// Hyperbolic Rogue // Copyright (C) 2011-2016 Zeno Rogue, see 'hyper.cpp' for details // implementation of the Hypersian Rug mode #if CAP_RUG #define TEXTURESIZE (texturesize) #define HTEXTURESIZE (texturesize/2) #if !CAP_GLEW #if ISLINUX extern "C" { GLAPI void APIENTRY glGenFramebuffers (GLsizei n, GLuint *framebuffers); GLAPI void APIENTRY glBindFramebuffer (GLenum target, GLuint framebuffer); GLAPI void APIENTRY glFramebufferTexture (GLenum target, GLenum attachment, GLuint texture, GLint level); GLAPI GLenum APIENTRY glCheckFramebufferStatus (GLenum target); GLAPI void APIENTRY glDrawBuffers (GLsizei n, const GLenum *bufs); GLAPI void APIENTRY glGenRenderbuffers (GLsizei n, GLuint *renderbuffers); GLAPI void APIENTRY glBindRenderbuffer (GLenum target, GLuint renderbuffer); GLAPI void APIENTRY glRenderbufferStorage (GLenum target, GLenum internalformat, GLsizei width, GLsizei height); GLAPI void APIENTRY glFramebufferRenderbuffer (GLenum target, GLenum attachment, GLenum renderbuffertarget, GLuint renderbuffer); GLAPI void APIENTRY glDeleteRenderbuffers (GLsizei n, const GLuint *renderbuffers); GLAPI void APIENTRY glDeleteFramebuffers (GLsizei n, const GLuint *framebuffers); } #endif #if ISMAC #define glFramebufferTexture glFramebufferTextureEXT #endif #endif namespace rug { static const bool fast_euclidean = true; int torus_precision = 2; eGeometry gwhere = gEuclid; // hypersian rug datatypes and globals //------------------------------------- bool rugged = false; bool genrug = false; bool glew = false; bool renderonce = false; bool rendernogl = false; int texturesize = 1024; ld scale = 1; ld err_zero = 1e-3; int queueiter, qvalid, dt; double err; struct edge { struct rugpoint *target; double len; }; struct rugpoint { double x1, y1; bool valid; bool inqueue; double dist; hyperpoint h; hyperpoint flat; vector edges; }; struct triangle { rugpoint *m[3]; triangle(rugpoint *m1, rugpoint *m2, rugpoint *m3) { m[0] = m1; m[1] = m2; m[2] = m3; } }; vector points; vector triangles; bool rug_perspective = false; // extra geometry functions //-------------------------- // returns a matrix M // such that inverse(M) * h1 = ( |h1|, 0, 0) and inverse(M) * h2 = ( .., .., 0) bool zero2(hyperpoint h) { using namespace hyperpoint_vec; return !(h|h); } transmatrix orthonormalize(hyperpoint h1, hyperpoint h2) { using namespace hyperpoint_vec; hyperpoint vec[3]; vec[2] = (h1 ^ h2); if(zero2(vec[2])) vec[2] = hpxyz(.519, .4619, .136); vec[2] = vec[2] / sqrt(vec[2]|vec[2]); vec[0] = h1 - vec[2] * (h1|vec[2]); if(zero2(vec[0])) { vec[0] = hpxyz(1.641,2,3); vec[0] = vec[0] - vec[2] * (vec[0]|vec[2]); } vec[0] = vec[0] / sqrt(vec[0]|vec[0]); vec[1] = h2 - vec[2] * (h2|vec[2]) - vec[0] * (h2|vec[0]); if(zero2(vec[1])) { vec[1] = hpxyz(1.713,3,5); vec[1] = vec[1] - vec[2] * (vec[1]|vec[2]) - vec[0] * (vec[1]|vec[0]); } vec[1] = vec[1] / sqrt(vec[1]|vec[1]); transmatrix M; for(int i=0; i<3; i++) for(int j=0; j<3; j++) M[i][j] = vec[j][i]; return M; } hyperpoint azeq_to_hyperboloid(hyperpoint h) { if(abs(h[2])>1e-4) printf("Error: h[2] = %lf\n", h[2]); if(euclid) { h[2] = 1; return h; } ld d = hypot(h[0], h[1]); if(d == 0) { h[2] = 1; return h; } if(sphere) { h[0] = sin(d) * h[0]/d; h[1] = sin(d) * h[1]/d; h[2] = cos(d); } else { h[0] = sinh(d) * h[0]/d; h[1] = sinh(d) * h[1]/d; h[2] = cosh(d); } return h; } hyperpoint hyperboloid_to_azeq(hyperpoint h) { if(euclid) { h[2] = 0; return h; } else { ld d = hdist0(h); if(d == 0) { h[2] = 0; return h; } ld d2 = hypot(h[0], h[1]); if(d2 == 0) { h[2] = 0; return h; } h[0] = d * h[0] / d2; h[1] = d * h[1] / d2; h[2] = 0; return h; } } void push_all_points(int coord, ld val) { if(!val) return; else if(fast_euclidean && gwhere == gEuclid) { for(int i=0; iflat[coord] += val; } else for(int i=0; i gw(geometry, gwhere); transmatrix M = orthonormalize(hpxyz(coord==0,coord==1,coord==2), points[i]->flat); transmatrix Mi = inverse(M); hyperpoint f = azeq_to_hyperboloid(Mi * points[i]->flat); points[i]->flat = M * hyperboloid_to_azeq(xpush(val) * f); } } // construct the graph //--------------------- int hyprand; rugpoint *addRugpoint(hyperpoint h, double dist) { rugpoint *m = new rugpoint; m->h = h; /* ld tz = vid.alphax+h[2]; m->x1 = (1 + h[0] / tz) / 2; m->y1 = (1 + h[1] / tz) / 2; */ hyperpoint onscreen; applymodel(m->h, onscreen); m->x1 = (1 + onscreen[0] * vid.scale) / 2; m->y1 = (1 + onscreen[1] * vid.scale) / 2; m->flat = // hpxyz(h[0], h[1], sin(atan2(h[0], h[1]) * 3 + hyprand) * (h[2]-1) / 1000); hpxyz(h[0], h[1], (h[2]-1) * (rand() % 1000 - rand() % 1000) / 1000); if(rug_perspective && gwhere == gEuclid) m->flat[2] -= 3; m->valid = false; m->inqueue = false; m->dist = dist; points.push_back(m); return m; } rugpoint *findRugpoint(hyperpoint h, double dist) { for(int i=0; ih, h) < 1e-5) return points[i]; return addRugpoint(h, dist); } void addNewEdge(rugpoint *e1, rugpoint *e2) { edge e; e.target = e2; e1->edges.push_back(e); e.target = e1; e2->edges.push_back(e); } void addEdge(rugpoint *e1, rugpoint *e2) { for(int i=0; iedges); i++) if(e1->edges[i].target == e2) return; addNewEdge(e1, e2); } void addTriangle(rugpoint *t1, rugpoint *t2, rugpoint *t3) { addEdge(t1, t2); addEdge(t2, t3); addEdge(t3, t1); triangles.push_back(triangle(t1,t2,t3)); } void addTriangle1(rugpoint *t1, rugpoint *t2, rugpoint *t3) { rugpoint *t12 = findRugpoint(mid(t1->h, t2->h), (t1->dist+ t2->dist)/2); rugpoint *t23 = findRugpoint(mid(t2->h, t3->h), (t1->dist+ t2->dist)/2); rugpoint *t31 = findRugpoint(mid(t3->h, t1->h), (t1->dist+ t2->dist)/2); addTriangle(t1, t12, t31); addTriangle(t12, t2, t23); addTriangle(t23, t3, t31); addTriangle(t23, t31, t12); } bool psort(rugpoint *a, rugpoint *b) { return hdist0(a->h) < hdist0(b->h); } ld modelscale = 1; void calcLengths() { for(int i=0; iedges); j++) { ld d = hdist(points[i]->h, points[i]->edges[j].target->h); if(elliptic && d > M_PI/2) d = M_PI - d; points[i]->edges[j].len = d * modelscale; } } void setVidParam() { vid.xres = vid.yres = TEXTURESIZE; vid.scrsize = HTEXTURESIZE; vid.radius = vid.scrsize * vid.scale; vid.xcenter = HTEXTURESIZE; vid.ycenter = HTEXTURESIZE; vid.beta = 2; vid.alphax = 1; vid.eye = 0; vid.goteyes = false; } void buildTorusRug() { using namespace torusconfig; setVidParam(); struct toruspoint { int x,y; toruspoint() { x=qty; y=qty; } toruspoint(int _x, int _y) : x(_x), y(_y) {} int d2() { return x*x+(euclid6?x*y:0)+y*y; } }; vector zeropoints; vector tps(qty); for(int ax=-qty; ax tp.d2()) tps[v] = tp; if(v == 0) zeropoints.emplace_back(ax, ay); } pair solution; ld bestsol = 1e12; for(auto p1: zeropoints) for(auto p2: zeropoints) { int det = p1.x * p2.y - p2.x * p1.y; if(det < 0) continue; if(det != qty && det != -qty) continue; ld quality = ld(p1.d2()) * p2.d2(); if(quality < bestsol * 3) if(quality < bestsol) bestsol = quality, solution.first = p1, solution.second = p2; } if(solution.first.d2() > solution.second.d2()) swap(solution.first, solution.second); ld factor = sqrt(ld(solution.second.d2()) / solution.first.d2()); printf("factor = %lf\n", factor); if(factor < 2) factor = 2.2; factor -= 1; // 22,1 // 7,-17 // transmatrix z1 = {{{22,7,0}, {1,-17,0}, {0,0,1}}}; transmatrix z1 = {{{(ld)solution.first.x,(ld)solution.second.x,0}, {(ld)solution.first.y,(ld)solution.second.y,0}, {0,0,1}}}; transmatrix z2 = inverse(z1); auto addToruspoint = [&] (ld x, ld y) { auto r = addRugpoint(C0, 0); hyperpoint onscreen; applymodel(tC0(eumove(x, y)), onscreen); // take point (1,0) // apply eumove(1,0) // divide by EUCSCALE // multiply by vid.radius (= HTEXTURESIZE * rugzoom) // add 1, divide by texturesize r->x1 = onscreen[0]; r->y1 = onscreen[1]; // r->y1 = (1 + onscreen[1] * rugzoom / EUCSCALE)/2; hyperpoint h1 = hpxyz(x, y, 0); hyperpoint h2 = z2 * h1; double alpha = -h2[0] * 2 * M_PI; double beta = -h2[1] * 2 * M_PI; // r->flat = {alpha, beta, 0}; double sc = (factor+1)/4; r->flat = hpxyz((factor+cos(alpha)) * cos(beta) * sc, (factor+cos(alpha)) * sin(beta) * sc, -sin(alpha) * sc); r->valid = true; return r; }; int rugmax = min(torus_precision, 16); ld rmd = rugmax; for(int i=0; ix1), abs(p->y1))); // maxz * rugzoom * vid.radius == vid.radius vid.scale = 1 / maxz; for(auto p: points) p->x1 = (vid.xcenter + vid.radius * vid.scale * p->x1)/ vid.xres, p->y1 = (vid.ycenter - vid.radius * vid.scale * p->y1)/ vid.yres; return; } void buildRug() { if(torus) { buildTorusRug(); return; } map vptr; for(int i=0; icpdist); for(int i=0; itype; j++) { cell *c2 = c->mov[j]; rugpoint *w = vptr[c2]; if(!w) continue; // if(vmov[(j+1) % c->type]; rugpoint *w2 = vptr[c3]; if(!w2) continue; if(ctof(c)) addTriangle(v, w, w2); } } printf("vertices = %d triangles= %d\n", size(points), size(triangles)); calcLengths(); sort(points.begin(), points.end(), psort); } // rug physics queue pqueue; void enqueue(rugpoint *m) { if(m->inqueue) return; pqueue.push(m); m->inqueue = true; } void force_euclidean(rugpoint& m1, rugpoint& m2, double rd, double d1=1, double d2=1) { if(!m1.valid || !m2.valid) return; // double rd = hdist(m1.h, m2.h) * xd; // if(rd > rdz +1e-6 || rd< rdz-1e-6) printf("%lf %lf\n", rd, rdz); double t = 0; for(int i=0; i<3; i++) t += (m1.flat[i] - m2.flat[i]) * (m1.flat[i] - m2.flat[i]); t = sqrt(t); // printf("%lf %lf\n", t, rd); err += (t-rd) * (t-rd); bool nonzero = abs(t-rd) > err_zero; double force = (t - rd) / t / 2; // 20.0; for(int i=0; i<3; i++) { double di = (m2.flat[i] - m1.flat[i]) * force; m1.flat[i] += di * d1; m2.flat[i] -= di * d2; if(nonzero && d2>0) enqueue(&m2); } } void force(rugpoint& m1, rugpoint& m2, double rd, double d1=1, double d2=1) { if(!m1.valid || !m2.valid) return; if(gwhere == gEuclid && fast_euclidean) { force_euclidean(m1, m2, rd, d1, d2); return; } // double rd = hdist(m1.h, m2.h) * xd; // if(rd > rdz +1e-6 || rd< rdz-1e-6) printf("%lf %lf\n", rd, rdz); using namespace hyperpoint_vec; dynamicval gw(geometry, gwhere); transmatrix M = orthonormalize(m1.flat, m2.flat); transmatrix Mi = inverse(M); hyperpoint f1 = azeq_to_hyperboloid(Mi * m1.flat); hyperpoint f2 = azeq_to_hyperboloid(Mi * m2.flat); ld t = hdist(f1, f2); err += (t-rd) * (t-rd); bool nonzero = abs(t-rd) > err_zero; double forcev = (t - rd) / 2; // 20.0; transmatrix T = gpushxto0(f1); transmatrix T1 = spintox(T * f2) * T; transmatrix iT1 = inverse(T1); for(int i=0; i<3; i++) if(isnan(m1.flat[i])) { printf("NAN!\n"); exit(1); } /* printf("%p %p\n", &m1, &m2); printf("m1 = %s\n", display(m1.flat)); printf("m2 = %s\n", display(m2.flat)); printf("Mi * m1 = %s\n", display(Mi*m1.flat)); printf("Mi * m2 = %s\n", display(Mi*m2.flat)); printf(" f1 = %s\n", display(f1)); printf(" T * f1 = %s\n", display(T * f1)); printf("T1 * f1 = %s\n", display(T1 * f1)); printf(" f2 = %s\n", display(f2)); printf(" T * f2 = %s\n", display(T * f2)); printf("T1 * f2 = %s\n", display(T1 * f2)); printf("iT1 = %s\n", display(iT1 * C0)); printf("iT1 + t = %s\n", display(iT1 * xpush(t) * C0)); */ f1 = iT1 * xpush(forcev) * C0; f2 = iT1 * xpush(t-forcev) * C0; m1.flat = M * hyperboloid_to_azeq(f1); m2.flat = M * hyperboloid_to_azeq(f2); if(nonzero && d2>0) enqueue(&m2); } void preset(rugpoint *m) { int q = 0; hyperpoint h; for(int i=0; i<3; i++) h[i] = 0; using namespace hyperpoint_vec; for(int j=0; jedges); j++) for(int k=0; kedges[j].target; rugpoint *b = m->edges[k].target; if(!a->valid) continue; if(!b->valid) continue; double blen = -1; for(int j2=0; j2edges); j2++) if(a->edges[j2].target == b) blen = a->edges[j2].len; if(blen <= 0) continue; for(int j2=0; j2edges); j2++) for(int k2=0; k2edges); k2++) if(a->edges[j2].target == b->edges[k2].target && a->edges[j2].target != m) { rugpoint *c = a->edges[j2].target; if(!c->valid) continue; double a1 = m->edges[j].len/blen; double a2 = m->edges[k].len/blen; double c1 = a->edges[j2].len/blen; double c2 = b->edges[k2].len/blen; double cz = (c1*c1-c2*c2+1) / 2; double ch = sqrt(c2*c2 - cz*cz); double az = (a1*a1-a2*a2+1) / 2; double ah = sqrt(a2*a2 - az*az); // c->h = a->h + (b->h-a->h) * cz + ch * ort hyperpoint ort = (c->flat - a->flat - cz * (b->flat-a->flat)) / ch; // m->h = a->h + (b->h-a->h) * az - ah * ort hyperpoint res = a->flat + (b->flat-a->flat) * az - ah * ort; for(int i=0; i<3; i++) h[i] += res[i]; q++; } } if(q>0) for(int i=0; i<3; i++) m->flat[i] = h[i]/q; } int divides = 0; bool stop = false; void subdivide() { int N = size(points); // if(euclid && gwhere == gEuclid) return; if(N >= 8000) {stop = true; return; } printf("subdivide (%d,%d)\n", N, size(triangles)); divides++; vector otriangles = triangles; triangles.clear(); // subdivide edges for(int i=0; iedges); j++) { rugpoint *m2 = m->edges[j].target; rugpoint *mm = addRugpoint(mid(m->h, m2->h), (m->dist+m2->dist)/2); using namespace hyperpoint_vec; mm->flat = (m->flat + m2->flat) / 2; mm->valid = true; qvalid++; mm->inqueue = false; enqueue(mm); } m->edges.clear(); } for(int i=0; ih) + .1e-6; int oqvalid = qvalid; for(int i=0; i 7) preset(&m); for(int it=0; it<50; it++) for(int j=0; jinqueue = false; for(int j=0; jedges); j++) force(*m, *m->edges[j].target, m->edges[j].len); } if(!stop) printf("%5d %10.7lf D%d Q%3d Qv%5d\n", queueiter, err, divides, size(pqueue), qvalid); } // drawing the Rug //----------------- int eyemod; void getco(rugpoint& m, double& x, double& y, double& z, int &spherepoints) { x = m.flat[0]; y = m.flat[1]; z = m.flat[2]; if(gwhere == gSphere && z > 0) { ld rad = sqrt(x*x + y*y + z*z); // turn M_PI to -M_PI ld rad_to = M_PI + M_PI - rad; ld r = -rad_to / rad; x *= r; y *= r; z *= r; spherepoints++; } if(eyemod) x += eyemod * z * vid.eye; } extern int besti; void drawTriangle(triangle& t) { rugpoint& m1 = *t.m[0]; rugpoint& m2 = *t.m[1]; rugpoint& m3 = *t.m[2]; if(!m1.valid || !m2.valid || !m3.valid) return; if(m1.dist >= sightrange+.51 || m2.dist >= sightrange+.51 || m3.dist >= sightrange+.51) return; dt++; int spherepoints = 0; double x1, y1, z1; double x2, y2, z2; double x3, y3, z3; getco(m1,x1,y1,z1, spherepoints); getco(m2,x2,y2,z2, spherepoints); getco(m3,x3,y3,z3, spherepoints); if(spherepoints == 1 || spherepoints == 2) return; double xa = x2-x1, ya = y2-y1, za = z2-z1; double xb = x3-x1, yb = y3-y1, zb = z3-z1; double xn = ya * zb - za * yb; double yn = za * xb - xa * zb; double zn = xa * yb - ya * xb; double h = sqrt(xn*xn+yn*yn+zn*zn); glNormal3f(xn/h,yn/h,zn/h); glTexCoord2f(m1.x1, m1.y1); glVertex3f(x1, y1, z1); glTexCoord2f(m2.x1, m2.y1); glVertex3f(x2, y2, z2); glTexCoord2f(m3.x1, m3.y1); glVertex3f(x3, y3, z3); } GLuint FramebufferName = 0; GLuint renderedTexture = 0; GLuint depth_stencil_rb = 0; SDL_Surface *texture; Uint32 *expanded_data; void initTexture() { if(!rendernogl) { #if !ISPANDORA FramebufferName = 0; glGenFramebuffers(1, &FramebufferName); glBindFramebuffer(GL_FRAMEBUFFER, FramebufferName); glGenTextures(1, &renderedTexture); glBindTexture(GL_TEXTURE_2D, renderedTexture); glTexImage2D(GL_TEXTURE_2D, 0,GL_RGB, TEXTURESIZE, TEXTURESIZE, 0,GL_RGB, GL_UNSIGNED_BYTE, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); #ifdef TEX glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, renderedTexture, 0); #else glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, renderedTexture, 0); #endif GLenum DrawBuffers[1] = {GL_COLOR_ATTACHMENT0}; glDrawBuffers(1, DrawBuffers); glGenRenderbuffers(1, &depth_stencil_rb); glBindRenderbuffer(GL_RENDERBUFFER, depth_stencil_rb); glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH24_STENCIL8, TEXTURESIZE, TEXTURESIZE); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, depth_stencil_rb); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_RENDERBUFFER, depth_stencil_rb); if(glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE) { addMessage("Failed to initialize the framebuffer"); rugged = false; } #endif } else { texture = SDL_CreateRGBSurface(SDL_SWSURFACE,TEXTURESIZE,TEXTURESIZE,32,0,0,0,0); glGenTextures( 1, &renderedTexture ); glBindTexture( GL_TEXTURE_2D, renderedTexture); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR); expanded_data = new Uint32[TEXTURESIZE * TEXTURESIZE]; } } void prepareTexture() { videopar svid = vid; setVidParam(); if(rendernogl) { vid.usingGL = false; SDL_Surface *sav = s; s = texture; SDL_FillRect(s, NULL, 0); drawfullmap(); s = sav; for(int y=0; y .001 || vid.eye < -.001) { selectEyeMask(1); glClear(GL_DEPTH_BUFFER_BIT); glBegin(GL_TRIANGLES); eyemod = 1; for(int t=0; t 100) scale = 1; initTexture(); if(renderonce) prepareTexture(); if(!rugged) return; genrug = true; drawthemap(); genrug = false; buildRug(); qvalid = 0; dt = 0; queueiter = 0; currentrot = Id; } void close() { if(!rugged) return; rugged = false; closeTexture(); triangles.clear(); for(int i=0; i (); } int lastticks; void actDraw() { if(!renderonce) prepareTexture(); physics(); drawRugScene(); Uint8 *keystate = SDL_GetKeyState(NULL); int qm = 0; double alpha = (ticks - lastticks) / 1000.0; lastticks = ticks; transmatrix t = Id; if(rug_perspective) { int qms = 0; if(keystate[SDLK_HOME]) qm++, t = t * rotmatrix(alpha, 0, 1); if(keystate[SDLK_END]) qm++, t = t * rotmatrix(alpha, 1, 0); if(!keystate[SDLK_LSHIFT]) { if(keystate[SDLK_DOWN]) qm++, t = t * rotmatrix(alpha, 2, 1); if(keystate[SDLK_UP]) qm++, t = t * rotmatrix(alpha, 1, 2); if(keystate[SDLK_LEFT]) qm++, t = t * rotmatrix(alpha, 2, 0); if(keystate[SDLK_RIGHT]) qm++, t = t * rotmatrix(alpha, 0, 2); } ld push = 0; if(keystate[SDLK_PAGEDOWN]) push -= alpha; if(keystate[SDLK_PAGEUP]) push += alpha; ld strafex = 0, strafey = 0; if(keystate[SDLK_LSHIFT]) { if(keystate[SDLK_LEFT]) strafex += alpha; if(keystate[SDLK_RIGHT]) strafex -= alpha; if(keystate[SDLK_UP]) strafey -= alpha; if(keystate[SDLK_DOWN]) strafey += alpha; } if(qm) for(int i=0; iflat = t * points[i]->flat; } push_all_points(2, push); push_all_points(0, strafex); push_all_points(1, strafey); } else { if(keystate[SDLK_HOME]) qm++, t = inverse(currentrot); if(keystate[SDLK_END]) qm++, t = currentrot * rotmatrix(alpha, 0, 1) * inverse(currentrot); if(keystate[SDLK_DOWN]) qm++, t = t * rotmatrix(alpha, 1, 2); if(keystate[SDLK_UP]) qm++, t = t * rotmatrix(alpha, 2, 1); if(keystate[SDLK_LEFT]) qm++, t = t * rotmatrix(alpha, 0, 2); if(keystate[SDLK_RIGHT]) qm++, t = t * rotmatrix(alpha, 2, 0); if(keystate[SDLK_PAGEUP]) scale *= exp(alpha); if(keystate[SDLK_PAGEDOWN]) scale /= exp(alpha); if(qm) { currentrot = t * currentrot; for(int i=0; iflat = t * points[i]->flat; } } } int besti; hyperpoint gethyper(ld x, ld y) { double mx = ((x*2 / vid.xres)-1) * xview; double my = (1-(y*2 / vid.yres)) * yview; double bdist = 1e12; double rx1=0, ry1=0; bool found = false; for(int i=0; iflat[0] - r0->flat[0]; double dy1 = r1->flat[1] - r0->flat[1]; double dx2 = r2->flat[0] - r0->flat[0]; double dy2 = r2->flat[1] - r0->flat[1]; double dxm = mx - r0->flat[0]; double dym = my - r0->flat[1]; // A (dx1,dy1) = (1,0) // B (dx2,dy2) = (0,1) double det = dx1*dy2 - dy1*dx2; double tx = dxm * dy2 - dym * dx2; double ty = -(dxm * dy1 - dym * dx1); tx /= det; ty /= det; if(tx >= 0 && ty >= 0 && tx+ty <= 1) { double rz1 = r0->flat[2] * (1-tx-ty) + r1->flat[2] * tx + r2->flat[2] * ty; rz1 = -rz1; if(rz1 < bdist) { bdist = rz1; rx1 = r0->x1 + (r1->x1 - r0->x1) * tx + (r2->x1 - r0->x1) * ty; ry1 = r0->y1 + (r1->y1 - r0->y1) * tx + (r2->y1 - r0->y1) * ty; } found = true; } } if(!found) return Hypc; double px = rx1 * TEXTURESIZE, py = (1-ry1) * TEXTURESIZE; videopar svid = vid; setVidParam(); hyperpoint h = ::gethyper(px, py); vid = svid; return h; } void show() { dialog::init(XLAT("hypersian rug mode"), iinf[itPalace].color, 150, 100); if((euclid || sphere) && !torus) { dialog::addInfo("This makes sense only in hyperbolic or Torus geometry."); dialog::addBreak(50); } dialog::addItem(XLAT("what's this?"), 'h'); dialog::addItem(XLAT("take me back"), 'q'); dialog::addItem(XLAT("enable the Hypersian Rug mode"), 'u'); dialog::addBoolItem(XLAT("render the texture only once"), (renderonce), 'o'); dialog::addBoolItem(XLAT("render texture without OpenGL"), (rendernogl), 'g'); dialog::addSelItem(XLAT("texture size"), its(texturesize)+"x"+its(texturesize), 's'); if(torus) { if(torus_precision < 1) torus_precision = 1; if(torus_precision > 16) torus_precision = 16; dialog::addSelItem(XLAT("precision"), its(torus_precision), 'p'); } dialog::display(); keyhandler = [] (int sym, int uni) { #if ISPANDORA rendernogl = true; #endif dialog::handleNavigation(sym, uni); if(uni == 'h') gotoHelp( "In this mode, HyperRogue is played on a 3D model of a part of the hyperbolic plane, " "similar to one you get from the 'paper model creator' or by hyperbolic crocheting.\n\n" "This requires some OpenGL extensions and may crash or not work correctly -- enabling " "the 'render texture without OpenGL' options may be helpful in this case. Also the 'render once' option " "will make the rendering faster, but the surface will be rendered only once, so " "you won't be able to play a game on it.\n\n" "Use arrow keys to rotate, Page Up/Down to zoom." ); else if(uni == 'u') { if((euclid || sphere) && !torus) addMessage("This makes sense only in hyperbolic or Torus geometry."); { rug::init(); popScreen(); } } else if(uni == 'o') renderonce = !renderonce; else if(uni == 'p' && torus_precision) dialog::editNumber(torus_precision, 0, 16, 1, 2, "precision", "precision"); #if !ISPANDORA else if(uni == 'g') rendernogl = !rendernogl; #endif else if(uni == 's') { texturesize *= 2; if(texturesize == 8192) texturesize = 128; dialog::scaleLog(); } else if(doexiton(sym, uni)) popScreen(); }; } void select() { if(rug::rugged) rug::close(); else pushScreen(rug::show); } int rugArgs() { using namespace arg; if(0) ; else if(argis("-rugmodelscale")) { shift(); modelscale = argf(); } else if(argis("-ruggeo")) { shift(); gwhere = (eGeometry) argi(); } else if(argis("-rugpers")) { rug_perspective = true; } else if(argis("-rugorth")) { rug_perspective = false; } else if(argis("-rugerr")) { err_zero = argf(); } else return 1; return 0; } auto rug_hook = addHook(hooks_args, 100, rugArgs); } #else // fake for mobile namespace rug { bool rugged = false; bool renderonce = false; bool rendernogl = true; int texturesize = 512; ld scale = 1.0f; } #endif