// Hyperbolic Rogue -- models of hyperbolic geometry // Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details /** \file models.cpp * \brief models of hyperbolic geometry: their properties, projection menu * * The actual models are implemented in hypgraph.cpp. Also shaders.cpp, * drawing.cpp, and basegraph.cpp are important. */ #include "hyper.h" namespace hr { EX namespace polygonal { #if ISMOBWEB typedef double precise; #else typedef long double precise; #endif #if HDR static const int MSI = 120; #endif typedef long double xld; typedef complex cxld; EX int SI = 4; EX ld STAR = 0; EX int deg = ISMOBWEB ? 2 : 20; precise matrix[MSI][MSI]; precise ans[MSI]; cxld coef[MSI]; EX ld coefr[MSI], coefi[MSI]; EX int maxcoef, coefid; EX void solve() { if(pmodel == mdPolynomial) { for(int i=0; i 0 ? (1+STAR) : 1) - sin(i0 * (j + 1./SI)) * (STAR > 0 ? STAR : STAR/(1+STAR)); } for(int i=0; i=0; i--) { for(int j=0; j compute(ld x, ld y, int prec) { if(x*x+y*y > 1) { xld r = hypot(x,y); x /= r; y /= r; } if(pmodel == mdPolynomial) { cxld z(x,y); cxld res (0,0); for(int i=maxcoef; i>=0; i--) { res += coef[i]; if(i) res *= z; } return make_pair(real(res), imag(res)); } cxld z(x, y); cxld res (0,0); cxld zp = 1; for(int i=0; i0; i--) { res += ans[i]; res *= zp; } res += ans[0]; res *= z; return make_pair(real(res), imag(res)); } EX pair compute(ld x, ld y) { return compute(x,y,deg); } EX } #if HDR inline bool mdAzimuthalEqui() { return among(pmodel, mdEquidistant, mdEquiarea, mdEquivolume); } inline bool mdBandAny() { return mdinf[pmodel].flags & mf::pseudoband; } inline bool mdPseudocylindrical() { return mdBandAny() && !(mdinf[pmodel].flags & mf::cylindrical); } #endif EX namespace models { EX ld rotation = 0; EX ld rotation_xz = 90; EX ld rotation_xy2 = 90; EX int do_rotate = 1; EX ld ocos, osin, ocos_yz, osin_yz; EX ld cos_ball, sin_ball; EX bool model_straight, model_straight_yz; #if HDR // screen coordinates to logical coordinates: apply_orientation(x,y) // logical coordinates back to screen coordinates: apply_orientation(y,x) template void apply_orientation(A& x, A& y) { if(!model_straight) tie(x,y) = make_pair(x*ocos + y*osin, y*ocos - x*osin); } template void apply_orientation_yz(A& x, A& y) { if(!model_straight_yz) tie(x,y) = make_pair(x*ocos_yz + y*osin_yz, y*ocos_yz - x*osin_yz); } template void apply_ball(A& x, A& y) { tie(x,y) = make_pair(x*cos_ball + y*sin_ball, y*cos_ball - x*sin_ball); } #endif EX transmatrix rotmatrix() { if(GDIM == 2 || prod) return spin(rotation * degree); return spin(rotation_xy2 * degree) * cspin(0, 2, -rotation_xz * degree) * spin(rotation * degree); } int spiral_id = 7; EX cld spiral_multiplier; EX ld spiral_cone_rad; EX bool ring_not_spiral; /** the matrix to rotate the Euclidean view from the standard coordinates to the screen coordinates */ EX transmatrix euclidean_spin; EX void configure() { ld ball = -pconf.ballangle * degree; cos_ball = cos(ball), sin_ball = sin(ball); ocos = cos(pconf.model_orientation * degree); osin = sin(pconf.model_orientation * degree); ocos_yz = cos(pconf.model_orientation_yz * degree); osin_yz = sin(pconf.model_orientation_yz * degree); model_straight = (ocos > 1 - 1e-9); model_straight_yz = GDIM == 2 || (ocos_yz > 1-1e-9); if(history::on) history::apply(); if(!euclid) { ld b = pconf.spiral_angle * degree; ld cos_spiral = cos(b); ld sin_spiral = sin(b); spiral_cone_rad = pconf.spiral_cone * degree; ring_not_spiral = abs(cos_spiral) < 1e-3; ld mul = 1; if(sphere) mul = .5 * pconf.sphere_spiral_multiplier; else if(ring_not_spiral) mul = pconf.right_spiral_multiplier; else mul = pconf.any_spiral_multiplier * cos_spiral; spiral_multiplier = cld(cos_spiral, sin_spiral) * cld(spiral_cone_rad * mul / 2., 0); } if(euclid) { euclidean_spin = pispin * inverse(cview().T * master_relative(centerover, true)); euclidean_spin = gpushxto0(euclidean_spin * C0) * euclidean_spin; hyperpoint h = inverse(euclidean_spin) * (C0 + (euc::eumove(gp::loc{1,0})*C0 - C0) * vpconf.spiral_x + (euc::eumove(gp::loc{0,1})*C0 - C0) * vpconf.spiral_y); spiral_multiplier = cld(0, 2 * M_PI) / cld(h[0], h[1]); } if(centerover && !history::on) if(isize(history::path_for_lineanimation) == 0 || ((quotient || arb::in()) && history::path_for_lineanimation.back() != centerover)) { history::path_for_lineanimation.push_back(centerover); } } EX bool model_available(eModel pm) { if(prod) { if(pm == mdPerspective) return true; if(among(pm, mdBall, mdHemisphere)) return false; return PIU(model_available(pm)); } if(sl2) return pm == mdGeodesic; if(nonisotropic) return among(pm, mdDisk, mdPerspective, mdHorocyclic, mdGeodesic, mdEquidistant, mdFisheye); if(pm == mdGeodesic && !sol) return false; if(sphere && (pm == mdHalfplane || pm == mdBall)) return false; if(GDIM == 2 && pm == mdPerspective) return false; if(GDIM == 2 && pm == mdEquivolume) return false; if(GDIM == 3 && among(pm, mdBall, mdHyperboloid, mdFormula, mdPolygonal, mdRotatedHyperboles, mdSpiral, mdHemisphere)) return false; if(pm == mdCentralInversion && !euclid) return false; return true; } EX bool has_orientation(eModel m) { return among(m, mdHalfplane, mdPolynomial, mdPolygonal, mdTwoPoint, mdJoukowsky, mdJoukowskyInverted, mdSpiral, mdSimulatedPerspective, mdTwoHybrid, mdHorocyclic) || mdBandAny(); } EX bool is_perspective(eModel m) { return among(m, mdPerspective, mdGeodesic); } EX bool is_3d(const projection_configuration& p) { if(GDIM == 3) return true; return among(p.model, mdBall, mdHyperboloid, mdHemisphere) || (p.model == mdSpiral && p.spiral_cone != 360); } EX bool has_transition(eModel m) { return among(m, mdJoukowsky, mdJoukowskyInverted, mdBand) && GDIM == 2; } EX bool product_model(eModel m) { if(!prod) return false; if(among(m, mdPerspective, mdHyperboloid, mdEquidistant)) return false; return true; } int editpos = 0; EX string get_model_name(eModel m) { if(m == mdDisk && GDIM == 3 && (hyperbolic || nonisotropic)) return XLAT("ball model/Gans"); if(m == mdPerspective && prod) return XLAT("native perspective"); if(prod) return PIU(get_model_name(m)); if(nonisotropic) { if(m == mdHorocyclic && !sol) return XLAT("simple model: projection"); if(m == mdPerspective) return XLAT("simple model: perspective"); if(m == mdGeodesic) return XLAT("native perspective"); if(among(m, mdEquidistant, mdFisheye, mdHorocyclic)) return XLAT(mdinf[m].name_hyperbolic); } if(m == mdDisk && GDIM == 3) return XLAT("perspective in 4D"); if(m == mdHalfplane && GDIM == 3 && hyperbolic) return XLAT("half-space"); if(sphere) return XLAT(mdinf[m].name_spherical); if(euclid) return XLAT(mdinf[m].name_euclidean); if(hyperbolic) return XLAT(mdinf[m].name_hyperbolic); return "?"; } vector torus_zeros; void match_torus_period() { torus_zeros.clear(); for(int y=0; y<=200; y++) for(int x=-200; x<=200; x++) { if(y == 0 && x <= 0) continue; transmatrix dummy = Id; euc::coord v(x, y, 0); bool mirr = false; auto t = euc::eutester; euc::eu.canonicalize(v, t, dummy, mirr); if(v == euc::euzero && t == euc::eutester) torus_zeros.emplace_back(x, y); } sort(torus_zeros.begin(), torus_zeros.end(), [] (const gp::loc p1, const gp::loc p2) { ld d1 = hdist0(tC0(euc::eumove(p1))); ld d2 = hdist0(tC0(euc::eumove(p2))); if(d1 < d2 - 1e-6) return true; if(d1 > d2 + 1e-6) return false; return p1 < p2; }); if(spiral_id > isize(torus_zeros)) spiral_id = 0; dialog::editNumber(spiral_id, 0, isize(torus_zeros)-1, 1, 10, XLAT("match the period of the torus"), ""); dialog::reaction = [] () { auto& co = torus_zeros[spiral_id]; vpconf.spiral_x = co.first; vpconf.spiral_y = co.second; }; dialog::bound_low(0); dialog::bound_up(isize(torus_zeros)-1); } EX void edit_formula() { if(vpconf.model != mdFormula) vpconf.basic_model = vpconf.model; dialog::edit_string(vpconf.formula, "formula", XLAT( "This lets you specify the projection as a formula f. " "The formula has access to the value 'z', which is a complex number corresponding to the (x,y) coordinates in the currently selected model; " "the point z is mapped to f(z). You can also use the underlying coordinates ux, uy, uz." ) + "\n\n" + parser_help() ); #if CAP_QUEUE && CAP_CURVE dialog::extra_options = [] () { initquickqueue(); queuereset(mdPixel, PPR::LINE); for(int a=-1; a<=1; a++) { curvepoint(point2(-M_PI/2 * current_display->radius, a*current_display->radius)); curvepoint(point2(+M_PI/2 * current_display->radius, a*current_display->radius)); queuecurve(shiftless(Id), forecolor, 0, PPR::LINE); curvepoint(point2(a*current_display->radius, -M_PI/2*current_display->radius)); curvepoint(point2(a*current_display->radius, +M_PI/2*current_display->radius)); queuecurve(shiftless(Id), forecolor, 0, PPR::LINE); } queuereset(vpconf.model, PPR::LINE); quickqueue(); }; #endif dialog::reaction_final = [] () { vpconf.model = mdFormula; }; } EX void edit_rotation(ld& which) { dialog::editNumber(which, 0, 360, 90, 0, XLAT("rotation"), "This controls the automatic rotation of the world. " "It affects the line animation in the history mode, and " "lands which have a special direction. Note that if finding this special direction is a part of the puzzle, " "it works only in the cheat mode."); dialog::dialogflags |= sm::CENTER; dialog::extra_options = [] () { dialog::addBreak(100); dialog::addBoolItem_choice("line animation only", models::do_rotate, 0, 'N'); dialog::addBoolItem_choice("gravity lands", models::do_rotate, 1, 'G'); dialog::addBoolItem_choice("all directional lands", models::do_rotate, 2, 'D'); if(GDIM == 3) { dialog::addBreak(100); dialog::addSelItem(XLAT("XY plane"), fts(models::rotation) + "°", 'A'); dialog::add_action([] { popScreen(); edit_rotation(models::rotation); }); dialog::addSelItem(XLAT("XZ plane"), fts(models::rotation_xz) + "°", 'B'); dialog::add_action([] { popScreen(); edit_rotation(models::rotation_xz); }); dialog::addSelItem(XLAT("XY plane #2"), fts(models::rotation_xy2) + "°", 'C'); dialog::add_action([] { popScreen(); edit_rotation(models::rotation_xy2); }); } }; } EX void model_list() { cmode = sm::SIDE | sm::MAYDARK | sm::CENTER; gamescreen(0); dialog::init(XLAT("models & projections")); #if CAP_RUG USING_NATIVE_GEOMETRY_IN_RUG; #endif for(int i=0; i= 1) { ld phi = acos(sqrt(1/vpconf.stretch)); dialog::addInfo(XLAT("The current value makes the map conformal at the latitude of %1 (%2°).", fts(phi), fts(phi / degree))); } else if(hyperbolic && abs(vpconf.stretch) <= 1 && abs(vpconf.stretch) >= 1e-9) { ld phi = acosh(abs(sqrt(1/vpconf.stretch))); dialog::addInfo(XLAT("The current value makes the map conformal %1 units from the main line.", fts(phi))); } else dialog::addInfo(""); } }; } EX void model_menu() { cmode = sm::SIDE | sm::MAYDARK | sm::CENTER; gamescreen(0); #if CAP_RUG USING_NATIVE_GEOMETRY_IN_RUG; #endif dialog::init(XLAT("models & projections")); auto vpmodel = vpconf.model; dialog::addSelItem(XLAT("projection type"), get_model_name(vpmodel), 'm'); dialog::add_action_push(model_list); if(nonisotropic && !sl2) dialog::addBoolItem_action(XLAT("geodesic movement in Sol/Nil"), nisot::geodesic_movement, 'G'); dialog::addBoolItem(XLAT("rotation"), do_rotate == 2, 'r'); if(do_rotate == 0) dialog::lastItem().value = XLAT("NEVER"); if(GDIM == 2) dialog::lastItem().value += " " + its(rotation) + "°"; else dialog::lastItem().value += " " + its(rotation) + "°" + its(rotation_xz) + "°" + its(rotation_xy2) + "°"; dialog::add_action([] { edit_rotation(rotation); }); // if(vpmodel == mdBand && sphere) if(!in_perspective()) { dialog::addSelItem(XLAT("scale factor"), fts(vpconf.scale), 'z'); dialog::add_action(editScale); } if(abs(pconf.alpha-1) > 1e-3 && vpmodel != mdBall && vpmodel != mdHyperboloid && vpmodel != mdHemisphere && vpmodel != mdDisk) { dialog::addBreak(50); dialog::addInfo("NOTE: this works 'correctly' only if the Poincaré model/stereographic projection is used."); dialog::addBreak(50); } if(among(vpmodel, mdDisk, mdBall, mdHyperboloid, mdRotatedHyperboles)) { dialog::addSelItem(XLAT("projection distance"), fts(vpconf.alpha) + " (" + current_proj_name() + ")", 'p'); dialog::add_action(projectionDialog); } if(has_orientation(vpmodel)) { dialog::addSelItem(XLAT("model orientation"), fts(vpconf.model_orientation) + "°", 'l'); dialog::add_action([] () { dialog::editNumber(vpconf.model_orientation, 0, 360, 90, 0, XLAT("model orientation"), ""); }); if(GDIM == 3) { dialog::addSelItem(XLAT("model orientation (y/z plane)"), fts(vpconf.model_orientation_yz) + "°", 'L'); dialog::add_action([] () { dialog::editNumber(vpconf.model_orientation_yz, 0, 360, 90, 0, XLAT("model orientation (y/z plane)"), ""); }); } } if(GDIM == 3 && vpmodel != mdPerspective) { const string cliphelp = XLAT( "Your view of the 3D model is naturally bounded from four directions by your window. " "Here, you can also set up similar bounds in the Z direction. Radius of the ball/band " "models, and the distance from the center to the plane in the halfspace model, are 1.\n\n"); dialog::addSelItem(XLAT("near clipping plane"), fts(vpconf.clip_max), 'c'); dialog::add_action([cliphelp] () { dialog::editNumber(vpconf.clip_max, -10, 10, 0.2, 1, XLAT("near clipping plane"), cliphelp + XLAT("Objects with Z coordinate " "bigger than this parameter are not shown. This is useful with the models which " "extend infinitely in the Z direction, or if you want things close to your character " "to be not obscured by things closer to the camera.")); }); dialog::addSelItem(XLAT("far clipping plane"), fts(vpconf.clip_min), 'C'); dialog::add_action([cliphelp] () { dialog::editNumber(vpconf.clip_min, -10, 10, 0.2, -1, XLAT("far clipping plane"), cliphelp + XLAT("Objects with Z coordinate " "smaller than this parameter are not shown; it also affects the fog effect" " (near clipping plane = 0% fog, far clipping plane = 100% fog).")); }); } if(vpmodel == mdPolynomial) { dialog::addSelItem(XLAT("coefficient"), fts(polygonal::coefr[polygonal::coefid]), 'x'); dialog::add_action([] () { polygonal::maxcoef = max(polygonal::maxcoef, polygonal::coefid); int ci = polygonal::coefid + 1; dialog::editNumber(polygonal::coefr[polygonal::coefid], -10, 10, .01/ci/ci, 0, XLAT("coefficient"), ""); }); dialog::addSelItem(XLAT("coefficient (imaginary)"), fts(polygonal::coefi[polygonal::coefid]), 'y'); dialog::add_action([] () { polygonal::maxcoef = max(polygonal::maxcoef, polygonal::coefid); int ci = polygonal::coefid + 1; dialog::editNumber(polygonal::coefi[polygonal::coefid], -10, 10, .01/ci/ci, 0, XLAT("coefficient (imaginary)"), ""); }); dialog::addSelItem(XLAT("which coefficient"), its(polygonal::coefid), 'n'); dialog::add_action([] () { dialog::editNumber(polygonal::coefid, 0, polygonal::MSI-1, 1, 0, XLAT("which coefficient"), ""); dialog::bound_low(0); dialog::bound_up(polygonal::MSI-1); }); } if(vpmodel == mdHalfplane) { dialog::addSelItem(XLAT("half-plane scale"), fts(vpconf.halfplane_scale), 'b'); dialog::add_action([] () { dialog::editNumber(vpconf.halfplane_scale, 0, 2, 0.25, 1, XLAT("half-plane scale"), ""); }); } if(vpmodel == mdRotatedHyperboles) { dialog::addBoolItem_action(XLAT("use atan to make it finite"), vpconf.use_atan, 'x'); } if(vpmodel == mdBall) { dialog::addSelItem(XLAT("projection in ball model"), fts(vpconf.ballproj), 'x'); dialog::add_action([] () { dialog::editNumber(vpconf.ballproj, 0, 100, .1, 0, XLAT("projection in ball model"), "This parameter affects the ball model the same way as the projection parameter affects the disk model."); }); } if(vpmodel == mdPolygonal) { dialog::addSelItem(XLAT("polygon sides"), its(polygonal::SI), 'x'); dialog::add_action([] () { dialog::editNumber(polygonal::SI, 3, 10, 1, 4, XLAT("polygon sides"), ""); dialog::reaction = polygonal::solve; }); dialog::addSelItem(XLAT("star factor"), fts(polygonal::STAR), 'y'); dialog::add_action([]() { dialog::editNumber(polygonal::STAR, -1, 1, .1, 0, XLAT("star factor"), ""); dialog::reaction = polygonal::solve; }); dialog::addSelItem(XLAT("degree of the approximation"), its(polygonal::deg), 'n'); dialog::add_action([](){ dialog::editNumber(polygonal::deg, 2, polygonal::MSI-1, 1, 2, XLAT("degree of the approximation"), ""); dialog::reaction = polygonal::solve; dialog::bound_low(0); dialog::bound_up(polygonal::MSI-1); }); } if(is_3d(vpconf) && GDIM == 2) { dialog::addSelItem(XLAT("camera rotation in 3D models"), fts(vpconf.ballangle) + "°", 'b'); dialog::add_action(config_camera_rotation); } if(vpmodel == mdHyperboloid) { dialog::addSelItem(XLAT("maximum z coordinate to show"), fts(vpconf.top_z), 'l'); dialog::add_action([](){ dialog::editNumber(vpconf.top_z, 1, 20, 0.25, 4, XLAT("maximum z coordinate to show"), ""); }); } if(has_transition(vpmodel)) { dialog::addSelItem(XLAT("model transition"), fts(vpconf.model_transition), 't'); dialog::add_action([]() { dialog::editNumber(vpconf.model_transition, 0, 1, 0.1, 1, XLAT("model transition"), "You can change this parameter for a transition from another model to this one." ); }); } if(among(vpmodel, mdJoukowsky, mdJoukowskyInverted, mdSpiral) && GDIM == 2) { dialog::addSelItem(XLAT("Möbius transformations"), fts(vpconf.skiprope) + "°", 'S'); dialog::add_action([](){ dialog::editNumber(vpconf.skiprope, 0, 360, 15, 0, XLAT("Möbius transformations"), ""); }); } if(vpmodel == mdHemisphere && euclid) { dialog::addSelItem(XLAT("parameter"), fts(vpconf.euclid_to_sphere), 'l'); dialog::add_action([] () { dialog::editNumber(vpconf.euclid_to_sphere, 0, 10, .1, 1, XLAT("parameter"), "Stereographic projection to a sphere. Choose the radius of the sphere." ); dialog::scaleLog(); }); } if(among(vpmodel, mdTwoPoint, mdSimulatedPerspective, mdTwoHybrid)) { dialog::addSelItem(XLAT("parameter"), fts(vpconf.twopoint_param), 'b'); dialog::add_action([vpmodel](){ dialog::editNumber(vpconf.twopoint_param, 1e-3, 10, .1, 1, XLAT("parameter"), s0 + (vpmodel == mdTwoPoint ? "This model maps the world so that the distances from two points " "are kept. " : "") + "This parameter gives the distance from the two points to " "the center." ); dialog::scaleLog(); }); } if(vpmodel == mdFisheye) { dialog::addSelItem(XLAT("parameter"), fts(vpconf.fisheye_param), 'b'); dialog::add_action([](){ dialog::editNumber(vpconf.fisheye_param, 1e-3, 10, .1, 1, XLAT("parameter"), "Size of the fish eye." ); dialog::scaleLog(); }); } if(vpmodel == mdCollignon) { dialog::addSelItem(XLAT("parameter"), fts(vpconf.collignon_parameter) + (vpconf.collignon_reflected ? " (r)" : ""), 'b'); dialog::add_action([](){ dialog::editNumber(vpconf.collignon_parameter, -1, 1, .1, 1, XLAT("parameter"), "" ); dialog::extra_options = [] { dialog::addBoolItem_action(XLAT("reflect"), vpconf.collignon_reflected, 'R'); }; }); } if(vpmodel == mdSpiral && !euclid) { dialog::addSelItem(XLAT("spiral angle"), fts(vpconf.spiral_angle) + "°", 'x'); dialog::add_action([](){ dialog::editNumber(vpconf.spiral_angle, 0, 360, 15, 0, XLAT("spiral angle"), XLAT("set to 90° for the ring projection") ); }); ld& which = sphere ? vpconf.sphere_spiral_multiplier : ring_not_spiral ? vpconf.right_spiral_multiplier : vpconf.any_spiral_multiplier; dialog::addSelItem(XLAT("spiral multiplier"), fts(which) + "°", 'M'); dialog::add_action([&which](){ dialog::editNumber(which, 0, 10, -.1, 1, XLAT("spiral multiplier"), XLAT( "This parameter has a bit different scale depending on the settings:\n" "(1) in spherical geometry (with spiral angle=90°, 1 produces a stereographic projection)\n" "(2) in hyperbolic geometry, with spiral angle being +90° or -90°\n" "(3) in hyperbolic geometry, with other spiral angles (1 makes the bands fit exactly)" ) ); }); dialog::addSelItem(XLAT("spiral cone"), fts(vpconf.spiral_cone) + "°", 'C'); dialog::add_action([](){ dialog::editNumber(vpconf.spiral_cone, 0, 360, -45, 360, XLAT("spiral cone"), ""); }); } if(vpmodel == mdSpiral && euclid) { dialog::addSelItem(XLAT("spiral period: x"), fts(vpconf.spiral_x), 'x'); dialog::add_action([](){ dialog::editNumber(vpconf.spiral_x, -20, 20, 1, 10, XLAT("spiral period: x"), ""); }); dialog::addSelItem(XLAT("spiral period: y"), fts(vpconf.spiral_y), 'y'); dialog::add_action([](){ dialog::editNumber(vpconf.spiral_y, -20, 20, 1, 10, XLAT("spiral period: y"), ""); }); if(euclid && quotient) { dialog::addSelItem(XLAT("match the period"), its(spiral_id), 'n'); dialog::add_action(match_torus_period); } } dialog::addSelItem(XLAT("vertical stretch"), fts(vpconf.stretch), 's'); dialog::add_action(edit_stretch); if(product_model(vpmodel)) { dialog::addSelItem(XLAT("product Z stretch"), fts(vpconf.product_z_scale), 'Z'); dialog::add_action([] { dialog::editNumber(vpconf.product_z_scale, 0.1, 10, 0.1, 1, XLAT("product Z stretch"), ""); dialog::scaleLog(); }); } #if CAP_GL dialog::addBoolItem(XLAT("use GPU to compute projections"), vid.consider_shader_projection, 'G'); bool shaderside_projection = get_shader_flags() & SF_DIRECT; if(vid.consider_shader_projection && !shaderside_projection) dialog::lastItem().value = XLAT("N/A"); if(vid.consider_shader_projection && shaderside_projection && vpmodel) dialog::lastItem().value += XLAT(" (2D only)"); dialog::add_action([] { vid.consider_shader_projection = !vid.consider_shader_projection; }); #endif menuitem_sightrange('R'); dialog::addBreak(100); dialog::addItem(XLAT("history mode"), 'a'); dialog::add_action_push(history::history_menu); #if CAP_RUG if(GDIM == 2 || rug::rugged) { dialog::addItem(XLAT("hypersian rug mode"), 'u'); dialog::add_action_push(rug::show); } #endif dialog::addBack(); dialog::display(); mouseovers = XLAT("see http://www.roguetemple.com/z/hyper/models.php"); } #if CAP_COMMANDLINE eModel read_model(const string& ss) { for(int i=0; i