// Hyperbolic Rogue -- cells // Copyright (C) 2011-2018 Zeno Rogue, see 'hyper.cpp' for details // cells the game is played on int fix6(int a) { return (a+MODFIXER)%S6; } int fix7(int a) { return (a+MODFIXER)%S7; } int dirdiff(int dd, int t) { dd %= t; if(dd<0) dd += t; if(t-dd < dd) dd = t-dd; return dd; } int fixdir(int a, cell *c) { a %= c->type; if(a<0) a += c->type; return a; } int cellcount = 0; void initcell(cell *c); // from game.cpp cell *newCell(int type, heptagon *master) { cell *c = new cell; c->type = type; c->master = master; for(int i=0; imov[i] = NULL; initcell(c); return c; } void merge(cell *c, int d, cell *c2, int d2, bool mirrored = false) { c->mov[d] = c2; tsetspin(c->spintable, d, d2 + (mirrored?8:0)); c2->mov[d2] = c; tsetspin(c2->spintable, d2, d + (mirrored?8:0)); } struct cdata { int val[4]; int bits; }; // -- hrmap --- hrmap *currentmap; vector allmaps; // --- auxiliary hyperbolic map for horocycles --- struct hrmap_alternate : hrmap { heptagon *origin; hrmap_alternate(heptagon *o) { origin = o; } ~hrmap_alternate() { clearfrom(origin); } }; hrmap *newAltMap(heptagon *o) { return new hrmap_alternate(o); } // --- hyperbolic geometry --- hrmap_hyperbolic::hrmap_hyperbolic() { // printf("Creating hyperbolic map: %p\n", this); origin = new heptagon; heptagon& h = *origin; h.s = hsOrigin; h.emeraldval = a46 ? 0 : 98; h.zebraval = 40; h.fiftyval = 0; h.fieldval = 0; h.rval0 = h.rval1 = 0; h.cdata = NULL; for(int i=0; i siblings; struct hrmap_spherical : hrmap { heptagon *dodecahedron[12]; bool isnonbitrunc; hrmap_spherical() { isnonbitrunc = nonbitrunc; for(int i=0; imove[i] = dodecahedron[i+1]; dodecahedron[0]->setspin(i, 0); dodecahedron[i+1]->move[0] = dodecahedron[0]; dodecahedron[i+1]->setspin(0, i); dodecahedron[i+1]->move[1] = dodecahedron[(i+S7-1)%S7+1]; dodecahedron[i+1]->setspin(1, S7-1); dodecahedron[i+1]->move[S7-1] = dodecahedron[(i+1)%S7+1]; dodecahedron[i+1]->setspin(S7-1, 1); if(S7 == 5 && elliptic) { dodecahedron[i+1]->move[2] = dodecahedron[(i+2)%S7+1]; dodecahedron[i+1]->setspin(2, 3 + 8); dodecahedron[i+1]->move[3] = dodecahedron[(i+3)%S7+1]; dodecahedron[i+1]->setspin(3, 2 + 8); } else if(S7 == 5) { dodecahedron[6]->move[i] = dodecahedron[7+i]; dodecahedron[6]->setspin(i, 0); dodecahedron[7+i]->move[0] = dodecahedron[6]; dodecahedron[7+i]->setspin(0, i); dodecahedron[i+7]->move[1] = dodecahedron[(i+4)%5+7]; dodecahedron[i+7]->setspin(1, 4); dodecahedron[i+7]->move[4] = dodecahedron[(i+1)%5+7]; dodecahedron[i+7]->setspin(4, 1); dodecahedron[i+1]->move[2] = dodecahedron[7+(10-i)%5]; dodecahedron[i+1]->setspin(2, 2); dodecahedron[7+(10-i)%5]->move[2] = dodecahedron[1+i]; dodecahedron[7+(10-i)%5]->setspin(2, 2); dodecahedron[i+1]->move[3] = dodecahedron[7+(9-i)%5]; dodecahedron[i+1]->setspin(3, 3); dodecahedron[7+(9-i)%5]->move[3] = dodecahedron[i+1]; dodecahedron[7+(9-i)%5]->setspin(3, 3); } if(S7 == 4) { dodecahedron[5]->move[3-i] = dodecahedron[i+1]; dodecahedron[5]->setspin(3-i, 2); dodecahedron[i+1]->move[2] = dodecahedron[5]; dodecahedron[i+1]->setspin(2, 3-i); } } } heptagon *getOrigin() { return dodecahedron[0]; } ~hrmap_spherical() { dynamicval ph(nonbitrunc, isnonbitrunc); for(int i=0; i (currentmap); if(!s) return NULL; return s->dodecahedron[i]; } // --- euclidean geometry --- // NOTE: patterns assume that pair_to_vec(0,1) % 3 == 2! // Thus, pair_to_vec(0,1) must not be e.g. a power of four int pair_to_vec(int x, int y) { return x + (y << 15); } pair vec_to_pair(int vec) { int x = vec & ((1<<15)-1); int y = (vec >> 15); if(x >= (1<<14)) x -= (1<<15), y++; return {x, y}; } namespace torusconfig { // the configuration of the torus topology. // torus cells are indexed [0..qty), // where the cell to the right from i is indexed i+dx, // and the cell to the down-right is numbered i+dy // Changed with command line option: -tpar ,, // Ideally, qty, dx, and dy should have the same "modulo 3" // values as the default -- otherwise the three-color // pattern breaks. Also, they should have no common // prime divisor. int def_qty = 127*3, dx = 1, def_dy = -11*2; int qty = def_qty, dy = def_dy; int sdx = 12, sdy = 12; // new values to change int newqty, newdy, newsdx, newsdy; int torus_cx, torus_cy; enum eTorusMode { tmSingleHex, tmSingle, tmSlantedHex, tmStraight, tmStraightHex, tmKlein, tmKleinHex }; static const flagtype TF_SINGLE = 1; static const flagtype TF_SIMPLE = 2; static const flagtype TF_WEIRD = 4; static const flagtype TF_HEX = 16; static const flagtype TF_SQUARE = 32; static const flagtype TF_KLEIN = 256; struct torusmode_info { string name; flagtype flags; }; vector tmodes = { {"single row (hex)", TF_SINGLE | TF_HEX}, {"single row (squares)", TF_SINGLE | TF_SQUARE}, {"parallelogram (hex)", TF_SIMPLE | TF_HEX}, {"rectangle (squares)", TF_SIMPLE | TF_SQUARE}, {"rectangle (hex)", TF_WEIRD | TF_HEX}, {"Klein bottle (squares)", TF_SIMPLE | TF_KLEIN | TF_SQUARE}, {"Klein bottle (hex)", TF_WEIRD | TF_KLEIN | TF_HEX}, }; eTorusMode torus_mode, newmode; flagtype tmflags() { return tmodes[torus_mode].flags; } int getqty() { if(tmflags() & TF_SINGLE) return qty; else return sdx * sdy; } int getvec(int x, int y) { if(tmflags() & TF_SINGLE) return x * dx + y * dy; else if(tmflags() & TF_SIMPLE) return pair_to_vec(x, y); else return pair_to_vec(-y - 2 * x, 3 * y); } int id_to_vec(int id, bool mirrored = false) { if(tmflags() & TF_SINGLE) return id; else { int dx = id % sdx; int dy = id / sdx; if(mirrored) dy = -dy, dx += sdx; if(tmflags() & TF_SIMPLE) return pair_to_vec(dx, dy); else return pair_to_vec(- 2 * dx - (dy & 1), 3 * dy); } } pair vec_to_id_mirror(int vec) { if(tmflags() & TF_SINGLE) { return {gmod(vec, qty), false}; } else { int x, y; tie(x,y) = vec_to_pair(vec); bool mirror = false; if(tmflags() & TF_KLEIN) { if(tmflags() & TF_WEIRD) { x = gmod(x, 4 * sdx); mirror = x > 0 && x <= 2 * sdx; } else { x = gmod(x, 2 * sdx); mirror = x >= sdx; } if(mirror) y = -y; } if(tmflags() & TF_WEIRD) { y /= 3; x = (x + (y&1)) / -2; } x = gmod(x, sdx), y = gmod(y, sdy); return {y * sdx + x, mirror}; } } int vec_to_id(int vec) { return vec_to_id_mirror(vec).first; } void torus_test() { printf("Testing torus vec_to_pair/pair_to_vec...\n"); for(int x=-10; x<=10; x++) for(int y=-10; y<=10; y++) { auto p = vec_to_pair(pair_to_vec(x, y)); if(p.first != x || p.second != y) printf("Failed for (%d,%d) -> [%d] -> (%d,%d)\n", x, y, pair_to_vec(x,y), p.first, p.second); } printf("Testing id_to_vec / vec_to_id...\n"); for(int i=0; i < getqty(); i++) for(int m=0; m< (torus_mode == tmKlein ? 2 : 1); m++) if(vec_to_id_mirror(id_to_vec(i, m)) != pair (i,m)) printf("Failed for id %d.%d [%d] (%d.%d)\n", i, m, id_to_vec(i,m), vec_to_id(id_to_vec(i,m)), vec_to_id_mirror(id_to_vec(i,m)).second); } int tester = addHook(hooks_tests, 0, torus_test); void activate() { if(tmflags() & TF_HEX) ginf[gTorus].vertex = 3, ginf[gTorus].sides = 6; else ginf[gTorus].vertex = 4, ginf[gTorus].sides = 4; } } int decodeId(heptagon* h); heptagon* encodeId(int id); int euclid_getvec(int dx, int dy) { if(torus) return torusconfig::getvec(dx, dy); else return pair_to_vec(dx, dy); } template void build_euclidean_moves(cell *c, int vec, const T& builder) { int x, y; tie(x,y) = vec_to_pair(vec); c->type = a4 ? (nonbitrunc || ((x^y^1) & 1) ? 4 : 8) : 6; if(c->type == 4) { int m = nonbitrunc ? 1 : 2; builder(euclid_getvec(+1,+0), 0, 2 * m); builder(euclid_getvec(+0,+1), 1, 3 * m); builder(euclid_getvec(-1,+0), 2, 0 * m); builder(euclid_getvec(+0,-1), 3, 1 * m); } else if(c->type == 8) { builder(euclid_getvec(+1,+0), 0, 2); builder(euclid_getvec(+1,+1), 1, 5); builder(euclid_getvec(+0,+1), 2, 3); builder(euclid_getvec(-1,+1), 3, 7); builder(euclid_getvec(-1,+0), 4, 0); builder(euclid_getvec(-1,-1), 5, 1); builder(euclid_getvec(+0,-1), 6, 1); builder(euclid_getvec(+1,-1), 7, 3); } else /* 6 */ { builder(euclid_getvec(+1,+0), 0, 3); builder(euclid_getvec(+0,+1), 1, 4); builder(euclid_getvec(-1,+1), 2, 5); builder(euclid_getvec(-1,+0), 3, 0); builder(euclid_getvec(+0,-1), 4, 1); builder(euclid_getvec(+1,-1), 5, 2); } } struct hrmap_torus : hrmap { vector all; vector dists; virtual vector& allcells() { return all; } cell *gamestart() { return all[0]; } hrmap_torus() { using namespace torusconfig; int q = getqty(); all.resize(q); for(int i=0; imov[d] = all[im.first]; tsetspin(all[i]->spintable, d, im.second); }); } for(cell *c: all) for(int d=0; dtype; d++) { cell *c2 = c->mov[d]; for(int d2=0; d2type; d2++) if(c2->mov[d2] == c) tsetspin(c->spintable, d, d2 + (8 * c->spin(d))); } celllister cl(gamestart(), 100, 100000000, NULL); dists.resize(q); for(int i=0; imaster)] = cl.dists[i]; } ~hrmap_torus() { for(cell *c: all) delete c; } }; hrmap_torus *torusmap() { return dynamic_cast (currentmap); } /* cell *getTorusId(int id) { hrmap_torus *cur = torusmap(); if(!cur) return NULL; return cur->all[id]; } */ struct hrmap_euclidean : hrmap { cell *gamestart() { return euclideanAtCreate(0); } struct euclideanSlab { cell* a[256][256]; euclideanSlab() { for(int y=0; y<256; y++) for(int x=0; x<256; x++) a[y][x] = NULL; } ~euclideanSlab() { for(int y=0; y<256; y++) for(int x=0; x<256; x++) if(a[y][x]) delete a[y][x]; } }; static const int slabs = max_vec / 256; euclideanSlab* euclidean[slabs][slabs]; hrmap_euclidean() { for(int y=0; y>8)&(slabs-1)][(x>>8)&(slabs-1)]; if(!slab) slab = new hrmap_euclidean::euclideanSlab; return slab->a[y&255][x&255]; } map eucdata; ~hrmap_euclidean() { for(int y=0; yall[p.first], 0, p.second); } } int cellwalker_to_vec(cellwalker cw) { int id = decodeId(cw.c->master); if(!torus) return id; return torusconfig::id_to_vec(id, cw.mirrored); } int cell_to_vec(cell *c) { int id = decodeId(c->master); if(!torus) return id; return torusconfig::id_to_vec(id, false); } pair cell_to_pair(cell *c) { return vec_to_pair(cell_to_vec(c)); } union heptacoder { heptagon *h; int id; }; int decodeId(heptagon* h) { heptacoder u; u.h = h; return u.id; } heptagon* encodeId(int id) { heptacoder u; u.id = id; return u.h; } // --- quotient geometry --- namespace quotientspace { struct code { int c[MAX_EDGE+1]; }; bool operator == (const code& c1, const code &c2) { for(int i=0; i<=S7; i++) if(c1.c[i] != c2.c[i]) return false; return true; } bool operator < (const code& c1, const code &c2) { for(int i=0; i<=S7; i++) if(c1.c[i] != c2.c[i]) return c1.c[i] < c2.c[i]; return false; } int cod(heptagon *h) { return zebra40(h->c7); } code get(heptspin hs) { code res; res.c[0] = cod(hs.h); for(int i=1; i<=S7; i++) { res.c[i] = cod((hs + wstep).h); hs += 1; } return res; } int rvadd = 0, rvdir = 1; int rv(int x) { return (rvadd+x*rvdir) % S7; } struct hrmap_quotient : hrmap { hrmap_hyperbolic base; vector celllist; cell *origin; map reachable; vector bfsq; vector connections; void add(const heptspin& hs) { code g = get(hs); if(!reachable.count(g)) { reachable[g] = bfsq.size(); bfsq.push_back(hs); add(hs + 1); } } vector allh; hrmap_quotient() { if(quotient == 2) { connections = currfp.connections; } else { heptspin hs; hs.h = base.origin; hs.spin = 0; reachable.clear(); bfsq.clear(); connections.clear(); add(hs); for(int i=0; i<(int)bfsq.size(); i++) { hs = bfsq[i] + wstep; add(hs); connections.push_back(reachable[get(hs)]); } } int TOT = connections.size() / S7; printf("heptagons = %d\n", TOT); printf("all cells = %d\n", TOT*(S7+S3)/S3); if(!TOT) exit(1); allh.resize(TOT); for(int i=0; ialt = base.origin; for(int i=0; ialt = NULL; } if(true) { h->s = hsOrigin; h->emeraldval = 0; h->zebraval = 0; h->fiftyval = 0; h->fieldval = S7*i; h->rval0 = h->rval1 = 0; h->cdata = NULL; h->distance = 0; h->c7 = newCell(S7, h); } for(int j=0; jmove[rv(j)] = allh[connections[i*S7+j]/S7]; h->setspin(rv(j), rv(connections[i*S7+j]%S7)); } } for(int i=0; iemeraldval = allh[i]->alt->emeraldval; allh[i]->zebraval = allh[i]->alt->zebraval; allh[i]->fiftyval = allh[i]->alt->fiftyval; allh[i]->distance = allh[i]->alt->distance; /* for(int j=0; j<7; j++) allh[i]->move[j]->alt = createStep(allh[i]->alt, j); */ } celllister cl(gamestart(), 100, 100000000, NULL); celllist = cl.lst; } heptagon *getOrigin() { return allh[0]; } ~hrmap_quotient() { for(int i=0; i& allcells() { return celllist; } }; }; // --- general --- cell *createMov(cell *c, int d); cellwalker& operator += (cellwalker& cw, int spin) { cw.spin = (cw.spin+(MIRR(cw)?-spin:spin) + MODFIXER) % cw.c->type; return cw; } cellwalker& operator += (cellwalker& cw, wstep_t) { createMov(cw.c, cw.spin); int nspin = cw.c->spn(cw.spin); if(cw.c->mirror(cw.spin)) cw.mirrored = !cw.mirrored; cw.c = cw.c->mov[cw.spin]; cw.spin = nspin; return cw; } cellwalker& operator -= (cellwalker& cw, int i) { return cw += (-i); } cellwalker& operator += (cellwalker& cw, wmirror_t) { cw.mirrored = !cw.mirrored; return cw; } template cellwalker operator + (cellwalker h, T t) { return h += t; } template cellwalker operator - (cellwalker h, T t) { return h += (-t); } cellwalker& operator ++ (cellwalker& h, int) { return h += 1; } cellwalker& operator -- (cellwalker& h, int) { return h -= 1; } bool cwstepcreates(cellwalker& cw) { return cw.c->mov[cw.spin] == NULL; } /* cell *cwpeek(cellwalker cw, int dir) { return (cw+dir+wstep).c;. // return createMov(cw.c, (cw.spin+MODFIXER+(MIRR(cw)?-dir:dir)) % cw.c->type); } */ void cwmirrorat(cellwalker& cw, int d) { cw.spin = (d+d - cw.spin + MODFIXER) % cw.c->type; cw.mirrored = !cw.mirrored; } static const struct rev_t { rev_t() {} } rev; cellwalker& operator += (cellwalker& cw, rev_t) { cw += cw.c->type/2 + ((cw.c->type&1)?hrand(2):0); return cw; } static const struct revstep_t { revstep_t() {}} revstep; cellwalker& operator += (cellwalker& cw, revstep_t) { cw += rev; cw += wstep; return cw; } // very similar to createMove in heptagon.cpp cell *createMov(cell *c, int d) { if(d<0 || d>= c->type) { printf("ERROR createmov\n"); } if(euclid && !c->mov[d]) { int id = decodeId(c->master); for(int dx=-1; dx<=1; dx++) for(int dy=-1; dy<=1; dy++) euclideanAtCreate(id + pair_to_vec(dx, dy)); if(!c->mov[d]) { printf("fail!\n"); } } if(c->mov[d]) return c->mov[d]; else if(nonbitrunc && gp::on) { gp::extend_map(c, d); if(!c->mov[d]) { printf("extend failed to create for %p/%d\n", c, d); exit(1); } } else if(nonbitrunc) { heptagon *h2 = createStep(c->master, d); merge(c,d,h2->c7,c->master->spin(d),false); } else if(c == c->master->c7) { cell *n = newCell(S6, c->master); merge(c,d,n,0,false); heptspin hs; hs.h = c->master; hs.spin = d; hs.mirrored = false; int alt3 = c->type/2; int alt4 = alt3+1; /* heptspin hs2 = hsstep(hsspin(hs, a3), -alt4); merge(hs2.h->c7, hs2.spin, n, 2, hs2.mirrored); heptspin hs3 = hsstep(hsspin(hs, a4), -alt3); merge(hs3.h->c7, hs3.spin, n, S6-2, hs3.mirrored); */ for(int u=2; uc7, hs.spin, n, u, hs.mirrored); } extern void verifycell(cell *c); verifycell(n); } else { bool mirr = c->mirror(d-1); int di = fixrot(c->spn(d-1)-(mirr?-1:1)); cell *c2 = createMov(c->mov[d-1], di); bool nmirr = mirr ^ c->mov[d-1]->mirror(di); merge(c, d, c2, fix6(c->mov[d-1]->spn(di) - (nmirr?-1:1)), nmirr); } return c->mov[d]; } cell *createMovR(cell *c, int d) { d %= MODFIXER; d += MODFIXER; d %= c->type; return createMov(c, d); } cell *getMovR(cell *c, int d) { d %= MODFIXER; d += MODFIXER; d %= c->type; return c->mov[d]; } void eumerge(cell* c1, cell *c2, int s1, int s2) { if(!c2) return; c1->mov[s1] = c2; tsetspin(c1->spintable, s1, s2); c2->mov[s2] = c1; tsetspin(c2->spintable, s2, s1); } // map, cell*> euclidean; cell*& euclideanAt(int vec) { if(torus) { printf("euclideanAt called\n"); exit(1); } hrmap_euclidean* euc = dynamic_cast (currentmap); return euc->at(vec); } cell*& euclideanAtCreate(int vec) { cell*& c = euclideanAt(vec); if(!c) { c = newCell(8, encodeId(vec)); euclideanAt(vec) = c; build_euclidean_moves(c, vec, [c,vec] (int delta, int d, int d2) { eumerge(c, euclideanAt(vec + delta), d, d2); }); } return c; } // initializer (also inits origin from heptagon.cpp) void initcells() { DEBB(DF_INIT, (debugfile,"initcells\n")); if(torus) currentmap = new hrmap_torus; else if(euclid) currentmap = new hrmap_euclidean; else if(sphere) currentmap = new hrmap_spherical; else if(quotient) currentmap = new quotientspace::hrmap_quotient; else currentmap = new hrmap_hyperbolic; allmaps.push_back(currentmap); windmap::create(); // origin->emeraldval = } void clearcell(cell *c) { if(!c) return; DEBMEM ( printf("c%d %p\n", c->type, c); ) for(int t=0; ttype; t++) if(c->mov[t]) { DEBMEM ( printf("mov %p [%p] S%d\n", c->mov[t], c->mov[t]->mov[c->spn(t)], c->spn(t)); ) if(c->mov[t]->mov[c->spn(t)] != NULL && c->mov[t]->mov[c->spn(t)] != c) { printf("type = %d %d -> %d\n", c->type, t, c->spn(t)); printf("cell error\n"); exit(1); } c->mov[t]->mov[c->spn(t)] = NULL; } DEBMEM ( printf("DEL %p\n", c); ) delete c; } heptagon deletion_marker; template void subcell(cell *c, const T& t) { if(gp::on) { forCellEx(c2, c) if(c2->mov[0] == c && c2 != c2->master->c7) { subcell(c2, t); } } else if(!nonbitrunc) forCellEx(c2, c) t(c2); t(c); } void clearHexes(heptagon *at) { if(at->c7 && at->cdata) { delete at->cdata; at->cdata = NULL; } if(at->c7) subcell(at->c7, clearcell); } void unlink_cdata(heptagon *h) { if(h->alt && h->c7) { if(h->alt->cdata == (cdata*) h) h->alt->cdata = NULL; } } void clearfrom(heptagon *at) { queue q; unlink_cdata(at); q.push(at); at->alt = &deletion_marker; //int maxq = 0; while(!q.empty()) { at = q.front(); // if(q.size() > maxq) maxq = q.size(); q.pop(); DEBMEM ( printf("from %p\n", at); ) if(!at->c7) { heptagon *h = (heptagon*) at->cdata; if(h) { if(h->alt != at) printf("alt error :: h->alt = %p\n", h->alt); cell *c = h->c7; subcell(c, destroycellcontents); h->alt = NULL; at->cdata = NULL; } } for(int i=0; imove[i]) { if(at->move[i]->alt != &deletion_marker) q.push(at->move[i]); unlink_cdata(at->move[i]); at->move[i]->alt = &deletion_marker; DEBMEM ( printf("!mov %p [%p]\n", at->move[i], at->move[i]->move[at->spin(i)]); ) if(at->move[i]->move[at->spin(i)] != NULL && at->move[i]->move[at->spin(i)] != at) { printf("hept error\n"); exit(1); } at->move[i]->move[at->spin(i)] = NULL; at->move[i] = NULL; } clearHexes(at); delete at; } //printf("maxq = %d\n", maxq); } void verifycell(cell *c) { int t = c->type; for(int i=0; imov[i]; if(c2) { if(!euclid && !nonbitrunc && c == c->master->c7) verifycell(c2); if(c2->mov[c->spn(i)] && c2->mov[c->spn(i)] != c) { printf("cell error %p:%d [%d] %p:%d [%d]\n", c, i, c->type, c2, c->spn(i), c2->type); exit(1); } } } } void verifycells(heptagon *at) { if(gp::on) return; for(int i=0; imove[i] && at->move[i]->move[at->spin(i)] && at->move[i]->move[at->spin(i)] != at) { printf("hexmix error %p [%d s=%d] %p %p\n", at, i, at->spin(i), at->move[i], at->move[i]->move[at->spin(i)]); } if(!sphere && !quotient) for(int i=0; imove[i] && at->spin(i) == 0 && at->s != hsOrigin) verifycells(at->move[i]); verifycell(at->c7); } int eudist(int sx, int sy) { int z0 = abs(sx); int z1 = abs(sy); if(a4) return z0 + z1; int z2 = abs(sx+sy); return max(max(z0,z1), z2); } int eudist(int vec) { auto p = vec_to_pair(vec); return eudist(p.first, p.second); } int compdist(int dx[]) { int mi = dx[0]; for(int u=0; u mi+2) return -1; // { printf("cycle error!\n"); exit(1); } for(int u=0; udists[decodeId(c->master)]; return eudist(decodeId(c->master)); } if(sphere) return celldistance(c, currentmap->gamestart()); if(ctof(c)) return c->master->distance; if(gp::on) return gp::compute_dist(c, celldist); int dx[MAX_S3]; for(int u=0; umaster->distance; return compdist(dx); } #define ALTDIST_BOUNDARY 99999 #define ALTDIST_UNKNOWN 99998 #define ALTDIST_ERROR 90000 // defined in 'game' int euclidAlt(short x, short y); int celldistAlt(cell *c) { if(euclid) { if(torus) return celldist(c); int x, y; tie(x,y) = vec_to_pair(decodeId(c->master)); return euclidAlt(x, y); } if(sphere || quotient) { return celldist(c) - 3; } if(!c->master->alt) return 0; if(ctof(c)) return c->master->alt->distance; if(gp::on) return gp::compute_dist(c, celldistAlt); int dx[MAX_S3]; dx[0] = 0; for(int u=0; umaster->alt == NULL) return ALTDIST_UNKNOWN; for(int u=0; umaster->alt->distance; // return compdist(dx); -> not OK because of boundary conditions int mi = dx[0]; for(int i=1; i mi+2) return ALTDIST_BOUNDARY; // { printf("cycle error!\n"); exit(1); } for(int i=0; itype; i++) if(cfrom->mov[i] == cto) return i; return -1; } #define RPV_MODULO 5 #define RPV_RAND 0 #define RPV_ZEBRA 1 #define RPV_EMERALD 2 #define RPV_PALACE 3 #define RPV_CYCLE 4 int getCdata(cell *c, int j); // x mod 5 = pattern type // x mod (powers of 2) = pattern type specific // (x/5) mod 15 = picture for drawing floors // x mod 7 = chance of pattern-specific pic // whole = randomization bool randpattern(cell *c, int rval) { int i, sw=0; switch(rval%5) { case 0: if(rval&1) { return hrandpos() < rval; } else { int cd = getCdata(c, 0); return !((cd/(((rval/2)&15)+1))&1); } case 1: i = zebra40(c); if(i&1) { if(rval&4) sw^=1; i &= ~1; } if(i&2) { if(rval&8) sw^=1; i &= ~2; } i >>= 2; i--; i /= 3; if(rval & (16<>= 2; i--; if(rval & (16<>2)&3)+"/"+its((rval>>4)&15); case 2: return "E/"+its((rval>>2)&3)+"/"+its((rval>>4)&2047); case 3: return "P/"+its((rval>>2)&3)+"/"+its((rval>>4)&255); case 4: return "C/"+its(rval&3)+"/"+its((rval>>2)&65535); } return "?"; } int randpatternCode(cell *c, int rval) { switch(rval % RPV_MODULO) { case 1: return zebra40(c); case 2: return emeraldval(c); case 3: return fiftyval049(c) + (polara50(c)?50:0) + (polarb50(c)?1000:0); case 4: return towerval(c, celldist) * 6 + celldist(c) % 6; } return 0; } #define RANDITER 31 char rpm_memoize[3][256][RANDITER+1]; void clearMemoRPM() { for(int a=0; a<3; a++) for(int b=0; b<256; b++) for(int i=0; itype; i++) { if(randpatternMajority(createMov(c,i), ival, iterations-1)) z++; else z--; } if(z!=0) memo = (z>0); else memo = randpattern(c, rval); // printf("%p] rval = %X code = %d iterations = %d result = %d\n", c, rval, code, iterations, memo); return memo; } map spins; #define RVAL_MASK 0x10000000 #define DATA_MASK 0x20000000 cdata orig_cdata; void affect(cdata& d, short rv, signed char signum) { if(rv&1) d.val[0]+=signum; else d.val[0]-=signum; if(rv&2) d.val[1]+=signum; else d.val[1]-=signum; if(rv&4) d.val[2]+=signum; else d.val[2]-=signum; if(rv&8) d.val[3]+=signum; else d.val[3]-=signum; int id = (rv>>4) & 63; if(id < 32) d.bits ^= (1 << id); } void setHeptagonRval(heptagon *h) { if(!(h->rval0 || h->rval1)) { h->rval0 = hrand(0x10000); h->rval1 = hrand(0x10000); } } cdata *getHeptagonCdata(heptagon *h) { if(h->cdata) return h->cdata; if(sphere || quotient) h = currentmap->gamestart()->master; if(h == currentmap->gamestart()->master) { return h->cdata = new cdata(orig_cdata); } cdata mydata = *getHeptagonCdata(h->move[0]); for(int di=3; di<5; di++) { heptspin hs; hs.h = h; hs.spin = di; int signum = +1; while(true) { heptspin hstab[15]; hstab[7] = hs; for(int i=8; i<12; i++) { hstab[i] = hstab[i-1]; hstab[i] += ((i&1) ? 4 : 3); hstab[i] += wstep; hstab[i] += ((i&1) ? 3 : 4); } for(int i=6; i>=3; i--) { hstab[i] = hstab[i+1]; hstab[i] += ((i&1) ? 3 : 4); hstab[i] += wstep; hstab[i] += ((i&1) ? 4 : 3); } if(hstab[3].h->distance < hstab[7].h->distance) { hs = hstab[3]; continue; } if(hstab[11].h->distance < hstab[7].h->distance) { hs = hstab[11]; continue; } int jj = 7; for(int k=3; k<12; k++) if(hstab[k].h->distance < hstab[jj].h->distance) jj = k; int ties = 0, tiespos = 0; for(int k=3; k<12; k++) if(hstab[k].h->distance == hstab[jj].h->distance) ties++, tiespos += (k-jj); // printf("ties=%d tiespos=%d jj=%d\n", ties, tiespos, jj); if(ties == 2) jj += tiespos/2; if(jj&1) signum = -1; hs = hstab[jj]; break; } hs = hs + 3 + wstep; setHeptagonRval(hs.h); affect(mydata, hs.spin ? hs.h->rval0 : hs.h->rval1, signum); /* if(!(spins[hs.h] & hs.spin)) { spins[hs.h] |= (1<cdata = new cdata(mydata); } cdata *getEuclidCdata(heptagon *h) { if(torus) { static cdata xx; return &xx; } int x, y; hrmap_euclidean* euc = dynamic_cast (currentmap); if(euc->eucdata.count(h)) return &(euc->eucdata[h]); tie(x,y) = vec_to_pair(decodeId(h)); if(x == 0 && y == 0) { cdata xx; for(int i=0; i<4; i++) xx.val[i] = 0; xx.bits = 0; return &(euc->eucdata[h] = xx); } int ord = 1, bid = 0; while(!((x|y)&ord)) ord <<= 1, bid++; for(int k=0; k<3; k++) { int x1 = x + (k<2 ? ord : 0); int y1 = y - (k>0 ? ord : 0); if((x1&ord) || (y1&ord)) continue; int x2 = x - (k<2 ? ord : 0); int y2 = y + (k>0 ? ord : 0); cdata *d1 = getEuclidCdata(encodeId(pair_to_vec(x1,y1))); cdata *d2 = getEuclidCdata(encodeId(pair_to_vec(x2,y2))); cdata xx; double disp = pow(2, bid/2.) * 6; for(int i=0; i<4; i++) { double dv = (d1->val[i] + d2->val[i])/2 + (hrand(1000) - hrand(1000))/1000. * disp; xx.val[i] = floor(dv); if(hrand(1000) / 1000. < dv - floor(dv)) xx.val[i]++; } xx.bits = 0; for(int b=0; b<32; b++) { bool gbit = ((hrand(2)?d1:d2)->bits >> b) & 1; int flipchance = (1< 512) flipchance = 512; if(hrand(1024) < flipchance) gbit = !gbit; if(gbit) xx.bits |= (1<eucdata[h] = xx); } // impossible! return NULL; } int getCdata(cell *c, int j) { if(euclid) return getEuclidCdata(c->master)->val[j]; else if(geometry) return 0; else if(ctof(c)) return getHeptagonCdata(c->master)->val[j]*3; else { int jj = 0; auto ar = gp::get_masters(c); for(int k=0; k<3; k++) jj += getHeptagonCdata(ar[k]->master)->val[j]; return jj; } } int getBits(cell *c) { if(euclid) return getEuclidCdata(c->master)->bits; else if(geometry) return 0; else if(c->type != 6) return getHeptagonCdata(c->master)->bits; else { auto ar = gp::get_masters(c); int b0 = getHeptagonCdata(ar[0]->master)->bits; int b1 = getHeptagonCdata(ar[1]->master)->bits; int b2 = getHeptagonCdata(ar[2]->master)->bits; return (b0 & b1) | (b1 & b2) | (b2 & b0); } } cell *heptatdir(cell *c, int d) { if(d&1) { cell *c2 = createMov(c, d); int s = c->spin(d); s += 3; s %= 6; return createMov(c2, s); } else return createMov(c, d); } int heptdistance(heptagon *h1, heptagon *h2) { // very rough distance int d = 0; while(true) { if(h1 == h2) return d; for(int i=0; imove[i] == h2) return d + 1; int d1 = h1->distance, d2 = h2->distance; if(d1 >= d2) d++, h1 = h1->move[0]; if(d2 >= d1) d++, h2 = h2->move[0]; } } int heptdistance(cell *c1, cell *c2) { if(!hyperbolic || quotient) return celldistance(c1, c2); else return heptdistance(c1->master, c2->master); } map, int> saved_distances; int celldistance(cell *c1, cell *c2) { int d = 0; if(euclid) { if(torus) return torusmap()->dists[torusconfig::vec_to_id(decodeId(c1->master)-decodeId(c2->master))]; return eudist(decodeId(c1->master) - decodeId(c2->master)); } if(quotient == 2 && !gp::on) return currfp.getdist(fieldpattern::fieldval(c1), fieldpattern::fieldval(c2)); if(sphere || quotient) { if(saved_distances.count(make_pair(c1,c2))) return saved_distances[make_pair(c1,c2)]; celllister cl(c1, 100, 100000000, NULL); for(int i=0; i= d2) { cl1 = chosenDown(cl1, -1, 0, celldist); // cl1->item = eItem(rand() % 10); cr1 = chosenDown(cr1, 1, 0, celldist); // cr1->item = eItem(rand() % 10); d++; d1--; } if(d1 < d2) { cl2 = chosenDown(cl2, -1, 0, celldist); // cl2->item = eItem(rand() % 10); cr2 = chosenDown(cr2, 1, 0, celldist); // cr2->item = eItem(rand() % 10); d++; d2--; } } } void clearCellMemory() { for(int i=0; i