// Hyperbolic Rogue -- Euclidean geometry // Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details /** \file euclid.cpp * \brief Euclidean geometry, including 2D, 3D, and quotient spaces */ #include "hyper.h" namespace hr { // 3D Euclidean space #if MAXMDIM == 4 EX namespace euclid3 { #if HDR typedef long long coord; constexpr long long COORDMAX = (1<<16); #endif typedef array axes; typedef array, 3> intmatrix; static const axes main_axes = make_array(1, COORDMAX, COORDMAX * COORDMAX ); EX array getcoord(coord x) { array res; for(int k=0; k<3; k++) { int next = x % COORDMAX; if(next>COORDMAX/2) next -= COORDMAX; if(next<-COORDMAX/2) next += COORDMAX; res[k] = next; x -= next; x /= COORDMAX; } return res; } EX coord ascoord(array x) { return x[0] * main_axes[0] + x[1] * main_axes[1] + x[2] * main_axes[2]; } EX vector get_shifttable() { static const coord D0 = main_axes[0]; static const coord D1 = main_axes[1]; static const coord D2 = main_axes[2]; vector shifttable; switch(geometry) { case gCubeTiling: shifttable = { +D0, +D1, +D2 }; break; case gRhombic3: shifttable = { D0+D1, D0+D2, D1+D2, D1-D2, D0-D2, D0-D1 }; break; case gBitrunc3: shifttable = { 2*D0, 2*D1, 2*D2, D0+D1+D2, D0+D1-D2, D0-D1-D2, D0-D1+D2 }; break; case gEuclid: shifttable = { D0, D1, D1-D0, -D0, -D1, D0-D1 }; break; case gEuclidSquare: shifttable = { D0, D1, -D0, -D1 }; break; default: printf("euclid3::get_shifttable() called in geometry that is not euclid3"); exit(1); } // reverse everything int s = isize(shifttable); for(int i=0; i shifttable; vector tmatrix; map spacemap; map ispacemap; cell *camelot_center; map eucdata; vector toruscells; vector& allcells() override { if(bounded) { if(isize(toruscells) == 0) { celllister cl(getOrigin()->c7, 1000, 1000000, NULL); toruscells = cl.lst; } return toruscells; } return hrmap::allcells(); } hrmap_euclid3() { shifttable = get_shifttable(); tmatrix.resize(S7); for(int i=0; i (S7); if(!IRREGULAR) h->c7 = newCell(S7, h); else irr::link_to_base(h, ((hrmap_euclid3*)irr::base)->get_at(at)); h->distance = 0; h->cdata = NULL; h->alt = NULL; auto co = getcoord(at); if(S7 != 14) h->zebraval = gmod(co[0] + co[1] * 2 + co[2] * 4, 5); else h->zebraval = co[0] & 1; spacemap[at] = h; ispacemap[h] = at; return h; } } heptagon *build(heptagon *parent, int d, coord at) { auto h = get_at(at); int d1 = (d+S7/2)%S7; bool mirr = false; if(twisted) { transmatrix I; auto st = getcoord(shifttable[d1]); twist(ispacemap[parent] + shifttable[d], st, I, mirr); for(int i=0; ic.connect(d1, parent, d, mirr); return h; } heptagon *create_step(heptagon *parent, int d) override { return build(parent, d, canonicalize(ispacemap[parent] + shifttable[d])); } transmatrix adj(heptagon *h, int i) override { if(!twisted) return tmatrix[i]; transmatrix res = tmatrix[i]; coord id = ispacemap[h]; id += shifttable[i]; auto dummy = getcoord(0); bool dm = false; twist(id, dummy, res, dm); return res; } void draw() { dq::visited_by_matrix.clear(); dq::enqueue_by_matrix(centerover->master, cview() * master_relative(centerover, true)); while(!dq::drawqueue.empty()) { auto& p = dq::drawqueue.front(); heptagon *h = get<0>(p); transmatrix V = get<1>(p); dynamicval b(band_shift, get<2>(p)); bandfixer bf(V); dq::drawqueue.pop(); cell *c = h->c7; bool draw = drawcell_subs(c, V * spin(master_to_c7_angle())); if(wallopt && isWall3(c) && isize(dq::drawqueue) > 1000) continue; if(draw) for(int i=0; imove(i), V * adj(h, i)); } } transmatrix warppush(coord dif) { auto v = getcoord(dif); for(int i: {0, 1}) if(T0[i][i]) v[i] = gmod(v[i] + T0[i][i] / 2, T0[i][i]) - T0[i][i] / 2; return eupush3(v[0], v[1], v[2]); } transmatrix relative_matrix(heptagon *h2, heptagon *h1, const hyperpoint& hint) override { if(twisted) { if(h1 == h2) return Id; for(int s=0; smove(s)) return adj(h1, s); coord c1 = ispacemap[h1]; coord c2 = ispacemap[h2]; transmatrix T = warppush(c2 - c1); for(int d: {-1, 1}) { transmatrix I = Id; coord cs = c1; for(int s=0; s<3; s++) { cs += d * T0[2][2] * main_axes[2]; I = I * eupush3(0, 0, d * T0[2][2]); auto dummy = getcoord(0); bool dm = false; cs = twist(cs, dummy, I, dm); transmatrix T1 = I * warppush(c2 - cs); if(hdist0(tC0(T1)) < hdist0(tC0(T))) T = T1; } } return T; } auto d = ispacemap[h2] - ispacemap[h1]; d = canonicalize(d); return eumove(d); } vector get_vertices(cell* c) override { vector res; if(S7 < 14) for(ld a: {-.5,.5}) for(ld b: {-.5,.5}) for(ld c: {-.5, .5}) res.push_back(hpxy3(a,b,c)); if(S7 == 12) { res.push_back(hpxy3(1,0,0)); res.push_back(hpxy3(-1,0,0)); res.push_back(hpxy3(0,1,0)); res.push_back(hpxy3(0,-1,0)); res.push_back(hpxy3(0,0,1)); res.push_back(hpxy3(0,0,-1)); } if(S7 == 14) { for(ld a: {-1.,-.5,0.,.5,1.}) for(ld b: {-1.,-.5,0.,.5,1.}) for(ld c: {-1.,-.5,0.,.5,1.}) if(a == 0 || b == 0 || c == 0) if(a == .5 || a == -.5 || b == .5 || b == -.5 || c == .5 || c == -.5) if(a == 1 || a == -1 || b == 1 || b == -1 || c == 1 || c == -1) res.push_back(hpxy3(a,b,c)); } return res; } }; hrmap_euclid3* cubemap() { return ((hrmap_euclid3*) currentmap); } hrmap_euclid3* eucmap() { return cubemap(); } EX vector& get_current_shifttable() { return cubemap()->shifttable; } EX map& get_spacemap() { return cubemap()->spacemap; } EX map& get_ispacemap() { return cubemap()->ispacemap; } EX cell *& get_camelot_center() { return cubemap()->camelot_center; } EX hrmap* new_map() { return new hrmap_euclid3; } EX transmatrix move_matrix(heptagon *h, int i) { return cubemap()->adj(h, i); } EX bool pseudohept(cell *c) { coord co = cubemap()->ispacemap[c->master]; auto v = getcoord(co); if(S7 == 12) { for(int i=0; i<3; i++) if((v[i] & 1)) return false; } else { for(int i=0; i<3; i++) if(!(v[i] & 1)) return false; } return true; } EX int dist_alt(cell *c) { if(specialland == laCamelot) return dist_relative(c) + roundTableRadius(c); coord co = cubemap()->ispacemap[c->master]; auto v = getcoord(co); if(S7 == 6) return v[2]; else if(S7 == 12) return (v[0] + v[1] + v[2]) / 2; else return v[2]/2; } EX bool get_emerald(cell *c) { auto v = getcoord(cubemap()->ispacemap[c->master]); int s0 = 0, s1 = 0; for(int i=0; i<3; i++) { v[i] = gmod(v[i], 6); int d = min(v[i], 6-v[i]);; s0 += min(v[i], 6-v[i]); s1 += 3-d; } if(s0 == s1) println(hlog, "equality"); return s0 > s1; } bool cellvalid(coord co) { auto v = getcoord(co); if(S7 == 6) return true; if(S7 == 12) return (v[0] + v[1] + v[2]) % 2 == 0; if(S7 == 14) return v[0] % 2 == v[1] % 2 && v[0] % 2 == v[2] % 2; return false; } EX int celldistance(coord co) { auto v = getcoord(co); if(S7 == 6) return abs(v[0]) + abs(v[1]) + abs(v[2]); else { for(int i=0; i<3; i++) v[i] = abs(v[i]); sort(v.begin(), v.end()); int dist = 0; if(S7 == 12) { int d = v[1] - v[0]; v[1] -= d; v[2] -= d; dist += d; int m = min((v[2] - v[0]), v[0]); dist += 2 * m; v[0] -= m; v[1] -= m; v[2] -= m * 2; if(v[0]) dist += (v[0] + v[1] + v[2]) / 2; else dist += v[2]; } else { dist = v[0] + (v[1] - v[0]) / 2 + (v[2] - v[0]) / 2; } return dist; } } EX int celldistance(cell *c1, cell *c2) { auto cm = cubemap(); return celldistance(canonicalize(cm->ispacemap[c1->master] - cm->ispacemap[c2->master])); } EX void set_land(cell *c) { setland(c, specialland); auto m = cubemap(); auto co = getcoord(m->ispacemap[c->master]); int dv = 1; if(geometry != gCubeTiling) dv = 2; int hash = 0; for(int a=0; a<3; a++) hash = 1317 * hash + co[a] / 4; set_euland3(c, co[0]*120, co[1]*120, (co[1]+co[2]) / dv, hash); } EX int dist_relative(cell *c) { auto m = cubemap(); auto& cc = m->camelot_center; int r = roundTableRadius(NULL); cell *start = m->gamestart(); if(!cc) { cc = start; while(euclid3::celldistance(cc, start) < r + 5) cc = cc->cmove(hrand(cc->type)); } return euclid3::celldistance(cc, c) - r; } /* quotient spaces */ intmatrix make_intmatrix(axes a) { intmatrix T; T[0] = getcoord(a[0]); T[1] = getcoord(a[1]); T[2] = getcoord(a[2]); return T; } int determinant(const intmatrix T) { int det = 0; for(int i=0; i<3; i++) det += T[0][i] * T[1][(i+1)%3] * T[2][(i+2)%3]; for(int i=0; i<3; i++) det -= T[0][i] * T[1][(i+2)%3] * T[2][(i+1)%3]; return det; } intmatrix scaled_inverse(const intmatrix T) { intmatrix T2; for(int i=0; i<3; i++) for(int j=0; j<3; j++) T2[j][i] = (T[(i+1)%3][(j+1)%3] * T[(i+2)%3][(j+2)%3] - T[(i+1)%3][(j+2)%3] * T[(i+2)%3][(j+1)%3]); return T2; } axes user_axes; axes optimal_axes; axes regular_axes; intmatrix T, T2, T_edit; int det; int infinite_dims; int twisted0, twisted_edit; EX void set_torus3(int x, int y, int z) { for(int i=0; i<3; i++) for(int j=0; j<3; j++) T0[i][j] = 0; tie(T0[0][0], T0[1][1], T0[2][2]) = make_tuple(x, y, z); twisted = 0; } EX void clear_torus3() { set_torus3(0, 0, 0); } unordered_map canonical_hash; vector canonical_seq; int canonical_index; coord compute_cat(coord co) { auto coo = getcoord(co); coord cat = 0; for(int i=0; i<3; i++) { int val = T2[0][i] * coo[0] + T2[1][i] * coo[1] + T2[2][i] * coo[2]; if(i < WDIM - infinite_dims) val = gmod(val, det); cat += val * main_axes[i]; } return cat; }; void add_canonical(coord val) { auto cat = compute_cat(val); if(canonical_hash.count(cat)) return; canonical_hash[cat] = isize(canonical_seq); canonical_seq.push_back(val); } EX void build_torus3(eGeometry g) { int dim = ginf[g].g.gameplay_dimension; for(int i=0; i& d, transmatrix& M, bool& mirr) { if(WDIM == 3) { auto coo = getcoord(x); while(coo[2] >= T0[2][2]) { coo[2] -= T0[2][2]; if(twisted & 1) coo[0] *= -1, d[0] *= -1, M = M * MirrorX; if(twisted & 2) coo[1] *= -1, d[1] *= -1, M = M * MirrorY; if(twisted & 4) swap(coo[0], coo[1]), swap01(M), swap(d[0], d[1]); } while(coo[2] < 0) { coo[2] += T0[2][2]; if(twisted & 4) swap(coo[0], coo[1]), swap(d[0], d[1]), swap01(M); if(twisted & 1) coo[0] *= -1, d[0] *= -1, M = M * MirrorX; if(twisted & 2) coo[1] *= -1, d[1] *= -1, M = M * MirrorY; } for(int i: {0,1}) if(T0[i][i]) coo[i] = gmod(coo[i], T0[i][i]); return coo[0] * main_axes[0] + coo[1] * main_axes[1] + coo[2] * main_axes[2]; } else { auto crd = getcoord(x); gp::loc coo = gp::loc(crd[0], crd[1]); gp::loc ort = (S3 == 3 ? gp::loc(1, -2) : gp::loc(0, 1)) * twisted_vec; int dsc = dscalar(twisted_vec, twisted_vec); gp::loc d0 (d[0], d[1]); hyperpoint h = eumove(as_coord(twisted_vec)) * C0; while(true) { int dsx = dscalar(coo, twisted_vec); if(dsx >= dsc) coo = coo - twisted_vec; else if (dsx < 0) coo = coo + twisted_vec; else break; M = M * spintox(h) * MirrorY * rspintox(h); auto s = ort * dscalar(d0, ort) * 2; auto v = dscalar(ort, ort); s.first /= v; s.second /= v; d0 = d0 - s; s = ort * dscalar(coo, ort) * 2; s.first /= v; s.second /= v; coo = coo - s; mirr = !mirr; } if(ortho_vec != gp::loc{0,0}) { int osc = dscalar(ortho_vec, ortho_vec); while(true) { int dsx = dscalar(coo, ortho_vec); if(dsx >= osc) coo = coo - ortho_vec; else if(dsx < 0) coo = coo + ortho_vec; else break; } } d[0] = d0.first; d[1] = d0.second; return coo.first * main_axes[0] + coo.second * main_axes[1]; } } coord canonicalize(coord x) { if(twisted) { transmatrix M = Id; auto dummy = getcoord(0); bool dm = false; return twist(x, dummy, M, dm); } if(infinite_dims == WDIM) return x; if(infinite_dims == WDIM-1) { while(celldistance(x + optimal_axes[0]) <= celldistance(x)) x += optimal_axes[0]; while(celldistance(x - optimal_axes[0]) < celldistance(x)) x -= optimal_axes[0]; return x; } auto cat = compute_cat(x); auto& st = cubemap()->shifttable; while(!canonical_hash.count(cat)) { if(canonical_index == isize(canonical_seq)) throw hr_exception(); auto v = canonical_seq[canonical_index++]; for(auto s: st) add_canonical(v + s); } return canonical_seq[canonical_hash[cat]]; } EX void prepare_torus3() { T_edit = T0; twisted_edit = twisted0; } EX void show_fundamental() { initquickqueue(); transmatrix M = ggmatrix(cwt.at); hyperpoint h0 = M*C0; hyperpoint ha = M*(eumove(ascoord(T_edit[0])) * C0 - C0) / 2; hyperpoint hb = M*(eumove(ascoord(T_edit[1])) * C0 - C0) / 2; if(WDIM == 3) { hyperpoint hc = M*(eumove(ascoord(T_edit[2])) * C0 - C0) / 2; for(int d:{-1,1}) for(int e:{-1,1}) { queueline(h0+d*ha+e*hb-hc, h0+d*ha+e*hb+hc, 0xFFFFFFFF); queueline(h0+d*hb+e*hc-ha, h0+d*hb+e*hc+ha, 0xFFFFFFFF); queueline(h0+d*hc+e*ha-hb, h0+d*hc+e*ha+hb, 0xFFFFFFFF); } } else { queueline(h0+ha+hb, h0+ha-hb, 0xFFFFFFFF); queueline(h0-ha+hb, h0-ha-hb, 0xFFFFFFFF); queueline(h0+ha+hb, h0-ha+hb, 0xFFFFFFFF); queueline(h0+ha-hb, h0-ha-hb, 0xFFFFFFFF); } quickqueue(); } EX void show_torus3() { int dim = WDIM; cmode = sm::SIDE | sm::MAYDARK | sm::TORUSCONFIG; gamescreen(1); dialog::init(XLAT("Euclidean quotient spaces")); for(int y=0; y= 0 && i < dim) { for(int j=0; j < dim; j++) { char ch = 'a' + i * 3 + j; if(displayfr(dialog::dcenter + dialog::dfspace * 4 * (j-(dim-1.)/2), v.position, 2, dialog::dfsize, its(T_edit[j][i]), 0xFFFFFF, 8)) getcstat = ch; dialog::add_key_action(ch, [=] { dialog::editNumber(T_edit[j][i], -10, +10, 1, 0, "", XLAT( "This matrix lets you play on the quotient spaces of three-dimensional. " "Euclidean space. Every column specifies a translation vector which " "takes you back to the starting point. For example, if you put " "set 2, 6, 0 on the diagonal, you get back to the starting point " "if you move 2 steps in the X direction, 6 steps in the Y direction " "(the quotient space is infinite in the Z direction).\n\n" "You can also introduce twists for diagonal matrices: after going " "the given number of steps in the Z direction, the space is also " "mirrored or rotated. (More general 'twisted' spaces are currently " "not implemented.)" ) ); dialog::extra_options = show_fundamental; }); } } i++; } } #if CAP_COMMANDLINE int euArgs() { using namespace arg; if(0) ; else if(argis("-t3")) { PHASEFROM(2); stop_game(); for(int i=0; i<3; i++) for(int j=0; j<3; j++) { shift(); T0[i][j] = argi(); } build_torus3(); } else if(argis("-t2")) { PHASEFROM(2); stop_game(); for(int i=0; i<2; i++) for(int j=0; j<2; j++) { shift(); T0[i][j] = argi(); } shift(); twisted0 = argi(); build_torus3(); } else if(argis("-twist3")) { PHASEFROM(2); stop_game(); for(int i=0; i<3; i++) for(int j=0; j<3; j++) T0[i][j] = 0; for(int i=0; i<3; i++) { shift(); T0[i][i] = argi(); } shift(); twisted0 = argi(); build_torus3(); } else if(argis("-twisttest")) { start_game(); celllister cl(cwt.at, 10000, 10000, NULL); for(cell *c: cl.lst) { heptagon *h = c->master; for(int i=0; imove(i) && c->move(k) && h->move(i)->move(j) == h->move(k)->move(l) && h->move(i)->move(j)) { transmatrix T1 = move_matrix(h, i) * move_matrix(h->move(i), j); transmatrix T2 = move_matrix(h, k) * move_matrix(h->move(k), l); if(!eqmatrix(T1, T2)) { println(hlog, c, " @ ", getcoord(cubemap()->ispacemap[c->master]), " : ", i, "/", j, "/", k, "/", l, " :: ", T1, " vs ", T2); exit(1); } } } } else return 1; return 0; } auto euhook = addHook(hooks_args, 100, euArgs); #endif EX } #endif EX int dscalar(gp::loc e1, gp::loc e2) { return 2 * (e1.first * e2.first + e1.second*e2.second) + (S3 == 3 ? e1.first*e2.second + e2.first * e1.second : 0); } EX int dsquare(gp::loc e) { return dscalar(e, e)/2; } EX int dcross(gp::loc e1, gp::loc e2) { return e1.first * e2.second - e1.second*e2.first; } EX gp::loc euc2_coordinates(cell *c) { // todo masterrel auto vec = euclid3::eucmap()->ispacemap[c->master]; auto ans = euclid3::getcoord(vec); return {ans[0], ans[1]}; } EX cell* at_euc2_coordinates(gp::loc p) { // todo masterrel euclid3::coord co = as_coord(p); return euclid3::eucmap()->get_at(co)->c7; } EX euclid3::coord as_coord(gp::loc p) { return p.first + p.second * euclid3::COORDMAX; } EX gp::loc sdxy() { return {0, 0}; } EX pair coord_display(const transmatrix& V, cell *c) { if(c != c->master->c7) return {false, ""}; hyperpoint hx = eumove(1) * C0; hyperpoint hy = eumove(euclid3::COORDMAX) * C0; hyperpoint hz = WDIM == 2 ? C0 : eumove(euclid3::main_axes[2]) * C0; hyperpoint h = kz(inverse(build_matrix(hx, hy, hz, C03)) * inverse(ggmatrix(cwt.at->master->c7)) * V * C0); if(WDIM == 3) return {true, fts(h[0]) + "," + fts(h[1]) + "," + fts(h[2]) }; else return {true, fts(h[0]) + "," + fts(h[1]) }; } EX gp::loc as_gp(const array& v) { return gp::loc(v[0], v[1]); } EX map& get_cdata() { return euclid3::eucmap()->eucdata; } EX transmatrix eumove(euclid3::coord vec) { constexpr double q3 = sqrt(double(3)); auto co = euclid3::getcoord(vec); if(WDIM == 3) { return eupush3(co[0], co[1], co[2]); } transmatrix Mat = Id; if(a4) { Mat[0][LDIM] += co[0] * cgi.tessf; Mat[1][LDIM] += co[1] * cgi.tessf; } else { Mat[0][LDIM] += (co[0] + co[1] * .5) * cgi.tessf; Mat[1][LDIM] += co[1] * q3 /2 * cgi.tessf; } return Mat; } EX bool chiral(gp::loc g) { int x = g.first; int y = g.second; if(x == 0) return false; if(y == 0) return false; if(x+y == 0) return false; if(x==y) return false; if(S3 == 3 && y == -2*x) return false; if(S3 == 3 && x == -2*y) return false; return true; } EX euclid3::coord first_period() { return 0; } }