// Hyperbolic Rogue -- regular honeycombs // Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details /** \file reg3.cpp * \brief regular honeycombs * * works with spherical and hyperbolic ones -- Euclidean cubic tiling implemented in euclid.cpp * includes non-quotient spaces as well as field quotient and elliptic spaces * hyperbolic honeycombs rely on bt:: to deal with floating point errors (just like archimedean) */ #include "hyper.h" namespace hr { #if MAXMDIM >= 4 namespace binary { void build_tmatrix(); void virtualRebaseSimple(heptagon*& base, transmatrix& at); int celldistance3(heptagon *c1, heptagon *c2); hyperpoint deparabolic3(hyperpoint h); } EX namespace reg3 { #if HDR inline short& altdist(heptagon *h) { return h->emeraldval; } #endif map close_distances; EX int loop; EX int face; EX vector cellshape; EX vector vertices_only; EX transmatrix spins[12], adjmoves[12]; EX ld adjcheck; EX ld strafedist; EX bool dirs_adjacent[16][16]; /** for adjacent directions a,b, next_dir[a][b] is the next direction adjacent to a, in (counter?)clockwise order from b */ EX int next_dir[16][16]; template ld binsearch(ld dmin, ld dmax, const T& f) { for(int i=0; i<200; i++) { ld d = (dmin + dmax) / 2; if(f(d)) dmax = d; else dmin = d; } return dmin; } EX void generate() { if(S7 == 4) face = 3; if(S7 == 6) face = 4; if(S7 == 12) face = 5; if(S7 == 8) face = 3; /* icosahedron not implemented */ loop = ginf[geometry].tiling_name[5] - '0'; DEBB(DF_GEOM, ("face = ", face, " loop = ", loop, " S7 = ", S7)); /* dual_angle : the angle between two face centers in the dual cell */ ld dual_angle = binsearch(0, M_PI, [&] (ld d) { hyperpoint h0 = cpush(0, 1) * C0; hyperpoint h1 = cspin(0, 1, d) * h0; hyperpoint h2 = cspin(1, 2, 2*M_PI/loop) * h1; return hdist(h0, h1) > hdist(h1, h2); }); /* angle_between_faces : the distance between two face centers of cells */ ld angle_between_faces = binsearch(0, M_PI, [&] (ld d) { hyperpoint h0 = cpush(0, 1) * C0; hyperpoint h1 = cspin(0, 1, d) * h0; hyperpoint h2 = cspin(1, 2, 2*M_PI/face) * h1; return hdist(h0, h1) > hdist(h1, h2); }); if(S7 == 8) { angle_between_faces = min(angle_between_faces, M_PI - angle_between_faces); /* 24-cell is a special case because it is the only one with '4' in the middle of the Schlaefli symbol. */ /* The computations above assume 3 */ hyperpoint h1 = hpxy3(.5,.5,.5); hyperpoint h2 = hpxy3(.5,.5,-.5); dual_angle = hdist(h1, h2); } DEBB(DF_GEOM, ("angle between faces = ", angle_between_faces)); DEBB(DF_GEOM, ("dual angle = ", dual_angle)); ld inp_length = binsearch(0, 1.55, [&] (ld d) { hyperpoint h = xpush(-d) * spin(2*M_PI/face) * xpush0(d); ld alpha = M_PI - atan2(-h[1], h[0]); return (alpha < dual_angle / 2) ? hyperbolic : sphere; }); DEBB(DF_GEOM, ("inp length = ", inp_length)); ld edge_length = hdist(xpush0(inp_length), spin(2*M_PI/face) * xpush0(inp_length)); if(S7 == 8) edge_length = hdist(normalize(hpxyz3(1,1,0,0)), normalize(hpxyz3(1,0,1,0))); DEBB(DF_GEOM, ("edge length = ", edge_length)); /* frontal face direction */ hyperpoint h0 = xtangent(1); /* three faces adjacent to frontal face direction */ hyperpoint h1 = cspin(0, 1, angle_between_faces) * h0; hyperpoint h2 = cspin(1, 2, 2*M_PI/face) * h1; hyperpoint h3 = cspin(1, 2, -2*M_PI/face) * h1; /* directions of vertices [h0,h1,h2] and [h0,h1,h3] */ hyperpoint dir_v2 = S7 == 8 ? (h1 + h2) : (h0 + h1 + h2); hyperpoint dir_v3 = S7 == 8 ? (h1 + h3) : (h0 + h1 + h3); DEBB(DF_GEOM, ("dir_v2 = ", dir_v2)); DEBB(DF_GEOM, ("dir_v3 = ", dir_v3)); dir_v2 = tangent_length(dir_v2, 1); dir_v3 = tangent_length(dir_v3, 1); DEBB(DF_GEOM, ("S7 = ", S7)); DEBB(DF_GEOM, ("dir_v2 = ", dir_v2)); DEBB(DF_GEOM, ("dir_v3 = ", dir_v3)); /* the distance from cell center to cell vertex */ ld vertex_distance; if(cgflags & qIDEAL) { vertex_distance = 13; } else { vertex_distance = binsearch(0, M_PI, [&] (ld d) { // sometimes breaks in elliptic dynamicval g(geometry, elliptic ? gCell120 : geometry); hyperpoint v2 = direct_exp(dir_v2 * d, iTable); hyperpoint v3 = direct_exp(dir_v3 * d, iTable); return hdist(v2, v3) >= edge_length; }); } DEBB(DF_GEOM, ("vertex_distance = ", vertex_distance)); /* actual vertex */ hyperpoint v2 = direct_exp(dir_v2 * vertex_distance, iTable); hyperpoint mid = Hypc; for(int i=0; imove(a)->c7, h2->c7)); println(hlog, "error in hrmap_quotient3:::relative_matrix"); return Id; } int encode_coord(const crystal::coord& co) { int c = 0; for(int i=0; i<4; i++) c |= ((co[i]>>1) & 3) << (2*i); return c; } EX crystal::coord decode_coord(int a) { crystal::coord co; for(int i=0; i<4; i++) co[i] = (a & 3) * 2, a >>= 2; return co; } struct hrmap_from_crystal : hrmap_quotient3 { hrmap_from_crystal() { generate(); initialize(256); if(1) { auto m = crystal::new_map(); dynamicval cm(currentmap, m); for(int a=0; a<256; a++) { auto co = decode_coord(a); heptagon *h1 = get_heptagon_at(co); for(int d=0; d<8; d++) { int b = encode_coord(crystal::get_coord(h1->cmove(d))); allh[a]->c.connect(d, allh[b], h1->c.spin(d), false); tmatrices[a].push_back(crystal::get_adj(h1, d)); } } delete m; } } }; struct hrmap_field3 : reg3::hrmap_quotient3 { fieldpattern::fpattern *f; hrmap_field3(fieldpattern::fpattern *ptr) { f = ptr; auto lgr = f->local_group; int N = isize(f->matrices) / lgr; initialize(N); vector moveid(S7), movedir(lgr); for(int s=0; sfullv[s] * reg3::adjmoves[0], reg3::adjmoves[i])) moveid[i] = s; for(int s=0; sfullv[s]) * reg3::adjmoves[0]), tC0(reg3::adjmoves[i])) < 1e-4) movedir[s] = i; for(int a=0; agmul(f->gmul(k, moveid[b]), lgr); for(int l=0; lgmul(k, l) % lgr == 0) { tmatrices[a][b] = reg3::adjmoves[b] * f->fullv[l]; allh[a]->c.connect(b, allh[k/lgr], movedir[l], false); } } } create_patterns(); } set plane; void make_plane(cellwalker cw) { if(plane.count(cw)) return; plane.insert(cw); for(int i=0; i g(geometry, gFieldQuotient); // also, strafe needs currentmap dynamicval c(currentmap, this); if(S7 == 12) { // Emerald in 534 cell *a = gamestart(); cell *b = a; for(cell *c: allcells()) if(hr::celldistance(a, c) == 5) { b = c; break; } for(cell *c: allcells()) if(hr::celldistance(a, c) > hr::celldistance(b, c)) c->master->zebraval |= 1; // Vineyard in 534 b = (cellwalker(a, 0) + wstep + rev + wstep).at; for(cell *c: allcells()) if(hr::celldistance(a, c) == hr::celldistance(b, c)) c->master->zebraval |= 2; } if(S7 == 6 && ginf[geometry].vertex == 5) { // Emerald in 534 cell *a = gamestart(); for(cell *c: allcells()) if(hr::celldistance(a, c) > 3) c->master->zebraval |= 1; // Vineyard in 435 make_plane(cellwalker(gamestart(), 0)); println(hlog, "plane size = ", isize(plane)); set plane_indices; for(auto cw: plane) plane_indices.insert(cw.at->master->fieldval); set nwi; for(int i=0; ilocal_group) / f->local_group; if(plane_indices.count(j)) ok = false; forCellEx(c1, allcells()[j]) if(plane_indices.count(c1->master->fieldval)) ok = false; } if(ok) nwi.insert(i); } int gpow = 0; for(int i: nwi) { int pw = 1; int at = i; while(true) { at = currfp_gmul(at, i); if(!nwi.count(at)) break; pw++; } if(pw == 4) gpow = i; } int u = 0; for(int a=0; a<5; a++) { for(int o: plane_indices) { int j = currfp_gmul(u, o * f->local_group) / f->local_group; allcells()[j]->master->zebraval |= 2; } u = currfp_gmul(u, gpow); } } } }; /** homology cover of the Seifert-Weber space */ namespace seifert_weber { using crystal::coord; vector periods; int flip(int x) { return (x+6) % 12; } void build_reps() { reg3::generate(); // start_game(); for(int a=0; a<12; a++) for(int b=0; b<12; b++) if(reg3::dirs_adjacent[a][b]) for(int c=0; c<12; c++) if(reg3::dirs_adjacent[a][c] && reg3::dirs_adjacent[b][c]) { transmatrix t = build_matrix(tC0(reg3::adjmoves[a]), tC0(reg3::adjmoves[b]), tC0(reg3::adjmoves[c]), C0); if(det(t) > 0) next_dir[a][b] = c; } set boundaries; for(int a=0; a<12; a++) for(int b=0; b<12; b++) if(reg3::dirs_adjacent[a][b]) { coord res = crystal::c0; int sa = a, sb = b; do { // printf("%d ", sa); if(sa < 6) res[sa]++; else res[sa-6]--; sa = flip(sa); sb = flip(sb); swap(sa, sb); sb = next_dir[sa][sb]; // sb = next_dirsa][sb]; } while(a != sa || b != sb); // printf("\n"); if(res > crystal::c0) boundaries.insert(res); } periods.clear(); for(int index = 5; index >= 0; index--) { for(auto k: boundaries) println(hlog, k); println(hlog, "simplifying..."); for(auto by: boundaries) if(among(by[index], 1, -1)) { println(hlog, "simplifying by ", by); periods.push_back(by); set nb; for(auto v: boundaries) if(v == by) ; else if(v[index] % by[index] == 0) nb.insert(v - by * (v[index] / by[index])); else println(hlog, "error"); boundaries = move(nb); break; } } } int get_rep(coord a) { a = a - periods[0] * (a[5] / periods[0][5]); a = a - periods[1] * (a[4] / periods[1][4]); a = a - periods[2] * (a[3] / periods[2][3]); for(int i=0; i<3; i++) a[i] = gmod(a[i], 5); return a[2] * 25 + a[1] * 5 + a[0]; } coord decode(int id) { coord res = crystal::c0; for(int a=0; a<3; a++) res[a] = id % 5, id /= 5; return res; } struct hrmap_singlecell : hrmap_quotient3 { hrmap_singlecell(ld angle) { generate(); initialize(1); tmatrices[0].resize(S7); for(int b=0; bc.connect(b, allh[0], (b+S7/2) % S7, false); transmatrix T = reg3::adjmoves[b]; hyperpoint p = tC0(T); tmatrices[0][b] = rspintox(p) * xpush(hdist0(p)) * cspin(2, 1, angle) * spintox(p); } } }; struct hrmap_seifert_cover : hrmap_quotient3 { hrmap_seifert_cover() { if(periods.empty()) build_reps(); initialize(125); for(int a=0; a<125; a++) { tmatrices[a].resize(12); for(int b=0; b<12; b++) { coord x = decode(a); if(b < 6) x[b]++; else x[b-6]--; int a1 = get_rep(x); allh[a]->c.connect(b, allh[a1], flip(b), false); transmatrix T = reg3::adjmoves[b]; hyperpoint p = tC0(T); tmatrices[a][b] = rspintox(p) * xpush(hdist0(p)) * cspin(2, 1, 108 * degree) * spintox(p); } } } }; } struct hrmap_reg3 : hrmap { heptagon *origin; hrmap *binary_map; hrmap_quotient3 *quotient_map; unordered_map> reg_gmatrix; unordered_map > > altmap; vector spherecells; vector& allcells() override { if(sphere) return spherecells; return hrmap::allcells(); } hrmap_reg3() { generate(); origin = tailored_alloc (S7); heptagon& h = *origin; h.s = hsOrigin; h.cdata = NULL; h.alt = NULL; h.distance = 0; h.fieldval = 0; h.c7 = newCell(S7, origin); if(sphere) spherecells.push_back(h.c7); worst_error1 = 0, worst_error2 = 0; dynamicval cr(currentmap, this); heptagon *alt = NULL; transmatrix T = Id; binary_map = nullptr; quotient_map = nullptr; #if CAP_FIELD if(geometry == gSpace344) { quotient_map = new hrmap_from_crystal; h.zebraval = quotient_map->allh[0]->zebraval; } else if(geometry == gSpace535) { quotient_map = new seifert_weber::hrmap_seifert_cover; h.zebraval = quotient_map->allh[0]->zebraval; } else if(hyperbolic) { quotient_map = new hrmap_field3(&currfp); h.zebraval = quotient_map->allh[0]->zebraval; } #endif if(hyperbolic) { dynamicval g(geometry, gBinary3); bt::build_tmatrix(); alt = tailored_alloc (S7); alt->s = hsOrigin; alt->emeraldval = 0; alt->zebraval = 0; alt->distance = 0; alt->alt = alt; alt->cdata = NULL; alt->c7 = NULL; binary_map = bt::new_alt_map(alt); T = xpush(.01241) * spin(1.4117) * xpush(0.1241) * cspin(0, 2, 1.1249) * xpush(0.07) * Id; } reg_gmatrix[origin] = make_pair(alt, T); altmap[alt].emplace_back(origin, T); celllister cl(origin->c7, 4, 100000, NULL); for(cell *c: cl.lst) { hyperpoint h = tC0(relative_matrix(c->master, origin, C0)); close_distances[bucketer(h)] = cl.getdist(c); } } ld worst_error1, worst_error2; heptagon *getOrigin() override { return origin; } void fix_distances(heptagon *h, heptagon *h2) { vector to_fix; auto fix_pair = [&] (heptagon *h, heptagon *h2) { if(!h2) return; if(h->distance > h2->distance+1) { h->distance = h2->distance + 1; to_fix.push_back(h); } else if(h2->distance > h->distance+1) { h2->distance = h->distance + 1; to_fix.push_back(h2); } if(h->alt && h->alt == h2->alt) { if(altdist(h) > altdist(h2) + 1) { altdist(h) = altdist(h2) + 1; to_fix.push_back(h); } else if (altdist(h2) > altdist(h) + 1) { altdist(h2) = altdist(h) + 1; to_fix.push_back(h2); } } }; if(!h2) to_fix = {h}; else fix_pair(h, h2); for(int i=0; imove(j)); } } #define DEB 0 heptagon *counterpart(heptagon *h) { return quotient_map->allh[h->fieldval]; } heptagon *create_step(heptagon *parent, int d) override { auto& p1 = reg_gmatrix[parent]; if(DEB) println(hlog, "creating step ", parent, ":", d, ", at ", p1.first, tC0(p1.second)); heptagon *alt = p1.first; #if CAP_FIELD transmatrix T = p1.second * (quotient_map ? quotient_map->tmatrices[parent->fieldval][d] : adjmoves[d]); #else transmatrix T = p1.second * adjmoves[d]; #endif transmatrix T1 = T; if(hyperbolic) { dynamicval g(geometry, gBinary3); dynamicval cm(currentmap, binary_map); binary_map->virtualRebase(alt, T); } fixmatrix(T); auto hT = tC0(T); if(DEB) println(hlog, "searching at ", alt, ":", hT); if(DEB) for(auto& p2: altmap[alt]) println(hlog, "for ", tC0(p2.second), " intval is ", intval(tC0(p2.second), hT)); ld err; for(auto& p2: altmap[alt]) if((err = intval(tC0(p2.second), hT)) < 1e-3) { if(err > worst_error1) println(hlog, format("worst_error1 = %lg", double(worst_error1 = err))); // println(hlog, "YES found in ", isize(altmap[alt])); if(DEB) println(hlog, "-> found ", p2.first); int fb = 0; hyperpoint old = T * (inverse(T1) * tC0(p1.second)); #if CAP_FIELD if(quotient_map) { p2.first->c.connect(counterpart(parent)->c.spin(d), parent, d, false); fix_distances(p2.first, parent); return p2.first; } #endif for(int d2=0; d2 worst_error2) println(hlog, format("worst_error2 = %lg", double(worst_error2 = err))); if(p2.first->move(d2)) println(hlog, "error: repeated edge"); p2.first->c.connect(d2, parent, d, false); fix_distances(p2.first, parent); fb++; } } if(fb != 1) { println(hlog, "found fb = ", fb); println(hlog, old); for(int d2=0; d2c.connect(d, parent, d, false); return parent; } return p2.first; } if(DEB) println(hlog, "-> not found"); int d2 = 0, fv = isize(reg_gmatrix); #if CAP_FIELD if(quotient_map) { auto cp = counterpart(parent); d2 = cp->c.spin(d); fv = cp->c.move(d)->fieldval; } #endif heptagon *created = tailored_alloc (S7); created->c7 = newCell(S7, created); if(sphere) spherecells.push_back(created->c7); created->alt = NULL; created->cdata = NULL; #if CAP_FIELD if(quotient_map) { created->zebraval = quotient_map->allh[fv]->zebraval; } else #endif created->zebraval = hrand(10); created->fieldval = fv; created->distance = parent->distance + 1; fixmatrix(T); reg_gmatrix[created] = make_pair(alt, T); altmap[alt].emplace_back(created, T); created->c.connect(d2, parent, d, false); return created; } ~hrmap_reg3() { if(binary_map) { dynamicval g(geometry, gBinary3); delete binary_map; } if(quotient_map) delete quotient_map; clearfrom(origin); } map reducers; void link_alt(const cellwalker& hs) override { auto h = hs.at->master; altdist(h) = 0; if(h->alt->s != hsOrigin) reducers[h] = hs.spin; } void generateAlts(heptagon* h, int levs, bool link_cdata) override { if(reducers.count(h)) { heptspin hs(h, reducers[h]); reducers.erase(h); hs += wstep; hs += rev; altdist(hs.at) = altdist(h) - 1; hs.at->alt = h->alt; reducers[hs.at] = hs.spin; fix_distances(hs.at, NULL); } for(int i=0; icmove(i); if(h2->alt == NULL) { h2->alt = h->alt; altdist(h2) = altdist(h) + 1; fix_distances(h2, NULL); } } } void draw() override { sphereflip = Id; // for(int i=0; imaster, cview()); while(!dq::drawqueue.empty()) { auto& p = dq::drawqueue.front(); heptagon *h = get<0>(p); transmatrix V = get<1>(p); dynamicval b(band_shift, get<2>(p)); bandfixer bf(V); dq::drawqueue.pop(); cell *c = h->c7; if(!do_draw(c, V)) continue; drawcell(c, V); if(in_wallopt() && isWall3(c) && isize(dq::drawqueue) > 1000) continue; for(int i=0; imove(i)) { dq::enqueue(h->move(i), V * adj(h, i)); } } } transmatrix adj(heptagon *h, int d) override { #if CAP_FIELD if(quotient_map) return quotient_map->adj(h, d); else #endif return relative_matrix(h->cmove(d), h, C0); } transmatrix relative_matrix(heptagon *h2, heptagon *h1, const hyperpoint& hint) override { auto p1 = reg_gmatrix[h1]; auto p2 = reg_gmatrix[h2]; transmatrix T = Id; if(hyperbolic) { dynamicval g(geometry, gBinary3); dynamicval cm(currentmap, binary_map); T = binary_map->relative_matrix(p2.first, p1.first, hint); } T = inverse(p1.second) * T * p2.second; if(elliptic && T[LDIM][LDIM] < 0) T = centralsym * T; return T; } vector get_vertices(cell* c) override { return vertices_only; } }; EX hrmap* new_map() { if(geometry == gSeifertCover) return new seifert_weber::hrmap_seifert_cover; if(geometry == gSeifertWeber) return new seifert_weber::hrmap_singlecell(108*degree); if(geometry == gHomologySphere) return new seifert_weber::hrmap_singlecell(36*degree); if(quotient && !sphere) return new hrmap_field3(&currfp); return new hrmap_reg3; } hrmap_reg3* regmap() { return ((hrmap_reg3*) currentmap); } EX int celldistance(cell *c1, cell *c2) { if(c1 == c2) return 0; if(c1 == currentmap->gamestart()) return c2->master->distance; if(c2 == currentmap->gamestart()) return c1->master->distance; auto r = regmap(); hyperpoint h = tC0(r->relative_matrix(c1->master, c2->master, C0)); int b = bucketer(h); if(close_distances.count(b)) return close_distances[b]; dynamicval g(geometry, gBinary3); return 20 + bt::celldistance3(r->reg_gmatrix[c1->master].first, r->reg_gmatrix[c2->master].first); } EX bool pseudohept(cell *c) { auto m = regmap(); if(cgflags & qSINGLE) return true; if(sphere) { hyperpoint h = tC0(m->relative_matrix(c->master, regmap()->origin, C0)); if(S7 == 12) { hyperpoint h1 = cspin(0, 1, atan2(16, 69) + M_PI/4) * h; for(int i=0; i<4; i++) if(abs(abs(h1[i]) - .5) > .01) return false; return true; } if(S7 == 8) return h[3] >= .99 || h[3] <= -.99 || abs(h[3]) < .01; if(loop == 3 && face == 3 && S7 == 4) return c == m->gamestart(); if(loop == 4 && face == 3) return abs(h[3]) > .9; if(loop == 3 && face == 4) return abs(h[3]) > .9; if(loop == 5 && face == 3) return abs(h[3]) > .99 || abs(h[0]) > .99 || abs(h[1]) > .99 || abs(h[2]) > .99; } // chessboard pattern in 534 if(geometry == gSpace534) return c->master->distance & 1; if(geometry == gField534) return hr::celldistance(c, currentmap->gamestart()) & 1; if(geometry == gCrystal344 || geometry == gCrystal534 || geometry == gSeifertCover) return false; if(quotient) return false; /* added */ if(hyperbolic) { heptagon *h = m->reg_gmatrix[c->master].first; return (h->zebraval == 1) && (h->distance & 1); } return false; } EX void generate_cellrotations() { auto &cr = cgi.cellrotations; if(isize(cr)) return; for(int a=0; a 0.01) continue; vector perm(S7); for(int x=0; xreg_gmatrix[c->master].second); h = bt::deparabolic3(h); return regmap()->reg_gmatrix[c->master].first->distance * log(2) - h[0]; } unordered_map, int> memo; bool cdd; int celldistance(cell *c1, cell *c2) { if(memo.count(make_pair(c1, c2))) return memo[make_pair(c1, c2)]; if(c1 == c2) return 0; vector v[2]; v[0].push_back(c1); v[1].push_back(c2); int steps = 0; map visited; visited[c1] = 1; visited[c2] = 2; while(true) { if(cdd) { println(hlog, "state ", steps, "/",isize(v[0]), "/", isize(v[1])); println(hlog, " A: ", v[0]); println(hlog, " B: ", v[1]); } for(int i: {0,1}) { vector new_v; for(cell *c: v[i]) forCellCM(cn, c) if(adistance(cn) < adistance(c)) { auto &vi = visited[cn]; if((vi&3) == 0) { vi = 4 * (steps+1); vi |= (1<> ca1, ca2; int b1 = 4*steps-4; int b2 = ((vi>>2)<<2) - 4; for(auto p: visited) { if(cdd) println(hlog, p); int ps = p.second & 3; if(ps == 1+i && p.second >= b1) ca1.emplace_back(p.first, p.second/4); if(ps == 2-i && p.second >= b2 && p.second <= b2+8) ca2.emplace_back(p.first, p.second/4); } int bound = 1<<16; for(auto p1: ca1) for(auto p2: ca2) { hyperpoint h = tC0(relative_matrix(p1.first->master, p2.first->master)); int b = bucketer(h); if(close_distances.count(b)) { int d = close_distances[b] + p1.second + p2.second; if(cdd) println(hlog, "candidate: close=", close_distances[b], p1, p2, "; h = ", h); if(d < bound) bound = d; } else if(cdd) println(hlog, "bucket missing"); } return memo[make_pair(c1, c2)] = bound; return bound; } } v[i] = std::move(new_v); } steps++; } } cellwalker target; int tsteps; int dist_alt(cell *c) { if(!target.at) { target = cellwalker(currentmap->gamestart(), 0); tsteps = 0; for(int i=0; i<30; i++) target += wstep, target += rev, tsteps++; } if(specialland == laCamelot) return reg3::celldistance(c, target.at); else { int d = reg3::celldistance(c, target.at) - tsteps; if(d < 10) target += wstep, target += rev, tsteps++; return d; } } #endif // Construct a cellwalker in direction j from cw.at, such that its direction is as close // as possible to cw.spin. Assume that j and cw.spin are adjacent #if MAXMDIM >= 4 EX cellwalker strafe(cellwalker cw, int j) { hyperpoint hfront = tC0(adjmoves[cw.spin]); transmatrix T = currentmap->adj(cw.at, j); for(int i=0; ic.spin(j)) if(hdist(hfront, T * tC0(adjmoves[i])) < strafedist + .01) return cellwalker(cw.at->cmove(j), i); println(hlog, "incorrect strafe"); exit(1); } EX vector > rels; EX int xp_order, r_order, rx_order; EX transmatrix full_X, full_R, full_P; geometry_information *for_cgi; EX int matrix_order(const transmatrix A) { transmatrix T = A; int res = 1; while(!eqmatrix(T, Id)) { res++; T = T * A; } return res; } EX void generate_fulls() { reg3::generate(); reg3::generate_cellrotations(); auto cons = [&] (int i0, int i1, int i2) { using reg3::adjmoves; transmatrix T = build_matrix(adjmoves[ 0]*C0, adjmoves[ 1]*C0, adjmoves[ 2]*C0, C0); transmatrix U = build_matrix(adjmoves[i0]*C0, adjmoves[i1]*C0, adjmoves[i2]*C0, C0); return U * inverse(T); }; full_P = reg3::adjmoves[0]; full_R = S7 == 8 ? cons(1, 7, 0) : cons(1, 2, 0); full_X = S7 == 8 ? cons(1, 0, 6) : S7 == 6 ? cons(1, 0, 5) : cons(1, 0, reg3::face); xp_order = matrix_order(full_X * full_P); r_order = matrix_order(full_R); rx_order = matrix_order(full_R * full_X); println(hlog, "orders = ", tie(rx_order, r_order, xp_order)); } EX void construct_relations() { if(for_cgi == &cgi) return; for_cgi = &cgi; rels.clear(); reg3::generate(); reg3::generate_cellrotations(); reg3::generate_fulls(); vector all; vector formulas; formulas.push_back(""); all.push_back(Id); hyperpoint v = reg3::cellshape[0]; auto add = [&] (transmatrix T) { for(int i=0; i 5) return; for(hyperpoint h: reg3::cellshape) if(hdist(T * h, v) < 1e-4) goto ok; return; ok: int id = add(T); // println(hlog, p, " x ", (s0+c), " = ", id); if(id >= isize(formulas)) formulas.push_back(formulas[p] + c); else if(id == 0) println(hlog, "reached identity: ", formulas[p]+c); else if(formulas[p][0] != formulas[id][0]) rels.emplace_back(formulas[p] + c, formulas[id]); }; for(int i=0; i