// implementation of the binary tilings // Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details namespace hr { namespace binary { #if CAP_BT enum bindir { bd_right = 0, bd_up_right = 1, bd_up = 2, bd_up_left = 3, bd_left = 4, bd_down = 5, /* for cells of degree 6 */ bd_down_left = 5, /* for cells of degree 7 */ bd_down_right = 6 /* for cells of degree 7 */ }; int type_of(heptagon *h) { return h->c7->type; } // 0 - central, -1 - left, +1 - right int mapside(heptagon *h) { return h->zebraval; } #if DEBUG_BINARY_TILING map xcode; map rxcode; long long expected_xcode(heptagon *h, int d) { auto r =xcode[h]; if(d == 0) return r + 1; if(d == 1) return 2*r + 1; if(d == 2) return 2*r; if(d == 3) return 2*r - 1; if(d == 4) return r-1; if(d == 5 && type_of(h) == 6) return r / 2; if(d == 5 && type_of(h) == 7) return (r-1) / 2; if(d == 6 && type_of(h) == 7) return (r+1) / 2; breakhere(); } #endif void breakhere() { exit(1); } const transmatrix& tmatrix(heptagon *h, int dir); const transmatrix& itmatrix(heptagon *h, int dir); heptagon *path(heptagon *h, int d, int d1, std::initializer_list p) { static int rec = 0; rec++; if(rec>100) exit(1); // printf("{generating path from %p (%d/%d) dir %d:", h, type_of(h), mapside(h), d); heptagon *h1 = h; for(int d0: p) { // printf(" [%d]", d0); h1 = currentmap->may_create_step(h1, d0); // printf(" %p", h1); } #if DEBUG_BINARY_TILING if(xcode[h1] != expected_xcode(h, d)) { printf("expected_xcode mismatch\n"); breakhere(); } #endif // printf("}\n"); if(h->move(d) && h->move(d) != h1) { printf("already connected to something else (1)\n"); breakhere(); } if(h1->move(d1) && h1->move(d1) != h) { printf("already connected to something else (2)\n"); breakhere(); } h->c.connect(d, h1, d1, false); rec--; return h1; } heptagon *pathc(heptagon *h, int d, int d1, std::vector> p) { h->cmove(S7-1); int z = h->c.spin(S7-1); return path(h, d, d1, p[z]); } ld hororec_scale = 0.25; ld horohex_scale = 0.6; void make_binary_lands(heptagon *parent, heptagon *h) { if(!parent->emeraldval) parent->emeraldval = currentmap->gamestart()->land; eLand z = eLand(parent->emeraldval); int chance = 0; if(specialland == laCrossroads4 || parent->emeraldval == laCrossroads4) { eLand x = parent->c7->land; parent->c7->land = z; chance = wallchance(parent->c7, deep_ocean_at(parent->c7, parent->c7)); parent->c7->land = x; } if(chaosmode) chance = 1000; if(chance && hrand(40000) < chance) h->emeraldval = getNewLand(z); else h->emeraldval = z; } heptagon *build(heptagon *parent, int d, int d1, int t, int side, int delta) { auto h = buildHeptagon1(tailored_alloc (t), parent, d, hsA, d1); h->distance = parent->distance + delta; h->dm4 = parent->dm4 + delta; h->c7 = NULL; if(parent->c7) h->c7 = newCell(t, h); h->cdata = NULL; h->zebraval = side; h->emeraldval = 0; if(geometry == gBinary4) { if(d < 2) h->emeraldval = (parent->emeraldval * 2 + d) % 15015; else h->emeraldval = ((parent->emeraldval - d1) * 7508 + 15015) % 15015; } if(WDIM == 3 && h->c7) make_binary_lands(parent, h); #if DEBUG_BINARY_TILING xcode[h] = expected_xcode(parent, d); if(rxcode.count(xcode[h])) { printf("xcode clash\n"); breakhere(); } rxcode[xcode[h]] = h; #endif return h; } #if MAXMDIM==4 heptagon *build3(heptagon *parent, int d, int d1, int delta) { int side = 0; if(geometry == gBinary3) { if(d < 4) side = (parent->zebraval * 2 + d) % 5; if(d == S7-1) side = ((5+parent->zebraval-d1) * 3) % 5; } if(geometry == gHoroHex) { if(d < 3) side = (parent->zebraval + d) % 3; if(d == S7-1) side = (parent->zebraval + 3 - d1) % 3; } return build(parent, d, d1, S7, side, delta); } #endif struct hrmap_binary : hrmap_hyperbolic { std::mt19937 directions_generator; hrmap_binary(heptagon *o) : hrmap_hyperbolic(o) { set_seed(); } void set_seed() { directions_generator.seed(137137137); } int nextdir(int choices) { return directions_generator() % choices; } hrmap_binary() : hrmap_hyperbolic() { set_seed(); } heptagon *create_step(heptagon *parent, int d) override { auto h = parent; switch(geometry) { case gBinaryTiling: { switch(d) { case bd_right: { if(mapside(h) > 0 && type_of(h) == 7) return path(h, d, bd_left, {bd_left, bd_down, bd_right, bd_up}); else if(mapside(h) >= 0) return build(parent, bd_right, bd_left, type_of(parent) ^ 1, 1, 0); else if(type_of(h) == 6) return path(h, d, bd_left, {bd_down, bd_right, bd_up, bd_left}); else return path(h, d, bd_left, {bd_down_right, bd_up}); } case bd_left: { if(mapside(h) < 0 && type_of(h) == 7) return path(h, d, bd_right, {bd_right, bd_down, bd_left, bd_up}); else if(mapside(h) <= 0) return build(parent, bd_left, bd_right, type_of(parent) ^ 1, -1, 0); else if(type_of(h) == 6) return path(h, d, bd_right, {bd_down, bd_left, bd_up, bd_right}); else return path(h, d, bd_right, {bd_down_left, bd_up}); } case bd_up_right: { return path(h, d, bd_down_left, {bd_up, bd_right}); } case bd_up_left: { return path(h, d, bd_down_right, {bd_up, bd_left}); } case bd_up: return build(parent, bd_up, bd_down, 6, mapside(parent), 1); default: /* bd_down */ if(type_of(h) == 6) { if(mapside(h) == 0) return build(parent, bd_down, bd_up, 6, 0, -1); else if(mapside(h) == 1) return path(h, d, bd_up, {bd_left, bd_left, bd_down, bd_right}); else if(mapside(h) == -1) return path(h, d, bd_up, {bd_right, bd_right, bd_down, bd_left}); } /* bd_down_left */ else if(d == bd_down_left) { return path(h, d, bd_up_right, {bd_left, bd_down}); } else if(d == bd_down_right) { return path(h, d, bd_up_left, {bd_right, bd_down}); } } printf("error: case not handled in binary tiling\n"); breakhere(); return NULL; } case gBinary4: { switch(d) { case 0: case 1: return build(parent, d, 3, 5, d, 1); case 3: return build(parent, 3, parent->zebraval, 5, nextdir(2), -1); case 2: if(parent->zebraval == 0) return path(h, 2, 4, {3, 1}); else return path(h, 2, 4, {3, 2, 0}); case 4: if(parent->zebraval == 1) return path(h, 4, 2, {3, 0}); else return path(h, 4, 2, {3, 4, 1}); } } #if MAXMDIM >= 4 case gBinary3: { switch(d) { case 0: case 1: case 2: case 3: return build3(parent, d, 8, 1); case 8: return build3(parent, 8, nextdir(4), -1); case 4: parent->cmove(8); if(parent->c.spin(8) & 1) return path(h, 4, 5, {8, parent->c.spin(8) ^ 1}); else return path(h, 4, 5, {8, 4, parent->c.spin(8) ^ 1}); case 5: parent->cmove(8); if(!(parent->c.spin(8) & 1)) return path(h, 5, 4, {8, parent->c.spin(8) ^ 1}); else return path(h, 5, 4, {8, 5, parent->c.spin(8) ^ 1}); case 6: parent->cmove(8); if(parent->c.spin(8) & 2) return path(h, 6, 7, {8, parent->c.spin(8) ^ 2}); else return path(h, 6, 7, {8, 6, parent->c.spin(8) ^ 2}); case 7: parent->cmove(8); if(!(parent->c.spin(8) & 2)) return path(h, 7, 6, {8, parent->c.spin(8) ^ 2}); else return path(h, 7, 6, {8, 7, parent->c.spin(8) ^ 2}); } } case gHoroRec: { switch(d) { case 0: case 1: return build3(parent, d, 6, 1); case 6: return build3(parent, 6, nextdir(2), -1); case 2: parent->cmove(6); if(parent->c.spin(6) == 0) return path(h, 2, 4, {6, 1}); else return path(h, 2, 4, {6, 3, 0}); case 4: parent->cmove(6); if(parent->c.spin(6) == 0) return path(h, 4, 2, {6, 5, 1}); else return path(h, 4, 2, {6, 0}); case 3: parent->cmove(6); return path(h, 3, 5, {6, 4, parent->c.spin(6)}); case 5: parent->cmove(6); return path(h, 5, 3, {6, 2, parent->c.spin(6)}); } } case gHoroTris: { switch(d) { case 0: case 1: case 2: case 3: return build3(parent, d, 7, 1); case 7: return build3(parent, 7, nextdir(3), -1); case 4: case 5: case 6: parent->cmove(7); int s = parent->c.spin(7); if(s == 0) return path(h, d, d, {7, d-3}); else if(s == d-3) return path(h, d, d, {7, 0}); else return path(h, d, d, {7, d, 9-d-s}); } } case gHoroHex: { // the comment is a picture... // generated with the help of hexb.cpp switch(d) { case 0: case 1: case 2: return build3(parent, d, 13, 1); case 13: return build3(parent, 13, nextdir(3), -1); case 3: return pathc(h, 3, 12, {{13,4,2}, {13,5,2}, {13,3,2}}); case 4: return pathc(h, 4, 12, {{13,6,2,0}, {13,7,0,0}, {13,8,1,0}}); case 5: return pathc(h, 5, 12, {{13,1,1}, {13,2,1}, {13,0,1}}); case 6: return pathc(h, 6, 10, {{13,5}, {13,3}, {13,4}}); case 7: return pathc(h, 7, 11, {{13,2}, {13,0}, {13,1}}); case 8: return pathc(h, 8, 9, {{13,6,0}, {13,7,1}, {13,8,2}}); case 9: return pathc(h, 9, 8, {{13,4}, {13,5}, {13,3}}); case 10: return pathc(h, 10, 6, {{13,6,2}, {13,7,0}, {13,8,1}}); case 11: return pathc(h, 11, 7, {{13,1}, {13,2}, {13,0}}); case 12: h->cmove(13); int z = h->c.spin(13); return path(h, 12, (z+1)%3+3, {13, z+6}); } } #endif default: ; } printf("error: case not handled in binary tiling\n"); breakhere(); return NULL; } void draw() override { dq::visited.clear(); dq::enqueue(viewctr.at, cview()); while(!dq::drawqueue.empty()) { auto& p = dq::drawqueue.front(); heptagon *h = get<0>(p); transmatrix V = get<1>(p); dynamicval b(band_shift, get<2>(p)); bandfixer bf(V); dq::drawqueue.pop(); cell *c = h->c7; if(!do_draw(c, V)) continue; drawcell(c, V, 0, false); if(geometry == gBinaryTiling) { dq::enqueue(h->move(bd_up), V * xpush(-log(2))); dq::enqueue(h->move(bd_right), V * parabolic(1)); dq::enqueue(h->move(bd_left), V * parabolic(-1)); if(c->type == 6) dq::enqueue(h->move(bd_down), V * xpush(log(2))); if(c->type == 7) { dq::enqueue(h->move(bd_down_left), V * parabolic(-1) * xpush(log(2))); dq::enqueue(h->move(bd_down_right), V * parabolic(1) * xpush(log(2))); } } else { for(int i=0; imove(i), V * tmatrix(h, i)); } } } // hrmap_standard overrides hrmap's default, override it back virtual transmatrix relative_matrix(cell *c2, cell *c1, const hyperpoint& point_hint) override { return relative_matrix(c2->master, c1->master); } transmatrix relative_matrix(heptagon *h2, heptagon *h1) override { if(gmatrix0.count(h2->c7) && gmatrix0.count(h1->c7)) return inverse(gmatrix0[h1->c7]) * gmatrix0[h2->c7]; transmatrix gm = Id, where = Id; while(h1 != h2) { int up_step = updir(); if(h1->distance <= h2->distance) { if(geometry != gBinaryTiling) where = itmatrix(h2, up_step) * where, h2 = may_create_step(h2, up_step); else { if(type_of(h2) == 6) h2 = may_create_step(h2, bd_down), where = xpush(-log(2)) * where; else if(mapside(h2) == 1) h2 = may_create_step(h2, bd_left), where = parabolic(+1) * where; else if(mapside(h2) == -1) h2 = may_create_step(h2, bd_right), where = parabolic(-1) * where; } } else { if(geometry != gBinaryTiling) gm = gm * tmatrix(h1, up_step), h1 = may_create_step(h1, up_step); else { if(type_of(h1) == 6) h1 = may_create_step(h1, bd_down), gm = gm * xpush(log(2)); else if(mapside(h1) == 1) h1 = may_create_step(h1, bd_left), gm = gm * parabolic(-1); else if(mapside(h1) == -1) h1 = may_create_step(h1, bd_right), gm = gm * parabolic(+1); } } } return gm * where; } vector get_vertices(cell* c) override { vector res; ld yy = log(2) / 2; using namespace hyperpoint_vec; auto add = [&] (hyperpoint h) { res.push_back(binary::parabolic3(h[0], h[1]) * xpush0(yy*h[2])); }; switch(geometry) { case gBinary3: for(int x=-1; x<2; x++) for(int y=-1; y<2; y++) for(int z=-1; z<=1; z+=2) if(z == -1 || x != 0 || y != 0) add(point3(x,y,z)); break; case gHoroTris: { ld r = sqrt(3)/6; ld r2 = r * 2; hyperpoint shift3 = point3(0,0,-3); hyperpoint shift1 = point3(0,0,-1); for(int i=0; i<3; i++) { hyperpoint t0 = spin(120 * degree * i) * point3(0,-r2,-1); add(t0); add(-2 * t0 + shift3); add(-2 * t0 + shift1); } } case gHoroRec: { ld r2 = sqrt(2); for(int y=-1; y<=1; y++) for(int x=-1; x<=1; x+=2) for(int z=-1; z<=1; z++) if(z == -1 || y != 0) add(point3(-r2*x*hororec_scale, -2*y*hororec_scale, z*.5)); break; } case gHoroHex: { // complicated and unused for now -- todo break; } default: ; } return res; } }; hrmap *new_map() { return new hrmap_binary; } struct hrmap_alternate_binary : hrmap_binary { heptagon *origin; hrmap_alternate_binary(heptagon *o) { origin = o; } ~hrmap_alternate_binary() { clearfrom(origin); } }; hrmap *new_alt_map(heptagon *o) { return new hrmap_binary(o); } transmatrix direct_tmatrix[14]; transmatrix inverse_tmatrix[14]; int use_direct; // directions in the 'use_direct' mask are taken from direct_tmatrix; // directions at/above are taken by checking spin and inverse_tmatrix based on that bool use_direct_for(int dir) { return (use_direct >> dir) & 1; } ld expansion() { switch(geometry) { case gHoroRec: return sqrt(2); case gHoroHex: return sqrt(3); case gKiteDart3: return (sqrt(5)+1)/2; default: return 2; } } int updir() { if(geometry == gBinary4) return 3; if(geometry == gBinaryTiling) return 5; if(penrose) return 0; return S7-1; } void build_tmatrix() { if(among(geometry, gBinaryTiling, gSol)) return; // unused use_direct = (1 << (S7-1)) - 1; if(geometry == gBinary4) { use_direct = 3; direct_tmatrix[0] = xpush(-log(2)) * parabolic(-0.5); direct_tmatrix[1] = xpush(-log(2)) * parabolic(+0.5); direct_tmatrix[2] = parabolic(1); direct_tmatrix[4] = parabolic(-1); use_direct = 1+2+4+16; } if(geometry == gBinary3) { direct_tmatrix[0] = xpush(-log(2)) * parabolic3(-1, -1); direct_tmatrix[1] = xpush(-log(2)) * parabolic3(1, -1); direct_tmatrix[2] = xpush(-log(2)) * parabolic3(-1, 1); direct_tmatrix[3] = xpush(-log(2)) * parabolic3(1, 1); direct_tmatrix[4] = parabolic3(-2, 0); direct_tmatrix[5] = parabolic3(+2, 0); direct_tmatrix[6] = parabolic3(0, -2); direct_tmatrix[7] = parabolic3(0, +2); } if(geometry == gHoroTris) { ld r3 = sqrt(3); direct_tmatrix[0] = xpush(-log(2)) * cspin(1,2, M_PI); direct_tmatrix[1] = parabolic3(0, +r3/3) * xpush(-log(2)); direct_tmatrix[2] = parabolic3(-0.5, -r3/6) * xpush(-log(2)); direct_tmatrix[3] = parabolic3(+0.5, -r3/6) * xpush(-log(2)); direct_tmatrix[4] = parabolic3(0, -r3*2/3) * cspin(1,2, M_PI); direct_tmatrix[5] = parabolic3(1, r3/3) * cspin(1,2,M_PI); direct_tmatrix[6] = parabolic3(-1, r3/3) * cspin(1,2,M_PI); } if(geometry == gHoroRec) { ld r2 = sqrt(2); ld l = -log(2)/2; ld z = hororec_scale; direct_tmatrix[0] = parabolic3(0, -z) * xpush(l) * cspin(2,1,M_PI/2); direct_tmatrix[1] = parabolic3(0, +z) * xpush(l) * cspin(2,1,M_PI/2); direct_tmatrix[2] = parabolic3(+2*r2*z, 0); direct_tmatrix[3] = parabolic3(0, +4*z); direct_tmatrix[4] = parabolic3(-2*r2*z, 0); direct_tmatrix[5] = parabolic3(0, -4*z); } if(geometry == gHoroHex) { // also generated with the help of hexb.cpp ld l = log(3)/2; auto& t = direct_tmatrix; t[0] = parabolic3(horohex_scale, 0) * xpush(-l) * cspin(1, 2, M_PI/2); t[1] = cspin(1, 2, 2*M_PI/3) * t[0]; t[2] = cspin(1, 2, 4*M_PI/3) * t[0]; auto it = inverse(t[0]); t[5] = it * t[1] * t[1]; t[6] = it * t[5]; t[4] = it * t[6] * t[2] * t[0]; t[3] = it * t[4] * t[2]; t[7] = it * t[2]; t[8] = it * t[6] * t[0]; t[9] = it * t[4]; t[10] = it * t[6] * t[2]; t[11] = it * t[1]; for(int a=0; a<12; a++) println(hlog, t[a]); use_direct >>= 1; } for(int i=0; icmove(dir); return inverse_tmatrix[h->c.spin(dir)]; } } const transmatrix& itmatrix(heptagon *h, int dir) { if(use_direct_for(dir)) return inverse_tmatrix[dir]; else { h->cmove(dir); return h->cmove(dir), direct_tmatrix[h->c.spin(dir)]; } } #if MAXMDIM == 4 void queuecube(const transmatrix& V, ld size, color_t linecolor, color_t facecolor) { ld yy = log(2) / 2; const int STEP=3; const ld MUL = 1. / STEP; auto at = [&] (ld x, ld y, ld z) { curvepoint(V * parabolic3(size*x, size*y) * xpush0(size*yy*z)); }; for(int a:{-1,1}) { for(ld t=-STEP; ttype & c->master->distance & 1; else if(geometry == gHoroRec) return c->c.spin(S7-1) == 0 && (c->master->distance & 1) && c->cmove(S7-1)->c.spin(S7-1) == 0; else if(geometry == gHoroTris) return c->c.spin(S7-1) == 0 && (c->master->distance & 1); else return (c->master->zebraval == 1) && (c->master->distance & 1); } pair gpvalue(heptagon *h) { int d = h->c.spin(S7-1); if(d == 0) return make_pair(gp::loc(0,0), gp::loc(-1,0)); else return make_pair(gp::eudir((d-1)*2), gp::loc(1,0)); } // distance in a triangular grid int tridist(gp::loc v) { using namespace gp; int d = v.first - v.second; int d0 = d % 3; if(d0 == 1 || d0 == -2) return 1 + min(tridist(v - eudir(0)), min(tridist(v - eudir(2)), tridist(v - eudir(4)))); if(d0 == 2 || d0 == -1) return 1 + min(tridist(v + eudir(0)), min(tridist(v + eudir(2)), tridist(v + eudir(4)))); return length(v * loc(1,1)) * 2 / 3; } int equalize(heptagon*& c1, heptagon*& c2) { int steps = 0; int d1 = c1->distance; int d2 = c2->distance; while(d1 > d2) c1 = c1->cmove(S7-1), steps++, d1--; while(d2 > d1) c2 = c2->cmove(S7-1), steps++, d2--; return steps; } int celldistance3_tri(heptagon *c1, heptagon *c2) { using namespace gp; int steps = equalize(c1, c2); vector > m1, m2; while(c1 != c2) { m2.push_back(gpvalue(c2)); m1.push_back(gpvalue(c1)); c1 = c1->cmove(S7-1); c2 = c2->cmove(S7-1); steps += 2; } loc T1(0,0), T2(0,0), inv1(1,0), inv2(1,0); int xsteps = steps; while(isize(m1)) { xsteps -= 2; inv1 = inv1 * m1.back().second; inv2 = inv2 * m2.back().second; T1 = T1 + T1 + m1.back().first * inv1; T2 = T2 + T2 + m2.back().first * inv2; m1.pop_back(); m2.pop_back(); loc T0 = T2 - T1; if(T0.first > 3 || T0.second > 3 || T0.first < -3 || T0.second < -3) break; steps = min(steps, xsteps + tridist(T0)); } return steps; } int celldistance3_rec(heptagon *c1, heptagon *c2) { int steps = equalize(c1, c2); vector dx; while(c1 != c2) { dx.push_back(c1->c.spin(S7-1) - c2->c.spin(S7-1)); c1 = c1->cmove(S7-1); c2 = c2->cmove(S7-1); steps += 2; } int xsteps = steps, sx = 0, sy = 0; while(isize(dx)) { xsteps -= 2; tie(sx, sy) = make_pair(-sy, 2 * sx + dx.back()); dx.pop_back(); int ysteps = xsteps + abs(sx) + abs(sy); if(ysteps < steps) steps = ysteps; if(sx >= 8 || sx <= -8 || sy >= 8 || sy <= -8) break; } return steps; } int celldistance3_square(heptagon *c1, heptagon *c2) { int steps = equalize(c1, c2); vector dx, dy; while(c1 != c2) { dx.push_back((c1->c.spin(S7-1) & 1) - (c2->c.spin(S7-1) & 1)); dy.push_back((c1->c.spin(S7-1) >> 1) - (c2->c.spin(S7-1) >> 1)); c1 = c1->cmove(S7-1); c2 = c2->cmove(S7-1); steps += 2; } int xsteps = steps, sx = 0, sy = 0; while(isize(dx)) { xsteps -= 2; sx *= 2; sy *= 2; sx += dx.back(); sy += dy.back(); dx.pop_back(); dy.pop_back(); int ysteps = xsteps + abs(sx) + abs(sy); if(ysteps < steps) steps = ysteps; if(sx >= 8 || sx <= -8 || sy >= 8 || sy <= -8) break; } return steps; } // this algorithm is wrong: it never considers the "narrow gap" moves int celldistance3_hex(heptagon *c1, heptagon *c2) { int steps = equalize(c1, c2); vector d1, d2; while(c1 != c2) { d1.push_back(c1->c.spin(S7-1)); d2.push_back(c2->c.spin(S7-1)); c1 = c1->cmove(S7-1); c2 = c2->cmove(S7-1); steps += 2; } int xsteps = steps; dynamicval g(geometry, gEuclid); transmatrix T = Id; while(isize(d1)) { xsteps -= 2; T = euscalezoom(hpxy(0,sqrt(3))) * eupush(1,0) * spin(-d2.back() * 2 * M_PI/3) * T * spin(d1.back() * 2 * M_PI/3) * eupush(-1,0) * euscalezoom(hpxy(0,-1/sqrt(3))); d1.pop_back(); d2.pop_back(); hyperpoint h = tC0(T); int sx = int(floor(h[0] - h[1] / sqrt(3) + .5)) / 3; int sy = int(floor(h[1] * 2 / sqrt(3) + .5)) / 3; int ysteps = xsteps + eudist(sx, sy); if(ysteps < steps) steps = ysteps; if(sx >= 8 || sx <= -8 || sy >= 8 || sy <= -8) break; } return steps; } int celldistance3_approx(heptagon *c1, heptagon *c2) { int d = 0; while(true) { if(d > 1000000) return d; /* sanity check */ if(c1 == c2) return d; for(int i=0; itype; i++) if(c1->move(i) == c2) return d + 1; for(int i=0; itype; i++) { heptagon *c3 = c1->move(i); for(int j=0; jtype; j++) if(c3->move(j) == c2) return d+2; } if(c1->distance > c2->distance) c1=c1->cmove(updir()), d++; else c2=c2->cmove(updir()), d++; } } int celldistance3(heptagon *c1, heptagon *c2) { switch(geometry) { case gBinary3: return celldistance3_square(c1, c2); case gHoroTris: return celldistance3_tri(c1, c2); case gHoroRec: return celldistance3_rec(c1, c2); case gHoroHex: return celldistance3_hex(c1, c2); default: if(sol || !binarytiling) { println(hlog, "called celldistance3 for wrong geometry"); return 0; } return celldistance3_approx(c1, c2); } } int celldistance3(cell *c1, cell *c2) { return celldistance3(c1->master, c2->master); } void virtualRebaseSimple(heptagon*& base, transmatrix& at) { while(true) { double currz = at[GDIM][GDIM]; heptagon *h = base; heptagon *newbase = NULL; transmatrix bestV; for(int d=0; dcmove(d); } } if(newbase) { base = newbase; at = bestV; continue; } return; } } #endif hyperpoint get_horopoint(ld y, ld x) { return xpush(-y) * binary::parabolic(x) * C0; } hyperpoint get_horopoint(hyperpoint h) { return get_horopoint(h[0], h[1]); } hyperpoint get_corner_horo_coordinates(cell *c, int i) { ld yx = log(2) / 2; ld yy = yx; ld xx = 1 / sqrt(2)/2; if(geometry == gBinaryTiling) switch(gmod(i, c->type)) { case 0: return point2(-yy, xx); case 1: return point2(yy, 2*xx); case 2: return point2(yy, xx); case 3: return point2(yy, -xx); case 4: return point2(yy, -2*xx); case 5: return point2(-yy, -xx); case 6: return point2(-yy, 0); default: return point2(0, 0); } else switch(gmod(i, c->type)) { case 0: return point2(yy, -2*xx); case 1: return point2(yy, +0*xx); case 2: return point2(yy, +2*xx); case 3: return point2(-yy, xx); case 4: return point2(-yy, -xx); default: return point2(0, 0); } } auto hooksw = addHook(hooks_swapdim, 100, [] { if(binarytiling) build_tmatrix(); }); } }