#include "rogueviz.h" namespace hr { namespace extra { template<class T> void makeband_complex(shiftpoint H, hyperpoint& ret, const T& f) { makeband_f(H, ret, [&] (ld& x, ld& y) { if(euclid) return; if(isnan(x)) return; // auto orx = x, ory = y; cld i = hyperbolic ? cld(0,1) : cld(1, 0); cld cx = x*i; cld cy = y*i; f(cx, cy); x = real(cx/i) + (anyshiftclick ? 1 : 0) * imag(cx/i); y = real(cy/i) + (anyshiftclick ? 1 : 0) * imag(cy/i); }); } template<class T> void add_complex(const char *name, flagtype flag, const T& f) { int q = isize(mdinf); mdinf.emplace_back(modelinfo{name, name, name, mf::euc_boring | mf::broken | flag}); while(isize(extra_projections) < q) extra_projections.emplace_back(); extra_projections.emplace_back([f] (shiftpoint& H_orig, hyperpoint& H, hyperpoint& ret) { makeband_complex(H_orig, ret, f); }); } template<class T> void add_extra(const char *name, flagtype flag, const T& f) { int q = isize(mdinf); mdinf.emplace_back(modelinfo{name, name, name, mf::euc_boring | mf::broken | flag}); while(isize(extra_projections) < q) extra_projections.emplace_back(); extra_projections.emplace_back(f); } template<class T> void add_band(const char *name, flagtype flag, const T& f) { int q = isize(mdinf); mdinf.emplace_back(modelinfo{name, name, name, mf::euc_boring | mf::broken | flag}); while(isize(extra_projections) < q) extra_projections.emplace_back(); extra_projections.emplace_back([f] (shiftpoint& H_orig, hyperpoint& H, hyperpoint& ret) { makeband_f(H_orig, ret, f); }); } template<class T1, class T2> cld newton_inverse(const T1& f, const T2& fp, cld yf, cld x0) { cld x = x0; for(int it=0;; it++) { cld y = f(x); cld yp = fp(x); x = x + (yf - y) / yp; if(abs(y-yf) < 1e-9) return x; if(it == 20) { println(hlog, "failed for: ", yf, " x=", x, " y=", y); return x; } } } void add_extra_projections() { // does not work in H3... add_complex("van der Grinten", 0, [] (cld& x, cld& y) { if(abs(y) < 1e-4) return; bool ox = abs(x) < 1e-4; if(x == 0.) x = 1e-6; cld sx = real(x)+imag(x) > 0 ? 1 : -1; cld sy = real(y)+imag(y) > 0 ? 1 : -1; x /= sx; y /= sy; auto pi = M_PI; cld sin_theta = 2. * y / pi; cld cos_theta2 = 1. - sin_theta * sin_theta; cld A = (1/2.) * (pi / x - x / pi); cld G = sqrt(cos_theta2) / (sin_theta + sqrt(cos_theta2) - 1.); cld P = G * (2./sin_theta - 1.); cld Q = A*A + G; cld diag = A*A+P*P; cld s1 = A*A*(G-P*P)*(G-P*P) - diag*(G*G-P*P); cld s2 = (A*A+1.)*diag - Q*Q; if(ox) { x = 0; cld theta = asin(sin_theta); y = sy * M_PI * tan(theta/2.); } else { x = sx * M_PI * (A * (G-P*P) + sqrt(s1)) / diag; y = sy * M_PI * (P*Q - (hyperbolic?-1.:1.) * A*sqrt(s2)) / diag; } }); // https://en.wikipedia.org/wiki/Eckert_II_projection add_band("Eckert II", mf::pseudoband | mf::equiarea, [] (ld& x, ld& y) { ld sy = y > 0 ? 1 : -1; y /= sy; ld z = 4. - 3. * (hyperbolic ? -sinh(y) : sin(y)); x = 2. * x * sqrt(z / 1080._deg); y = sy * sqrt(120._deg) * (2. - sqrt(z)); }); // https://en.wikipedia.org/wiki/Eckert_IV_projection add_complex("Eckert IV", mf::pseudoband | mf::equiarea, [] (cld& x, cld& y) { cld theta = newton_inverse( [] (cld th) { return th + sin(th) * cos(th) + 2. * sin(th); }, [] (cld th) { return 1. + cos(th) * cos(th) - sin(th) * sin(th) + 2. * cos(th); }, (2+90._deg) * sin(y), y); static ld cox = 2 / sqrt(4*M_PI+M_PI*M_PI); static ld coy = 2 * sqrt(M_PI/(4+M_PI)); x = cox * x * (1. + cos(theta)); y = coy * sin(theta); }); // does not work in H3... add_complex("Ortelius", 0, [] (cld& x, cld& y) { cld sx = (real(x)+imag(x)) > 0 ? 1 : -1; x /= sx; if(abs(real(x)) < 90._deg) { cld F = M_PI*M_PI / 8. / x + x / 2.; x = (x - F + sqrt(F*F-y*y)); } else { x = sqrt(M_PI*M_PI/4 - y*y) + x - 90._deg; } x *= sx; }); // https://en.wikipedia.org/wiki/Equal_Earth_projection add_complex("Equal Earth", mf::equiarea | mf::pseudoband, [] (cld& x, cld& y) { static cld M = sqrt(3)/2; auto theta = asin(M * sin(y)); ld A1 = 1.340624; ld A2 = -0.081106; ld A3 = 0.000893; ld A4 = 0.003796; cld pows[10]; pows[1] = theta; for(int i=2; i<10; i++) pows[i] = pows[i-1] * theta; x = x*cos(theta) / M / (9*A4*pows[8] + 7*A3*pows[6] + 3*A2*pows[2] + A1); y = A4 * pows[9] + A3 * pows[7] + A2 * pows[3] + A1 * pows[1]; }); // https://en.wikipedia.org/wiki/Natural_Earth_projection add_complex("Natural Earth", mf::pseudoband, [] (cld& x, cld& y) { cld pows[13]; pows[1] = y; for(int i=2; i<13; i++) pows[i] = pows[i-1] * y; cld l = 0.870700 - 0.131979 * pows[2] - 0.013791 * pows[4] + 0.003971 * pows[10] - 0.001529 * pows[12]; y = y * (1.007226 + 0.015085 * pows[2] - 0.044475 * pows[6] + 0.028874 * pows[8] - 0.005916 * pows[10]); x = x * l; }); // https://en.wikipedia.org/wiki/Wagner_VI_projection add_complex("Wagner VI", mf::equiarea | mf::pseudoband, [] (cld& x, cld& y) { x = x * sqrt(1. - 3. * pow(y/M_PI, 2)); }); /* does the Poincare model work in spherical? -- hint: it does not, as expected */ if(0) add_complex("alt poincare", mf::equiarea | mf::pseudoband, [] (cld& x, cld& y) { cld i(0, 1); x /= i; y /= i; cld c1(1, 0); auto ax = cosh(y) * sinh(x); auto ay = sinh(y); auto az = cosh(x) * cosh(y); ax /= (az+c1); ay /= (az+c1); ay += c1; cld z = ax*ax + ay*ay; ax /= z; ay /= z; ay -= c1; ax *= i; ay *= i; x = ax; y = ay; }); add_extra("double horocyclic", mf::horocyclic | mf::orientation | mf::axial, [] (shiftpoint& H_orig, hyperpoint& H, hyperpoint& ret) { make_axial(H, ret, [] (hyperpoint h) { return deparabolic13(cspin90(1,0)*h)[1]; }); }); add_extra("azimuthal cylindrical", mf::cylindrical | mf::azimuthal | mf::orientation, [] (shiftpoint& H_orig, hyperpoint& H, hyperpoint& ret) { find_zlev(H); models::scr_to_ori(H); ld x, y; y = asin_auto(H[1]); x = asin_auto_clamp(H[0] / cos_auto(y)); if(sphere) { if(H[LDIM] < 0 && x > 0) x = M_PI - x; else if(H[LDIM] < 0 && x <= 0) x = -M_PI - x; } x += H_orig.shift; ret[0] = x; ret[1] = H[1] / H[0] * x; if(GDIM == 2) ret[2] = H[2] / H[0] * x; ret[LDIM] = 1; models::ori_to_scr(H); }); } void gen_dual() { int q = isize(mdinf); eModel p = pmodel; auto& mo= mdinf[p]; mdinf.push_back(mo); auto& m = mdinf.back(); m.name_hyperbolic = strdup((string("dual to ") + mo.name_spherical).c_str()); m.name_euclidean = strdup((string("dual to ") + mo.name_euclidean).c_str()); m.name_spherical = strdup((string("dual to ") + mo.name_hyperbolic).c_str()); while(isize(extra_projections) < q) extra_projections.emplace_back(); extra_projections.emplace_back([p] (shiftpoint& H_orig, hyperpoint& H, hyperpoint& ret) { if(hyperbolic) { auto Hdual = H_orig; auto& H1 = Hdual.h; H1 /= H1[2]; H1[2] = sqrt(1 - H1[0] * H1[0] - H1[1] * H1[1]); dynamicval<eGeometry> g(geometry, gSphere); apply_other_model(Hdual, ret, p); } else if(sphere) { auto Hdual = H_orig; auto& H1 = Hdual.h; H1 /= H1[2]; H1[2] = sqrt(1 + H1[0] * H1[0] + H1[1] * H1[1]); dynamicval<eGeometry> g(geometry, gNormal); apply_other_model(Hdual, ret, p); } else apply_other_model(H_orig, ret, p); }); pmodel = eModel(q); } int ar = addHook(hooks_initialize, 100, add_extra_projections) + arg::add3("-gen-dual", gen_dual); } }