// define all our manifolds, and perform tests on them // Copyright (C) 2011-2022 Tehora and Zeno Rogue, see 'hyper.cpp' for details #include "kohonen.h" #include namespace rogueviz { transmatrix& memo_relative_matrix(cell *c1, cell *c2); namespace kohonen_test { using namespace kohonen; void equal_weights() { alloc(weights); for(auto& w: weights) w = 1; } void show_all() { samples_to_show.clear(); for(int i=0; i > voronoi_edges; bool nmap; vector where; int max_distance = 999; bool using_subdata; vector orig_data; vector sub_indices; vector inv_sub_indices; void ideal() { for(int i=0; i is_special; vector ctrdist; int ctrdist_max; voronoi::manifold data_manifold; using measures::manidata; manidata test_emb, test_orig; void create_manidata(manidata& mdata) { auto ac = gen_neuron_cells(); auto& edges = mdata.edges; edges.clear(); mdata.size = isize(ac); mdata.distances.clear(); for(int i=0; igamestart(); where.clear(); is_special.clear(); ctrdist.clear(); ctrdist_max = 0; edge_data = false; drawthemap(); data.clear(); samples_to_show.clear(); auto ac = gen_neuron_cells(); for(auto c: ac) { if(celldistance(c, c0) > max_distance) continue; where.push_back(c); sample s; embeddings::get_coordinates(s.val, c, c0); data.push_back(move(s)); } samples = isize(data); test_orig.size = samples; colnames.resize(columns); for(int i=0; itype != (S3 == 3 ? 6 : 4); is_special.push_back(sign); ctrdist.push_back(celldist(where[i])); ctrdist_max = max(ctrdist_max, ctrdist.back()); } create_manidata(test_orig); } void create_subdata(int qty) { if(!using_subdata) orig_data = data; using_subdata = true; int N = isize(orig_data); sub_indices.resize(N); for(int i=0; idead = true; vdata.clear(); sample_vdata_id.clear(); state &= ~KS_SAMPLES; for(int idx: sub_indices) data.push_back(orig_data[idx]); samples = isize(data); inv_sub_indices.clear(); inv_sub_indices.resize(N, -1); for(int i=0; i ids; for(auto e: edges) { if(e.first == i) ids.push_back(e.second); if(e.second == i) ids.push_back(e.first); } vdata[i].name = lalign(0, "#", i, " ", ids); } auto any = add_edgetype("adjacent"); if(!using_subdata) { for(auto e: edges) addedge(e.first, e.second, 1, false, any); } else { vector nearest(isize(orig_data), -1); set> subedges; for(int i=0; i > changes; for(auto e: edges) { if(nearest[e.first] == -1 && nearest[e.second] >= 0) changes.emplace_back(e.first, nearest[e.second]); if(nearest[e.second] == -1 && nearest[e.first] >= 0) changes.emplace_back(e.second, nearest[e.first]); } if(changes.empty()) break; // hrandom_shuffle(changes); for(auto ch: changes) nearest[ch.first] = ch.second; } for(auto e: edges) if(nearest[e.first] != nearest[e.second]) subedges.emplace(nearest[e.first], nearest[e.second]); // for(auto se: subedges) println(hlog, "subedges = ", se); for(auto sube: subedges) addedge(sube.first, sube.second, 1, false, any); } println(hlog, "edgedata created, ", using_subdata); } void sphere_test() { create_data(); initialize_dispersion(); initialize_neurons_initial(); analyze(); create_edgedata(); ideal(); analyze(); } void sphere_test_no_disp() { create_data(); initialize_neurons_initial(); analyze(); create_edgedata(); ideal(); analyze(); } void check_energy() { vector dlist; vector win_cells(samples); for(int i=0; i distlist; for(int i=0; i mapp(test_orig.size, 0); map id; for(int i=0; i> edo_recreated = measures::recreate_topology(mapp, test_orig.edges); for(int k=0; k get_parameters() { return vector { ttpower, learning_factor, gaussian ? distmul : dispersion_end_at-1 }; } void set_parameters(const vector& v) { ttpower = v[0]; learning_factor = v[1]; if(gaussian) distmul = v[2]; else dispersion_end_at = v[2] + 1; } void som_table() { sphere_test(); map, pair > tries; map, string> sucorder; auto bttpower = ttpower; auto blearning = learning_factor; auto bdist = distmul; auto bdispe = dispersion_end_at - 1; ld last_distmul = -1; auto set_parameters = [&] (array& u) { distmul = bdist * exp(u[0] / 5.); dispersion_end_at = 1 + bdispe * exp(u[0] / 5.); ttpower = bttpower * exp(u[2] / 5.); learning_factor = blearning * exp(u[1] / 5.); if(last_distmul != distmul) { last_distmul = distmul, state &=~ KS_DISPERSION; } }; array best = {0, 0, 0}; int maxtry = 20; while(true) { array best_at; ld bestval = -1; vector vals; for(int k=0; k<27; k++) { array cnt; int k1 = k; for(int i=0; i<3; i++) cnt[2-i] = best[2-i] + (k1%3-1), k1 /= 3; set_parameters(cnt); do { tries[cnt].second++; dynamicval dd(debugflags, 0); bool chk = check(false); if(chk) tries[cnt].first++; sucorder[cnt] += (chk ? 'y' : 'n'); } while(tries[cnt].second < maxtry); ld val_here = tries[cnt].first * 1. / tries[cnt].second; if(val_here > bestval) bestval = val_here, best_at = cnt; vals.push_back(val_here); } sort(vals.begin(), vals.end()); best = best_at; set_parameters(best); println(hlog, "score ", bestval, " at ", best_at, " : ", tie(distmul, dispersion_end_at, learning_factor, ttpower), " x", tries[best].second, " s=", vals[vals.size()-2]); if(tries[best].second > maxtry) maxtry = tries[best].second; if(tries[best].second >= 1000) { println(hlog, "suc ", best, " :\n", sucorder[best]); for(int vv=10; vv>=0; vv--) { dynamicval ks(qpct, 0); t = vv ? tmax * vv / 10 : 1; step(); println(hlog, "t=", t); println(hlog, "dispersion_count = ", dispersion_count); } return; } } } vector shapelist; map shapes; map embeddings; int data_scale = 1; int embed_scale = 1; int current_scale = 1; void set_gp(int a, int b) { a *= current_scale; b *= current_scale; if(a == 1 && b == 1) set_variation(eVariation::bitruncated); else if(a == 1 && b == 0) set_variation(eVariation::pure); else { set_variation(eVariation::goldberg); gp::param = gp::loc(a, b); } } void set_restrict() { kohonen::kqty = 5000; kohonen::kohrestrict = 520 * current_scale * current_scale; } void set_torus2(int a, int b, int c, int d, int e) { using namespace euc; auto& T0 = eu_input.user_axes; T0[0][0] = a; T0[0][1] = b; T0[1][0] = c; T0[1][1] = d; eu_input.twisted = e; build_torus3(); } int dim = 10; string emb; void add(string name, reaction_t embed, reaction_t set) { shapelist.push_back(name); shapes[name] = set; embeddings[name] = embed; } void set_euclid3(int x, int y, int z, int twist) { using namespace euc; auto& T0 = eu_input.user_axes; for(int i=0; i<3; i++) for(int j=0; j<3; j++) T0[i][j] = 0; T0[0][0] = x; T0[1][1] = y; T0[2][2] = z; eu_input.twisted = twist; build_torus3(); } void klein_signposts() { embeddings::etype = embeddings::eSignpost; println(hlog, "marking klein signposts"); embeddings::signposts.clear(); for(cell *c: currentmap->allcells()) setdist(c, 7, nullptr); for(int x=0; x<4; x++) for(int y=0; y<13; y++) { cellwalker cw = cellwalker(currentmap->gamestart(), 0); for(int i=0; itype; i++) { shiftpoint h = tC0(g * currentmap->adj(w, i)); hyperpoint onscreen; applymodel(h, onscreen); maxs = max(maxs, onscreen[0] / cd->xsize); maxs = max(maxs, onscreen[1] / cd->ysize); } } pconf.alpha = 1; pconf.scale = pconf.scale / 2 / maxs / cd->radius; pconf.scale /= 1.2; if(bounded) pconf.scale = WDIM == 3 ? 0.2 : 0.07; } if(GDIM == 3) pmodel = mdPerspective; if(nil || sol) pmodel = mdGeodesic; vid.use_smart_range = 2; vid.smart_range_detail = 7; vid.cells_generated_limit = 999999; vid.cells_drawn_limit = 200000; } void shot_settings_png() { vid.use_smart_range = 2; vid.smart_range_detail = 0.5; shot::shotx = 500; shot::shoty = 500; } bool more = true; void create_index() { system(("mkdir " + som_test_dir).c_str()); fhstream f(som_test_dir + "index-" + its(current_scale) + ".html", "wt"); fhstream csv(som_test_dir + "manifold-data-" + its(current_scale) + ".csv", "wt"); fhstream tex(som_test_dir + "manifold-data-" + its(current_scale) + ".tex", "wt"); println(f, ""); // fhstream distf(som_test_dir + "distlists-" + its(current_scale) + ".txt", "wt"); bool add_header = true; for(auto s: shapelist) { sphere_data = false; println(hlog, "building ", s); kohonen::kqty = kohonen::krad = 0; kohonen::kohrestrict = 999999999; stop_game(); shapes[s](); // if(!euclid) continue; start_game(); initialize_rv(); embeddings[s](); println(hlog, "create_data"); create_data(); println(hlog, "sphere_test"); sphere_test_no_disp(); println(hlog, "building disttable"); vector disttable(100, 0); int pairs = 0; test_orig.distances = measures::build_distance_matrix(test_orig.size, test_orig.edges); int N = test_orig.size; for(int i=0; i
"); println(f, "shape ", s, " : ", samples, " items, ", isize(test_orig.edges), " edges, dim ", columns, " (", emb, "), ", full_geometry_name()); println(f, "
"); fflush(f.f); again: if(add_header) print(csv, "name"); else print(csv, s); if(add_header) print(tex, "name"); else print(tex, s); #define Out(title,value) if(add_header) { print(csv, ";", title); print(tex, "&", title); } else { print(csv, ";", value); print(tex, "&", value); } double avgdist = 0, avgdist2 = 0, sqsum = 0; int maxdist = 0; for(int i=0; i<100; i++) { if(disttable[i] > 0) maxdist = i; avgdist += i * disttable[i]; avgdist2 += i * i * disttable[i]; sqsum += disttable[i] * (disttable[i]-1.); } disttable.resize(maxdist + 1); if(more) println(hlog, disttable, " pairs = ", pairs); avgdist /= pairs; avgdist2 /= pairs; double kmax = 1 - sqsum / (pairs * (pairs-1.)); Out("samples", samples); Out("edges", isize(test_orig.edges)); Out("columns", columns); Out("embtype", emb); Out("gpx", gp::univ_param().first); Out("gpy", gp::univ_param().second); Out("orientable", nonorientable ? 0 : 1); Out("symmetric", (flags & m_symmetric) ? 1 : 0); Out("closed", bounded ? 1 : 0); Out("quotient", quotient ? 1 : 0); Out("dim", WDIM); Out("valence", S3); Out("tile", S7); println(hlog, "gen neuron cells"); auto ac = gen_neuron_cells(); int sum = 0; for(cell *c: ac) sum += c->type; ld curvature = (S3 == 3 ? 6 : S3 >= OINF ? 2 : 4) - sum * 1. / isize(ac); if(GDIM == 3) curvature = hyperbolic ? -1 : sphere ? 1 : 0; Out("curvature", curvature); println(hlog, "compute geometry data"); auto gd = compute_geometry_data(); Out("euler", gd.euler); Out("area", gd.area); Out("geometry", hyperbolic ? "hyperbolic" : euclid ? "euclidean" : sphere ? "spherical" : "other"); if(more) { Out("maxdist", maxdist); Out("avgdist", avgdist); Out("avgdist2", avgdist2); Out("kmax", kmax); } println(csv); println(tex, "\\\\"); fflush(csv.f); fflush(f.f); fflush(tex.f); if(add_header) { add_header = false; goto again; } println(hlog, "geom = ", s, " delta = ", isize(embeddings::delta_at)); } println(f, ""); } unsigned hash(string s) { unsigned res = 0; for(char c: s) res = res * 37 + c; return res; } int subdata_value; bool only_landscape; string cg() { string s = ""; if(kohonen::gaussian == 1) s += "-cg"; if(kohonen::gaussian == 2) s += "-gg"; if(kohonen::dispersion_long) s += "-dl"; if(ttpower != 1) s += "-tt" + lalign(0, ttpower); if(subdata_value) s += "-s" + its(subdata_value); if(landscape_dim) s += "-l" + its(landscape_dim); if(data_scale) s += "-d" + its(data_scale); if(embed_scale) s += "-e" + its(embed_scale); return s; } vector > saved_data; void all_pairs(bool one) { string dir = som_test_dir + "pairs" + cg(); system(("mkdir -p " + dir + "/img").c_str()); int sid = 0; for(auto s1: shapelist) { for(auto s2: shapelist) { sid++; if(kohonen::gaussian == 2 && s2.substr(0, 4) != "disk" && s2.substr(0, 6) != "sphere") continue; if(only_landscape && s1.substr(0, 4) != "disk") continue; string fname_vor = dir + "/" + s1 + "-" + s2 + ".vor"; string fname = dir + "/" + s1 + "-" + s2 + ".txt"; if(file_exists(fname)) continue; fhstream f(fname, "wt"); fhstream fvor(fname_vor, "wt"); println(hlog, "mapping ", s1, " to " ,s2); shrand(hash(s1) ^ hash(s2)); sphere_data = false; using_subdata = false; kohonen::kqty = kohonen::krad = 0; kohonen::kohrestrict = 999999999; current_scale = data_scale; stop_game(); shapes[s1](); start_game(); initialize_rv(); if(landscape_dim) { saved_data.clear(); for(int i=0; i<100; i++) { sphere_data = false; data.clear(); embeddings[s1](); create_data(); saved_data.push_back(data); if(i < 5) for(int j=0; j<20; j++) println(hlog, "saved data ", i, ":", j, ": ", saved_data[i][j].val); } } else { embeddings[s1](); create_data(); } stop_game(); kohonen::kqty = kohonen::krad = 0; kohonen::kohrestrict = 999999999; current_scale = embed_scale; shapes[s2](); initialize_dispersion(); initialize_neurons_initial(); analyze(); create_edgedata(); int orig_samples = samples; for(int i=0; i<100; i++) { println(hlog, "iteration ", lalign(3, i), " of ", fname); if(landscape_dim) { data = orig_data = saved_data[i]; } if(subdata_value) create_subdata(subdata_value); set_neuron_initial(); if(0) { println(hlog, "initial neuron values:"); indenter ind(2); for(auto& n: net) println(hlog, n.net); } t = tmax; dynamicval ks(qpct, 0); while(!finished()) kohonen::step(); for(int i=0; i rnd; for(int i=0; i<10; i++) rnd.push_back(hrand(1000)); println(hlog, "finished ", s1, "-", s2, " rnd = ", rnd); println(rndcheck, "finished ", s1, "-", s2, " rnd = ", rnd); } if(one) exit(0); } } system("touch done"); } bool verify_distlists = false; void create_edgelists() { fhstream f("results/edgelists-" + its(current_scale) + ".txt", "wt"); for(auto s: shapelist) { sphere_data = false; kohonen::kqty = kohonen::krad = 0; kohonen::kohrestrict = 999999999; stop_game(); shapes[s](); // if(!euclid) continue; start_game(); initialize_rv(); embeddings[s](); println(hlog, "create_data"); create_data(); println(hlog, "sphere_test"); sphere_test_no_disp(); auto ac = gen_neuron_cells(); int N = isize(ac); int M = isize(test_orig.edges); print(f, s, "\n", N, " ", M); for(auto e: test_orig.edges) print(f, " ", e.first, " ", e.second); if(verify_distlists) { test_orig.distances = measures::build_distance_matrix(test_orig.size, test_orig.edges); for(int i=0; iwall = waPlatform; } else if(argis("-som-rug")) { PHASE(3); start_game(); initialize_rv(); shift(); embeddings::generate_rug(argi(), true); } else if(argis("-som-rug-show")) { PHASE(3); start_game(); initialize_rv(); shift(); embeddings::generate_rug(argi(), false); } else if(argis("-som-proj")) { PHASE(3); embeddings::etype = embeddings::eProjection; } else if(argis("-som-emb")) { PHASE(3); embeddings::etype = embeddings::eNatural; } /* other stuff */ else if(argis("-som-test")) { PHASE(3); start_game(); sphere_test(); println(hlog, "data = ", isize(data), " neurons = ", isize(net)); } else if(argis("-som-cdata")) { PHASE(3); start_game(); create_data(); } else if(argis("-subdata")) { shift(); create_subdata(argi()); } else if(argis("-subdata-val")) { shift(); subdata_value = argi(); } else if(argis("-landscape-dim")) { shift(); landscape_dim = argi(); } else if(argis("-som-optimize")) { PHASE(3); start_game(); // som_optimize(); } else if(argis("-som-table")) { PHASE(3); start_game(); som_table(); } else if(argis("-som-scale-data")) { PHASE(3); shift(); current_scale = data_scale = argi(); } else if(argis("-som-scale-embed")) { PHASE(3); shift(); current_scale = embed_scale = argi(); } else if(argis("-by-name")) { PHASE(3); init_shapes(); land_structure = lsSingle; shift(); string s = args(); if(shapes.count(s)) { kohonen::kqty = kohonen::krad = 0; kohonen::kohrestrict = 999999999; stop_game(); shapes[s](); start_game(); initialize_rv(); embeddings[s](); println(hlog, "embedding used: ", emb, " for: ", s); } else { println(hlog, "shape unknown: ", s); } } else if(argis("-only-landscape")) { only_landscape = true; } else if(argis("-som-experiment")) { PHASE(3); init_shapes(); land_structure = lsSingle; all_pairs(false); } else if(argis("-som-experiment1")) { PHASE(3); init_shapes(); land_structure = lsSingle; all_pairs(true); } else if(argis("-som-experiment-index")) { PHASE(3); init_shapes(); land_structure = lsSingle; create_index(); } else if(argis("-edgecheck")) { PHASE(3); unsigned x = 1; for(auto e: test_orig.edges) { x*= 7; x += e.first; x += 123 * e.second; } println(hlog, "x = ", x, " edges = ", isize(test_orig.edges)); } else if(argis("-som-experiment-tables")) { PHASE(3); init_shapes(); land_structure = lsSingle; create_edgelists(); } else if(argis("-ex")) exit(0); else return 1; return 0; } auto hooks3 = addHook(hooks_args, 100, readArgs); #endif auto khook = arg::add3("-kst-keys", [] { rv_hook(hooks_handleKey, 150, kst_key); }) + addHook(hooks_configfile, 100, [] { param_i(ks_empty, "ks_empty", 0); param_i(ks_distant, "ks_distant", 0); param_i(ks_nonadj, "ks_nonadj", 0); param_i(max_distance, "ks_max"); }) + addHook(hooks_markers, 100, [] () { int N = isize(net); bool multidraw = quotient; bool use_brm = bounded && isize(currentmap->allcells()) <= brm_limit; vid.linewidth *= 3; for(auto e: voronoi_edges) if(e.first < N && e.second < N) for(const shiftmatrix& V1 : hr::span_at(current_display->all_drawn_copies, net[e.first].where)) { if(use_brm) { auto V2 = brm_get(net[e.first].where, C0, net[e.second].where, C0); queueline(V1*C0, V1*V2*C0, 0xC010C0FF, vid.linequality + 3); } else if(multidraw || elliptic) { auto V2 = memo_relative_matrix(net[e.second].where, net[e.first].where); queueline(V1*C0, V1*V2*C0, 0xC010C0FF, vid.linequality + 3); } else for(const shiftmatrix& V2 : hr::span_at(current_display->all_drawn_copies, net[e.second].where)) queueline(V1*C0, V2*C0, 0xC010C0FF, vid.linequality + 3); } vid.linewidth /= 3; }) + addHook(anims::hooks_record_anim, 100, [] (int i, int noframes) { bool steps = false; ld nf = noframes; while(t * nf > (nf - i) * tmax) step(), steps = true; if(steps) analyze(); }); }}