1; #if HDR // screen coordinates to logical coordinates: apply_orientation(x,y) // logical coordinates back to screen coordinates: apply_orientation(y,x) template void apply_orientation(A& x, A& y) { if(!model_straight) tie(x,y) = make_pair(x*ocos + y*osin, y*ocos - x*osin); } template void apply_orientation_yz(A& x, A& y) { if(!model_straight_yz) tie(x,y) = make_pair(x*ocos_yz + y*osin_yz, y*ocos_yz - x*osin_yz); } template void apply_ball(A& x, A& y) { tie(x,y) = make_pair(x*cos_ball + y*sin_ball, y*cos_ball - x*sin_ball); } #endif EX transmatrix rotmatrix() { if(DIM == 2) return spin(rotation * degree); return spin(rotation_xy2 * degree) * cspin(0, 2, -rotation_xz * degree) * spin(rotation * degree); } EX ld spiral_angle = 70; EX ld spiral_x = 10; EX ld spiral_y = 7; int spiral_id = 7; EX bool use_atan = false; cld spiral_multiplier; ld right_spiral_multiplier = 1; ld any_spiral_multiplier = 1; ld sphere_spiral_multiplier = 2; EX ld spiral_cone = 360; ld spiral_cone_rad; bool ring_not_spiral; EX void configure() { ld ball = -vid.ballangle * degree; cos_ball = cos(ball), sin_ball = sin(ball); ocos = cos(model_orientation * degree); osin = sin(model_orientation * degree); ocos_yz = cos(model_orientation_yz * degree); osin_yz = sin(model_orientation_yz * degree); model_straight = (ocos > 1 - 1e-9); model_straight_yz = DIM == 2 || (ocos_yz > 1-1e-9); if(history::on) history::apply(); if(!euclid) { ld b = spiral_angle * degree; ld cos_spiral = cos(b); ld sin_spiral = sin(b); spiral_cone_rad = spiral_cone * degree; ring_not_spiral = abs(cos_spiral) < 1e-3; ld mul = 1; if(sphere) mul = .5 * sphere_spiral_multiplier; else if(ring_not_spiral) mul = right_spiral_multiplier; else mul = any_spiral_multiplier * cos_spiral; spiral_multiplier = cld(cos_spiral, sin_spiral) * cld(spiral_cone_rad * mul / 2., 0); } if(euclid) { hyperpoint h = tC0(eumove(spiral_x, spiral_y)); spiral_multiplier = cld(0, 2 * M_PI) / cld(h[0], h[1]); } if(centerover.at && !history::on) if(isize(history::path_for_lineanimation) == 0 || (quotient && history::path_for_lineanimation.back() != centerover.at)) { history::path_for_lineanimation.push_back(centerover.at); } band_shift = 0; } EX bool model_available(eModel pm) { if(nonisotropic) return among(pm, mdDisk, mdPerspective, mdGeodesic); if(pm == mdGeodesic && !sol) return false; if(sphere && (pm == mdHalfplane || pm == mdBall)) return false; if(DIM == 2 && pm == mdPerspective) return false; if(DIM == 2 && pm == mdEquivolume) return false; if(DIM == 3 && among(pm, mdBall, mdHyperboloid, mdFormula, mdPolygonal, mdRotatedHyperboles, mdSpiral, mdHemisphere)) return false; if(pm == mdCentralInversion && !euclid) return false; return true; } EX bool model_has_orientation() { return among(pmodel, mdHalfplane, mdPolynomial, mdPolygonal, mdTwoPoint, mdJoukowsky, mdJoukowskyInverted, mdSpiral, mdSimulatedPerspective, mdTwoHybrid) || mdBandAny(); } EX bool model_has_transition() { return among(pmodel, mdJoukowsky, mdJoukowskyInverted, mdBand) && DIM == 2; } int editpos = 0; EX string get_model_name(eModel m) { if(m == mdDisk && DIM == 3 && hyperbolic) return XLAT("ball model/Gans"); if(nonisotropic) { if(m == mdDisk) return XLAT("simple model: projection"); if(m == mdPerspective) return XLAT("simple model: perspective"); if(m == mdGeodesic) return XLAT("native perspective"); } if(m == mdDisk && DIM == 3) return XLAT("perspective in 4D"); if(m == mdHalfplane && DIM == 3 && hyperbolic) return XLAT("half-space"); if(sphere) return XLAT(mdinf[m].name_spherical); if(euclid) return XLAT(mdinf[m].name_euclidean); if(hyperbolic) return XLAT(mdinf[m].name_hyperbolic); return "?"; } vector > torus_zeros; void match_torus_period() { torus_zeros.clear(); for(int y=0; y<=200; y++) for(int x=-200; x<=200; x++) { if(y == 0 && x <= 0) continue; auto zero = vec_to_cellwalker(euclid_getvec(x, y)); if(zero.at == currentmap->gamestart() && !zero.mirrored) torus_zeros.emplace_back(x, y); } sort(torus_zeros.begin(), torus_zeros.end(), [] (const pair p1, const pair p2) { ld d1 = hdist0(tC0(eumove(p1.first, p1.second))); ld d2 = hdist0(tC0(eumove(p2.first, p2.second))); if(d1 < d2 - 1e-6) return true; if(d1 > d2 + 1e-6) return false; return p1 < p2; }); if(spiral_id > isize(torus_zeros)) spiral_id = 0; dialog::editNumber(spiral_id, 0, isize(torus_zeros)-1, 1, 10, XLAT("match the period of the torus"), ""); dialog::reaction = [] () { tie(spiral_x, spiral_y) = torus_zeros[spiral_id]; }; dialog::bound_low(0); dialog::bound_up(isize(torus_zeros)-1); } EX void edit_formula() { if(pmodel != mdFormula) basic_model = pmodel; dialog::edit_string(formula, "formula", XLAT( "This lets you specify the projection as a formula f. " "The formula has access to the value 'z', which is a complex number corresponding to the (x,y) coordinates in the currently selected model; " "the point z is mapped to f(z). You can also use the underlying coordinates ux, uy, uz." ) + "\n\n" + parser_help() ); #if CAP_QUEUE && CAP_CURVE dialog::extra_options = [] () { initquickqueue(); queuereset(mdUnchanged, PPR::LINE); for(int a=-1; a<=1; a++) { curvepoint(point2(-M_PI/2 * current_display->radius, a*current_display->radius)); curvepoint(point2(+M_PI/2 * current_display->radius, a*current_display->radius)); queuecurve(forecolor, 0, PPR::LINE); curvepoint(point2(a*current_display->radius, -M_PI/2*current_display->radius)); curvepoint(point2(a*current_display->radius, +M_PI/2*current_display->radius)); queuecurve(forecolor, 0, PPR::LINE); } queuereset(pmodel, PPR::LINE); quickqueue(); }; #endif dialog::reaction_final = [] () { pmodel = mdFormula; }; } EX void edit_rotation(ld& which) { dialog::editNumber(which, 0, 360, 90, 0, XLAT("rotation"), "This controls the automatic rotation of the world. " "It affects the line animation in the history mode, and " "lands which have a special direction. Note that if finding this special direction is a part of the puzzle, " "it works only in the cheat mode."); dialog::dialogflags |= sm::CENTER; dialog::extra_options = [] () { dialog::addBreak(100); dialog::addBoolItem_choice("line animation only", models::do_rotate, 0, 'N'); dialog::addBoolItem_choice("gravity lands", models::do_rotate, 1, 'G'); dialog::addBoolItem_choice("all directional lands", models::do_rotate, 2, 'D'); if(DIM == 3) { dialog::addBreak(100); dialog::addSelItem(XLAT("XY plane"), fts(models::rotation) + "°", 'A'); dialog::add_action([] { popScreen(); edit_rotation(models::rotation); }); dialog::addSelItem(XLAT("XZ plane"), fts(models::rotation_xz) + "°", 'B'); dialog::add_action([] { popScreen(); edit_rotation(models::rotation_xz); }); dialog::addSelItem(XLAT("XY plane #2"), fts(models::rotation_xy2) + "°", 'C'); dialog::add_action([] { popScreen(); edit_rotation(models::rotation_xy2); }); } }; } EX void model_list() { cmode = sm::SIDE | sm::MAYDARK | sm::CENTER; gamescreen(0); dialog::init(XLAT("models & projections")); for(int i=0; i= 1) { ld phi = acos(sqrt(1/vid.stretch)); dialog::addInfo(XLAT("The current value makes the map conformal at the latitude of %1 (%2°).", fts(phi), fts(phi / degree))); } else if(hyperbolic && abs(vid.stretch) <= 1 && abs(vid.stretch) >= 1e-9) { ld phi = acosh(abs(sqrt(1/vid.stretch))); dialog::addInfo(XLAT("The current value makes the map conformal %1 units from the main line.", fts(phi))); } else dialog::addInfo(""); } }; } EX void model_menu() { cmode = sm::SIDE | sm::MAYDARK | sm::CENTER; gamescreen(0); dialog::init(XLAT("models & projections")); dialog::addSelItem(XLAT("projection type"), get_model_name(pmodel), 'm'); dialog::add_action_push(model_list); if(nonisotropic) dialog::addBoolItem_action(XLAT("geodesic movement in Sol/Nil"), nisot::geodesic_movement, 'G'); dialog::addBoolItem(XLAT("rotation"), do_rotate == 2, 'r'); if(do_rotate == 0) dialog::lastItem().value = XLAT("NEVER"); if(DIM == 2) dialog::lastItem().value += " " + its(rotation) + "°"; else dialog::lastItem().value += " " + its(rotation) + "°" + its(rotation_xz) + "°" + its(rotation_xy2) + "°"; dialog::add_action([] { edit_rotation(models::rotation); }); // if(pmodel == mdBand && sphere) if(!in_perspective()) { dialog::addSelItem(XLAT("scale factor"), fts(vid.scale), 'z'); dialog::add_action(editScale); } if(abs(vid.alpha-1) > 1e-3 && pmodel != mdBall && pmodel != mdHyperboloid && pmodel != mdHemisphere && pmodel != mdDisk) { dialog::addBreak(50); dialog::addInfo("NOTE: this works 'correctly' only if the Poincaré model/stereographic projection is used."); dialog::addBreak(50); } if(among(pmodel, mdDisk, mdBall, mdHyperboloid, mdRotatedHyperboles)) { dialog::addSelItem(XLAT("projection distance"), fts(vid.alpha) + " (" + current_proj_name() + ")", 'p'); dialog::add_action(projectionDialog); } if(model_has_orientation()) { dialog::addSelItem(XLAT("model orientation"), fts(model_orientation) + "°", 'l'); dialog::add_action([] () { dialog::editNumber(model_orientation, 0, 360, 90, 0, XLAT("model orientation"), ""); }); if(DIM == 3) { dialog::addSelItem(XLAT("model orientation (y/z plane)"), fts(model_orientation_yz) + "°", 'L'); dialog::add_action([] () { dialog::editNumber(model_orientation_yz, 0, 360, 90, 0, XLAT("model orientation (y/z plane)"), ""); }); } } if(DIM == 3 && pmodel != mdPerspective) { const string cliphelp = XLAT( "Your view of the 3D model is naturally bounded from four directions by your window. " "Here, you can also set up similar bounds in the Z direction. Radius of the ball/band " "models, and the distance from the center to the plane in the halfspace model, are 1.\n\n"); dialog::addSelItem(XLAT("near clipping plane"), fts(clip_max), 'c'); dialog::add_action([cliphelp] () { dialog::editNumber(clip_max, -10, 10, 0.2, 1, XLAT("near clipping plane"), cliphelp + XLAT("Objects with Z coordinate " "bigger than this parameter are not shown. This is useful with the models which " "extend infinitely in the Z direction, or if you want things close to your character " "to be not obscured by things closer to the camera.")); }); dialog::addSelItem(XLAT("far clipping plane"), fts(clip_min), 'C'); dialog::add_action([cliphelp] () { dialog::editNumber(clip_min, -10, 10, 0.2, -1, XLAT("far clipping plane"), cliphelp + XLAT("Objects with Z coordinate " "smaller than this parameter are not shown; it also affects the fog effect" " (near clipping plane = 0% fog, far clipping plane = 100% fog).")); }); } if(pmodel == mdPolynomial) { dialog::addSelItem(XLAT("coefficient"), fts(polygonal::coefr[polygonal::coefid]), 'x'); dialog::add_action([] () { polygonal::maxcoef = max(polygonal::maxcoef, polygonal::coefid); int ci = polygonal::coefid + 1; dialog::editNumber(polygonal::coefr[polygonal::coefid], -10, 10, .01/ci/ci, 0, XLAT("coefficient"), ""); }); dialog::addSelItem(XLAT("coefficient (imaginary)"), fts(polygonal::coefi[polygonal::coefid]), 'y'); dialog::add_action([] () { polygonal::maxcoef = max(polygonal::maxcoef, polygonal::coefid); int ci = polygonal::coefid + 1; dialog::editNumber(polygonal::coefi[polygonal::coefid], -10, 10, .01/ci/ci, 0, XLAT("coefficient (imaginary)"), ""); }); dialog::addSelItem(XLAT("which coefficient"), its(polygonal::coefid), 'n'); dialog::add_action([] () { dialog::editNumber(polygonal::coefid, 0, polygonal::MSI-1, 1, 0, XLAT("which coefficient"), ""); dialog::bound_low(0); dialog::bound_up(polygonal::MSI-1); }); } if(pmodel == mdHalfplane) { dialog::addSelItem(XLAT("half-plane scale"), fts(halfplane_scale), 'b'); dialog::add_action([] () { dialog::editNumber(halfplane_scale, 0, 2, 0.25, 1, XLAT("half-plane scale"), ""); }); } if(pmodel == mdRotatedHyperboles) { dialog::addBoolItem_action(XLAT("use atan to make it finite"), use_atan, 'x'); } if(pmodel == mdBall) { dialog::addSelItem(XLAT("projection in ball model"), fts(vid.ballproj), 'x'); dialog::add_action([] () { dialog::editNumber(vid.ballproj, 0, 100, .1, 0, XLAT("projection in ball model"), "This parameter affects the ball model the same way as the projection parameter affects the disk model."); }); } if(pmodel == mdPolygonal) { dialog::addSelItem(XLAT("polygon sides"), its(polygonal::SI), 'x'); dialog::add_action([] () { dialog::editNumber(polygonal::SI, 3, 10, 1, 4, XLAT("polygon sides"), ""); dialog::reaction = polygonal::solve; }); dialog::addSelItem(XLAT("star factor"), fts(polygonal::STAR), 'y'); dialog::add_action([]() { dialog::editNumber(polygonal::STAR, -1, 1, .1, 0, XLAT("star factor"), ""); dialog::reaction = polygonal::solve; }); dialog::addSelItem(XLAT("degree of the approximation"), its(polygonal::deg), 'n'); dialog::add_action([](){ dialog::editNumber(polygonal::deg, 2, polygonal::MSI-1, 1, 2, XLAT("degree of the approximation"), ""); dialog::reaction = polygonal::solve; dialog::bound_low(0); dialog::bound_up(polygonal::MSI-1); }); } if(pmodel == mdBall || pmodel == mdHyperboloid || pmodel == mdHemisphere || (pmodel == mdSpiral && spiral_cone != 360)) { dialog::addSelItem(XLAT("camera rotation in 3D models"), fts(vid.ballangle) + "°", 'b'); dialog::add_action(config_camera_rotation); } if(pmodel == mdHyperboloid) { dialog::addSelItem(XLAT("maximum z coordinate to show"), fts(top_z), 'l'); dialog::add_action([](){ dialog::editNumber(top_z, 1, 20, 0.25, 4, XLAT("maximum z coordinate to show"), ""); }); } if(model_has_transition()) { dialog::addSelItem(XLAT("model transition"), fts(model_transition), 't'); dialog::add_action([]() { dialog::editNumber(model_transition, 0, 1, 0.1, 1, XLAT("model transition"), "You can change this parameter for a transition from another model to this one." ); }); } if(among(pmodel, mdJoukowsky, mdJoukowskyInverted, mdSpiral) && DIM == 2) { dialog::addSelItem(XLAT("Möbius transformations"), fts(vid.skiprope) + "°", 'S'); dialog::add_action([](){ dialog::editNumber(vid.skiprope, 0, 360, 15, 0, XLAT("Möbius transformations"), ""); }); } if(pmodel == mdHemisphere && euclid) { dialog::addSelItem(XLAT("parameter"), fts(vid.euclid_to_sphere), 'l'); dialog::add_action([] () { dialog::editNumber(vid.euclid_to_sphere, 0, 10, .1, 1, XLAT("parameter"), "Stereographic projection to a sphere. Choose the radius of the sphere." ); dialog::scaleLog(); }); } if(among(pmodel, mdTwoPoint, mdSimulatedPerspective, mdTwoHybrid)) { dialog::addSelItem(XLAT("parameter"), fts(vid.twopoint_param), 'b'); dialog::add_action([](){ dialog::editNumber(vid.twopoint_param, 1e-3, 10, .1, 1, XLAT("parameter"), "This model maps the world so that the distances from two points " "are kept. This parameter gives the distance from the two points to " "the center." ); dialog::scaleLog(); }); } if(pmodel == mdCollignon) { dialog::addSelItem(XLAT("parameter"), fts(vid.collignon_parameter) + (vid.collignon_reflected ? " (r)" : ""), 'b'); dialog::add_action([](){ dialog::editNumber(vid.collignon_parameter, -1, 1, .1, 1, XLAT("parameter"), "" ); dialog::extra_options = [] { dialog::addBoolItem_action(XLAT("reflect"), vid.collignon_reflected, 'R'); }; }); } if(pmodel == mdSpiral && !euclid) { dialog::addSelItem(XLAT("spiral angle"), fts(spiral_angle) + "°", 'x'); dialog::add_action([](){ dialog::editNumber(spiral_angle, 0, 360, 15, 0, XLAT("spiral angle"), XLAT("set to 90° for the ring projection") ); }); ld& which = sphere ? sphere_spiral_multiplier : ring_not_spiral ? right_spiral_multiplier : any_spiral_multiplier; dialog::addSelItem(XLAT("spiral multiplier"), fts(which) + "°", 'M'); dialog::add_action([&which](){ dialog::editNumber(which, 0, 10, -.1, 1, XLAT("spiral multiplier"), XLAT( "This parameter has a bit different scale depending on the settings:\n" "(1) in spherical geometry (with spiral angle=90°, 1 produces a stereographic projection)\n" "(2) in hyperbolic geometry, with spiral angle being +90° or -90°\n" "(3) in hyperbolic geometry, with other spiral angles (1 makes the bands fit exactly)" ) ); }); dialog::addSelItem(XLAT("spiral cone"), fts(spiral_cone) + "°", 'C'); dialog::add_action([](){ dialog::editNumber(spiral_cone, 0, 360, -45, 360, XLAT("spiral cone"), ""); }); } if(pmodel == mdSpiral && euclid) { dialog::addSelItem(XLAT("spiral period: x"), fts(spiral_x), 'x'); dialog::add_action([](){ dialog::editNumber(spiral_x, -20, 20, 1, 10, XLAT("spiral period: x"), ""); }); dialog::addSelItem(XLAT("spiral period: y"), fts(spiral_y), 'y'); dialog::add_action([](){ dialog::editNumber(spiral_y, -20, 20, 1, 10, XLAT("spiral period: y"), ""); }); if(euwrap) { dialog::addSelItem(XLAT("match the period"), its(spiral_id), 'n'); dialog::add_action(match_torus_period); } } dialog::addSelItem(XLAT("vertical stretch"), fts(vid.stretch), 's'); dialog::add_action(edit_stretch); dialog::addBoolItem(XLAT("use GPU to compute projections"), vid.consider_shader_projection, 'G'); if(vid.consider_shader_projection && !shaderside_projection) dialog::lastItem().value = XLAT("N/A"); if(vid.consider_shader_projection && shaderside_projection && pmodel) dialog::lastItem().value += XLAT(" (2D only)"); dialog::add_action([] { vid.consider_shader_projection = !vid.consider_shader_projection; }); menuitem_sightrange('R'); dialog::addBreak(100); dialog::addItem(XLAT("history mode"), 'a'); dialog::add_action_push(history::history_menu); #if CAP_RUG if(GDIM == 2) { dialog::addItem(XLAT("hypersian rug mode"), 'u'); dialog::add_action_push(rug::show); } #endif dialog::addBack(); dialog::display(); mouseovers = XLAT("see http://www.roguetemple.com/z/hyper/models.php"); } #if CAP_COMMANDLINE int readArgs() { using namespace arg; if(0) ; else if(argis("-els")) { shift_arg_formula(history::extra_line_steps); } else if(argis("-stretch")) { PHASEFROM(2); shift_arg_formula(vid.stretch); } else if(argis("-PM")) { PHASEFROM(2); shift(); pmodel = eModel(argi()); if(pmodel == mdFormula) { shift(); basic_model = eModel(argi()); shift(); formula = args(); } } else if(argis("-ballangle")) { PHASEFROM(2); shift_arg_formula(vid.ballangle); } else if(argis("-topz")) { PHASEFROM(2); shift_arg_formula(models::top_z); } else if(argis("-twopoint")) { PHASEFROM(2); shift_arg_formula(vid.twopoint_param); } else if(argis("-hp")) { PHASEFROM(2); shift_arg_formula(models::halfplane_scale); } else if(argis("-mori")) { PHASEFROM(2); shift_arg_formula(models::model_orientation); } else if(argis("-mori2")) { PHASEFROM(2); shift_arg_formula(models::model_orientation); shift_arg_formula(models::model_orientation_yz); } else if(argis("-crot")) { PHASEFROM(2); shift_arg_formula(models::rotation); if(DIM == 3) shift_arg_formula(models::rotation_xz); if(DIM == 3) shift_arg_formula(models::rotation_xy2); } else if(argis("-clip")) { PHASEFROM(2); shift_arg_formula(models::clip_min); shift_arg_formula(models::clip_max); } else if(argis("-mtrans")) { PHASEFROM(2); shift_arg_formula(models::model_transition); } else if(argis("-sang")) { PHASEFROM(2); shift_arg_formula(models::spiral_angle); if(sphere) shift_arg_formula(models::sphere_spiral_multiplier); else if(models::spiral_angle == 90) shift_arg_formula(models::right_spiral_multiplier); } else if(argis("-ssm")) { PHASEFROM(2); shift_arg_formula(models::any_spiral_multiplier); } else if(argis("-scone")) { PHASEFROM(2); shift_arg_formula(models::spiral_cone); } else if(argis("-sxy")) { PHASEFROM(2); shift_arg_formula(models::spiral_x); shift_arg_formula(models::spiral_y); } else if(argis("-mob")) { PHASEFROM(2); shift_arg_formula(vid.skiprope); } else if(argis("-zoom")) { PHASEFROM(2); shift_arg_formula(vid.scale); } else if(argis("-alpha")) { PHASEFROM(2); shift_arg_formula(vid.alpha); } else if(argis("-d:model")) launch_dialog(model_menu); else if(argis("-d:formula")) { launch_dialog(); edit_formula(); } else if(argis("-d:match")) { launch_dialog(match_torus_period); edit_formula(); } else return 1; return 0; } auto hookArg = addHook(hooks_args, 100, readArgs); #endif } }