// non-Euclidean sunflower spirals (aka golden spirals or Fibonacci spirals) // Copyright (C) 2018 Zeno and Tehora Rogue, see 'hyper.cpp' for details // use: commandline parameter -sunflower <quantity> <density> // e.g.: hyper -sunflower-qd 10000 1 // e.g.: hyper -sunflower-dr 1 4.5 // Commandlines for https://twitter.com/ZenoRogue/status/1247900522905886723 : // Part 1: // -geo 1 -sunflower-node 1 -sunflower-qd "1..10..20..60..100..140..180..220..|1000..1040..|2000..2040..|5000..5040..|10000..10040" 1 -zoom "sqrt(1000/(100+sunq))" -animperiod 20000 -shott 0 -back A0E0A0 -lw 16 -shotxy 1000 1000 -shotaa 2 // Part 2: // -rugtsize 8192 -rugon -run -rugv 4000000 -run -sunflower-dr "0.001..0.002..0.005..0.01..0.02..0.04..0.06..0.07..0.08..0.09" 3..4.1..4.5..4.5..4.5..4.5..4.5..4.5..4.5 -lw 4 -sunflower-out 1 -shott 0 -back A0E0A0 -shotxy 1000 1000 -shotaa 2 -sunflower-adj 16 -animrec 600 curv%04d.png // rotate the rug; press F10; wait until rug has millions of vertices; press F10; animation will be recorded // Part 3: // -rugtsize 8192 -rugon -rugv 1000000 -sunflower-dr .5 4.5 -lw 16 -shott 0 -back A0E0A0 -shotxy 1000 1000 -shotaa 2 -sunflower-adj 6 // (rotation animation set manually) // Part 4: // -geo 2 -sunflower-dr .1 pi -shott 0 -back A0E0A0 -shotxy 1000 1000 -shotaa 2 -animmove "2*pi" 0 0 #include "rogueviz.h" namespace rogueviz { namespace sunflower { bool on; bool nodes; ld qty = 100; ld density = 1, zdensity; ld range; ld distance_per_rug; bool adjust_rug; /* which property to infer from the other two: 'd'ensity, 'q'ty or 'r'ange */ char infer; vector<hyperpoint> ps; int iqty; ld qfrac; bool outward = false; hyperpoint p(int i) { ld step = M_PI * (3 - sqrt(5)); return spin((outward ? i : i-iqty) * step) * xpush(sphere ? (acos(1 - (i+.5+qfrac) * density)) : euclid ? sqrt((i+.5+qfrac) * density) : acosh(1 + (i+.5+qfrac) * density)) * C0; } vector<int> inext, inext2; vector<int> fibs = {1, 2}; bool sunflower_cell(cell *c, shiftmatrix V) { if(!on) return false; density = zdensity / 100; ld qd; if(sphere) { if(infer == 'r') range = qty * density * M_PI/2; else qd = range * 2/M_PI; } else if(euclid) { if(infer == 'r') range = sqrt(qty * density); else qd = range * range; } else { if(infer == 'r') range = acosh(1 + qty * density); else qd = (cosh(range) - 1); } if(infer == 'q') qty = qd / density; if(infer == 'd') density = qd / qty; if(adjust_rug) { using namespace rug; model_distance = sqrt(zdensity) * distance_per_rug; } iqty = qty; qfrac = qty - iqty; if(outward) qfrac = 0; if(iqty < 0 || iqty > 2000000) return false; ps.resize(iqty); inext.resize(iqty); inext2.resize(iqty); while(fibs.back() < iqty) { auto add = fibs.back() + *(fibs.end()-2); fibs.push_back(add); } if(c == cwt.at) { for(int i=0; i<iqty; i++) ps[i] = p(i); for(int i=0; i<iqty; i++) { ld ba = 99; ld bb = 99; int bi = 0, bj = 0; for(int a: fibs) { if(a>i) break; if(hdist(ps[i], ps[i-a]) < ba) bb = ba, bj = bi, ba = hdist(ps[i], ps[i-a]), bi = i-a; else if(hdist(ps[i], ps[i-a]) < bb) bb = hdist(ps[i], ps[i-a]), bj = i-a; } inext[i] = bi; inext2[i] = bj; } for(int i=0; i<iqty; i++) { if(inext[inext[i]] == inext2[i] || inext2[inext[i]] == inext2[i] || inext[inext2[i]] == inext[i] || inext2[inext2[i]] == inext[i]) { curvepoint(ps[i]); curvepoint(ps[inext[i]]); curvepoint(ps[inext2[i]]); // queuecurve(0xFFFFFFFF, 0x00C000FF, PPR::LINE); queuecurve(V, 0x000000FF, 0xC04000FF, PPR::LINE); } else { curvepoint(ps[i]); curvepoint(ps[inext[i]]); curvepoint(ps[inext[i] + inext2[i] - i]); curvepoint(ps[inext2[i]]); queuecurve(V,0x000000FF, 0xFFD500FF, PPR::LINE); } if(nodes) queuepolyat(V * rgpushxto0(ps[i]), cgi.shSnowball, 0xFF, PPR::SUPERLINE); } } return true; } void insert_param() { params.insert({"sund", zdensity}); params.insert({"sunq", qty}); params.insert({"sunr", range}); params.insert({"sunf", distance_per_rug}); } int readArgs() { using namespace arg; if(0) ; else if(argis("-sunflower-qd")) { on = true; infer = 'r'; shift_arg_formula(qty); shift_arg_formula(zdensity); patterns::whichShape = '9'; insert_param(); nohud = true; } else if(argis("-sunflower-qr")) { on = true; infer = 'd'; shift_arg_formula(qty); shift_arg_formula(range); patterns::whichShape = '9'; insert_param(); nohud = true; } else if(argis("-sunflower-dr")) { on = true; infer = 'q'; shift_arg_formula(zdensity); shift_arg_formula(range); patterns::whichShape = '9'; insert_param(); nohud = true; } else if(argis("-sunflower-node")) { shift(); nodes = argi(); } else if(argis("-sunflower-out")) { shift(); outward = argi(); } else if(argis("-sunflower-adj")) { adjust_rug = true; shift_arg_formula(distance_per_rug); } else return 1; return 0; } void show() { cmode = sm::SIDE | sm::MAYDARK; gamescreen(0); dialog::init(XLAT("sunflower spirals"), 0xFFFFFFFF, 150, 0); dialog::addSelItem("density", fts(zdensity), 'd'); dialog::add_action([] { if(infer == 'd') infer = 'q'; dialog::editNumber(zdensity, 0, 2, .1, 1, "density", "density"); }); dialog::addSelItem("quantity", fts(qty), 'q'); dialog::add_action([] { if(infer == 'q') infer = 'r'; dialog::editNumber(qty, 1, 100000, .1, 1000, "quantity", "quantity"); dialog::scaleLog(); }); dialog::addSelItem("radius", fts(range), 'q'); dialog::add_action([] { if(infer == 'r') infer = 'd'; dialog::editNumber(range, 0, 10, .1, 2*M_PI, "range", "range"); dialog::scaleLog(); }); dialog::addSelItem("infer", infer == 'd' ? "density" : infer == 'q' ? "quantity" : "range", 'i'); dialog::add_action([] { if(infer == 'r') infer = 'd'; else if(infer == 'd') infer = 'q'; else infer = 'r'; }); if(rug::rugged) { dialog::addBoolItem("adjust Rug curvature", adjust_rug, 'a'); dialog::add_action([] { adjust_rug = !adjust_rug; distance_per_rug = rug::model_distance / sqrt(zdensity); }); if(adjust_rug) { dialog::addSelItem("factor", fts(distance_per_rug), 'f'); dialog::add_action([] { dialog::editNumber(distance_per_rug, 0, 10, .1, 4, "factor", "factor"); }); } else { dialog::addItem("disable the Hypersian Rug", 'f'); dialog::add_action(rug::close); } } else { dialog::addItem("enable the Hypersian Rug", 'a'); dialog::add_action(rug::init); } dialog::addBoolItem("draw the seeds", nodes, 's'); dialog::addBoolItem("grow at the edge", outward, 'o'); dialog::addBack(); dialog::display(); } void o_key(o_funcs& v) { if(on) v.push_back(named_dialog("sunflowers", show)); } auto hook = 0 #if CAP_COMMANDLINE + addHook(hooks_args, 100, readArgs) #endif + addHook(hooks_o_key, 80, o_key) + addHook(hooks_drawcell, 100, sunflower_cell) + addHook(rvtour::hooks_build_rvtour, 144, [] (vector<tour::slide>& v) { using namespace tour; v.push_back( tour::slide{"unsorted/sunflower spirals", 18, LEGAL::ANY | QUICKGEO, "A sunflower sends out its n-th seed at angle 180° (3-sqrt(5)). " "As new seeds are created, older seeds are pushed out. Therefore. " "the distance d(n) of the n-th seed from the center will be such that " "the area of a circle of radius d(n) changes linearly with n.\n\n" "In the Euclidean plane, this process creates an interesting " "phenomenon: if we try to compute the number of spirals at a given " "distance from the center, we usually obtain a Fibonacci number. " "The further from the start we are, the larger Fibonacci number we " "get.\n\n" "Because of the exponential growth in the hyperbolic plane, we " "get to larger Fibonacci numbers faster.\n\n" "Press 123 to change the geometry, 5 to see this in the Hypersian Rug model. " "Press o to change the density.", [] (presmode mode) { setCanvas(mode, '0'); if((mode == pmStop || mode == pmGeometry) && rug::rugged) rug::close(); if(mode == pmKey) { if(rug::rugged) rug::close(); else rug::init(); } if(mode == pmStart) { stop_game(); tour::slide_backup(on, true); tour::slide_backup(range, sphere ? 2 : euclid ? 10 : 4.3); tour::slide_backup<ld>(zdensity, 1); tour::slide_backup(infer, 'q'); insert_param(); start_game(); } }} ); }); } }