// Hyperbolic Rogue -- hyperbolic graphics // Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details /** \file hypgraph.cpp * \brief mapping hyperpoints to the screen, and related functions */ #include "hyper.h" namespace hr { hyperpoint ghxy, ghgxy; shiftpoint ghpm = shiftless(C02); EX ld flip_limit = 1.1; EX bool flip_sphere() { return GDIM == 2 && sphere && pconf.alpha > flip_limit; } EX bool sphere_flipped; void ghcheck(hyperpoint &ret, const shiftpoint &H) { if(hypot_d(2, ret-ghxy) < hypot_d(2, ghgxy-ghxy)) { ghpm = H; ghgxy = ret; } } EX void camrotate(ld& hx, ld& hy) { ld cam = pconf.camera_angle * degree; GLfloat cc = cos(cam); GLfloat ss = sin(cam); ld ux = hx, uy = hy * cc + ss, uz = cc - ss * hy; hx = ux / uz, hy = uy / uz; } EX bool non_spatial_model() { if(among(pmodel, mdRotatedHyperboles, mdJoukowsky, mdJoukowskyInverted, mdPolygonal, mdPolynomial)) return true; if(pmodel == mdSpiral && euclid) return true; #if CAP_GL return pmodel && vid.consider_shader_projection && (get_shader_flags() & SF_DIRECT); #else return false; #endif } EX hyperpoint perspective_to_space(hyperpoint h, ld alpha IS(pconf.alpha), eGeometryClass gc IS(ginf[geometry].cclass)) { ld hx = h[0], hy = h[1]; if(gc == gcEuclid) return hpxy(hx * (1 + alpha), hy * (1 + alpha)); ld hr = hx*hx+hy*hy; if(LDIM == 3) hr += h[2]*h[2]; if(hr > .9999 && gc == gcHyperbolic) return Hypc; ld A, B, C; ld curv = gc == gcSphere ? 1 : -1; A = 1+curv*hr; B = 2*hr*alpha*-curv; C = 1 - curv*hr*alpha*alpha; B /= A; C /= A; ld rootsign = 1; if(gc == gcSphere && pconf.alpha > 1) rootsign = -1; ld hz = B / 2 + rootsign * sqrt(C + B*B/4); hyperpoint H; H[0] = hx * (hz+alpha); H[1] = hy * (hz+alpha); if(LDIM == 3) H[2] = h[2] * (hz + alpha); H[LDIM] = hz; return H; } EX hyperpoint space_to_perspective(hyperpoint z, ld alpha IS(pconf.alpha)) { ld s = 1 / (alpha + z[LDIM]); z[0] *= s; z[1] *= s; if(GDIM == 3) { z[2] *= s; z[3] = 0; } else z[2] = 0; return z; } EX hyperpoint pointable() { return WDIM == 2 && GDIM == 3 ? zpush0(cgi.FLOOR) : C0; } /** find a shiftpoint which minimizes value -- we represent points by matrices to make things a bit simpler */ EX shiftmatrix minimize_point_value(shiftmatrix T, function value) { ld best = value(T); for(int it=0; it<50; it++) for(int s=0; s<2*WDIM; s++) { shiftmatrix T1 = T * cpush(s/2, (s&1?1:-1) * pow(1.2, -it)); ld dist = value(T1); if(dist < best) best = dist, T = T1; if(mdBandAny()) { T1.shift += TAU; dist = value(T1); if(dist < best) best = dist, T = T1; T1.shift -= 720._deg; dist = value(T1); if(dist < best) best = dist, T = T1; T1.shift += TAU; } } return T; } EX shiftpoint find_on_screen(hyperpoint hxy, const shiftmatrix& T) { hyperpoint rel = pointable(); auto distance_at = [&] (const shiftmatrix& T1) { hyperpoint h1; applymodel(T1*rel, h1); return sqhypot_d(2, hxy - h1); }; return minimize_point_value(T, distance_at) * rel; } EX shiftpoint gethyper(ld x, ld y) { ld hx = (x - current_display->xcenter) / current_display->radius; ld hy = (y - current_display->ycenter) / current_display->radius / pconf.stretch; hyperpoint hxy = point3(hx, hy, 0); if(WDIM == 2 && GDIM == 3) { return mouseover ? find_on_screen(hxy, ggmatrix(mouseover)): shiftless(Hypc); } if(pmodel) { ghxy = hxy; return find_on_screen(hxy, rgpushxto0(ghpm)); } if(pconf.camera_angle) camrotate(hx, hy); return shiftless(perspective_to_space(hpxyz(hx, hy, 0))); } void ballmodel(hyperpoint& ret, double alpha, double d, double zl) { hyperpoint H = ypush(vid.camera) * xpush(d) * ypush(zl) * C0; ld tzh = pconf.ballproj + H[LDIM]; ld ax = H[0] / tzh; ld ay = H[1] / tzh; ld ca = cos(alpha), sa = sin(alpha); ret[0] = ax * ca; ret[1] = ay; ret[2] = ax * sa; models::apply_ball(ret[2], ret[1]); } bool use_z_coordinate() { #if CAP_VR if(vrhr::rendering()) return true; #endif return current_display->stereo_active(); } void apply_depth(hyperpoint &f, ld z) { if(vid.usingGL) f[2] = z * pconf.depth_scaling; else { z = z * current_display->radius * pconf.depth_scaling; ld mul = current_display->radius / (current_display->radius + z); f[0] = f[0] * mul; f[1] = f[1] * mul; f[2] = vid.xres * current_display->eyewidth() / 2 / current_display->radius + vid.ipd * mul / 2; } } bool hypot_zlev(ld zlev, ld& d, ld& df, ld& zf) { if(zlev == 1) { df = 1; zf = 0; return false; } else { // (0,0,1) -> (0, sin z, cos z) -> (sin d cos z, sin z, cos d cos z) ld z = geom3::factor_to_lev(zlev); ld tz = sin_auto(z); ld td = sin_auto(abs(d)) * cos_auto(z); ld h = hypot(td, tz); zf = tz / h, df = td / h; if(d > 0) d = hypot_auto(d, z); else { d = -hypot_auto(-d, z); zf = -zf; } return true; } } int twopoint_sphere_flips; bool twopoint_do_flips; ld find_zlev(hyperpoint& H) { if(spatial_graphics) { ld zlev = zlevel(H); if(zlev > 1-1e-9 && zlev < 1+1e-9) return 1; H /= zlev; return zlev; } return 1; } ld get_tz(hyperpoint H) { ld tz = pconf.alpha+H[LDIM]; if(tz < BEHIND_LIMIT && tz > -BEHIND_LIMIT) tz = BEHIND_LIMIT; return tz; } EX ld atan2(hyperpoint h) { return atan2(h[1], h[0]); } pair move_z_to_y(hyperpoint& H) { if(GDIM == 2) return make_pair(0, 0); ld R = hypot(H[1], H[2]); pair res = { H[1] / R, H[2] / R }; H[1] = R; H[2] = 0; return res; } void move_y_to_z(hyperpoint& H, pair coef) { if(GDIM == 3) { H[2] = H[1] * coef.second; H[1] = H[1] * coef.first; #if MAXMDIM >= 4 H[3] = 1; #endif } } template void makeband(shiftpoint H, hyperpoint& ret, const T& f) { ld zlev = find_zlev(H.h); models::apply_orientation_yz(H[1], H[2]); models::apply_orientation(H[0], H[1]); auto r = move_z_to_y(H.h); ld x, y, yf, zf=0; y = asin_auto(H[1]); x = asin_auto_clamp(H[0] / cos_auto(y)); if(sphere) { if(H[LDIM] < 0 && x > 0) x = M_PI - x; else if(H[LDIM] < 0 && x <= 0) x = -M_PI - x; } x += H.shift; hypot_zlev(zlev, y, yf, zf); f(x, y); ld yzf = y * zf; y *= yf; ret = hpxyz(x / M_PI, y / M_PI, 0); move_y_to_z(ret, r); models::apply_orientation(ret[1], ret[0]); models::apply_orientation_yz(ret[2], ret[1]); if(zlev != 1 && use_z_coordinate()) apply_depth(ret, yzf / M_PI); return; } EX void makeband_f(shiftpoint H, hyperpoint& ret, const hr::function& f) { makeband(H, ret, f); } void band_conformal(ld& x, ld& y) { switch(cgclass) { case gcSphere: y = atanh(sin(y)); x *= 2; y *= 2; break; case gcHyperbolic: y = 2 * atan(tanh(y/2)); x *= 2; y *= 2; break; case gcEuclid: default: // y = y; y *= 2; x *= 2; break; } } void make_twopoint(ld& x, ld& y) { auto p = pconf.twopoint_param; ld dleft = hypot_auto(x-p, y); ld dright = hypot_auto(x+p, y); if(sphere) { int tss = twopoint_sphere_flips; if(tss&1) { tss--; dleft = TAU - 2*p - dleft; dright = TAU - 2*p - dright; swap(dleft, dright); y = -y; } while(tss) { tss -= 2; dleft = TAU - 4*p + dleft; dright = TAU - 4*p + dright; } } x = (dright*dright-dleft*dleft) / 4 / p; y = (y>0?1:-1) * sqrt(dleft * dleft - (x-p)*(x-p) + 1e-9); } hyperpoint mobius(hyperpoint h, ld angle, ld scale = 1) { h = perspective_to_space(h * scale, 1, gcSphere); h = cspin(1, 2, angle * degree) * h; return space_to_perspective(h, 1) / scale; } hyperpoint compute_hybrid(hyperpoint H, int rootid) { auto& t = pconf.twopoint_param; hyperpoint Hl = xpush(+t) * H; hyperpoint Hr = xpush(-t) * H; ld g = (Hl[0] + 1e-7) / (Hl[1] + 1e-8); ld d = hdist0(Hr); hyperpoint spinned = spintox(Hl) * xpush0(2*t); if(Hl[0] < 0) spinned = pispin * spinned; ld y = asin_auto(spinned[1]); ld x = asin_auto_clamp(spinned[0] / cos_auto(y)); int sign = (Hl[0] > 0 ? 1 : -1) * hdist0(Hl) < x ? -1 : 1; switch(rootid & 3) { case 1: sign = -sign; break; case 2: sign = 1; break; case 3: sign = -1; break; } // (x + t) / g = y // yy + (x-t)(x-t) = dd // (x+t)*(x+t)/g*g + x*x + t*t - 2*x*t = dd // x*x*(1+1/g*g) + t*t*(1+1/g*g) + 2xt (1/gg-1) = dd // xx + 2xt (1/gg-1) / (1+1/gg) = dd / (1+1/gg) - tt ld b = t*(1/g/g - 1) / (1+1/g/g); ld c = d*d / (1+1/g/g) - t*t; // xx + 2bx = c // xx + 2bx + bb = c + bb // (x+b)^2 = c+bb // x = +/- sqrt(c+bb) - b ld a = c+b*b; hyperpoint ret; ret[0] = (a > 0 ? sign * sqrt(a) : 0) - b; ret[1] = (ret[0] + t) / g; ret[2] = 0; return ret; } EX ld signed_sqrt(ld x) { return x > 0 ? sqrt(x) : -sqrt(-x); } EX int axial_x, axial_y; EX void apply_perspective(const hyperpoint& H, hyperpoint& ret) { if(H[2] == 0) { ret[0] = 1e6; ret[1] = 1e6; ret[2] = 0; return; } ld ratio = vid.xres / current_display->tanfov / current_display->radius / 2; ret[0] = H[0]/H[2] * ratio; ret[1] = H[1]/H[2] * ratio; ret[2] = H[2]; ret[3] = 1; } EX void apply_nil_rotation(hyperpoint& H) { if(nil) { H[2] -= H[0] * H[1] / 2; models::apply_orientation(H[0], H[1]); H[2] += H[0] * H[1] / 2 * pconf.rotational_nil; models::apply_orientation(H[1], H[0]); } } EX void applymodel(shiftpoint H_orig, hyperpoint& ret) { apply_other_model(H_orig, ret, pmodel); } EX void vr_sphere(hyperpoint& ret, hyperpoint& H, eModel md) { ret = H; int flip = 1; if(md == mdHalfplane) flip = -flip; if(pconf.alpha < 1) flip = -flip; ret *= pow(sqhypot_d(3, H), (flip * pconf.depth_scaling-1) / 2); ret[2] += pconf.alpha; if(md == mdHalfplane) { ld d = sqhypot_d(3, ret); ret /= abs(d); } } void vr_disk(hyperpoint& ret, hyperpoint& H) { if(euclid) { ret = H; ret[2] = vid.depth * (1 - (ret[2] - 1) * pconf.depth_scaling) + pconf.alpha + vid.camera; } else if(sphere) { vr_sphere(ret, H, mdDisk); return; } else { ld zlev = find_zlev(H); ld zl = vid.depth-geom3::factor_to_lev(zlev) * pconf.depth_scaling; ld d = hdist0(H); ld dd = hypot_d(2, H); hyperpoint H1 = ypush(vid.camera) * xpush(d) * ypush0(zl); ld tzh = pconf.alpha + H1[2]; ld ax = H1[0] / tzh; ld ay = H1[1] / tzh; ret[0] = ax * H[0] / dd; ret[1] = ax * H[1] / dd; ret[2] = ay; } } #if MAXMDIM >= 4 /** Compute the three-point projection. Currently only works in isotropic 3D spaces. */ EX void threepoint_projection(const hyperpoint& H, hyperpoint& ret) { hyperpoint H1 = H; find_zlev(H1); if(true) { models::apply_orientation_yz(H1[1], H1[2]); models::apply_orientation(H1[0], H1[1]); } auto p = pconf.twopoint_param; ld dist[3]; for(int i=0; i<3; i++) { hyperpoint h1 = xspinpush0(TAU*i/3, p); dist[i] = geo_dist(h1, H1); } /* we are looking for the points (x,y,z) such that: (x-xi)^2 + (y-yi)^2 + z^2 = di^2 which is equivalent to: x^2+y^2+z^2 -2xxi -2yyi = di^2-xi^2-yi^2 After setting s = x^2+y^2+z^2, we get a system of linear equations for (x,y,s) */ dynamicval g(geometry, gEuclid); transmatrix T = Id; hyperpoint v = C0; for(int i=0; i<3; i++) { hyperpoint pp = xspinpush0(TAU*i/3, p); v[i] = dist[i]*dist[i] - p*p; T[i][0] = -2 * pp[0]; T[i][1] = -2 * pp[1]; T[i][2] = 1; } transmatrix U = inverse3(T); hyperpoint sxy = U * v; // compute the actual z based on s sxy[2] = sxy[2] - sqhypot_d(2, sxy); sxy[2] = sxy[2] > 0 ? sqrt(sxy[2]) : 0; if(H1[2] < 0) sxy[2] *= -1; sxy[3] = 1; geometry = gCubeTiling; ret = sxy; models::apply_orientation(ret[1], ret[0]); models::apply_orientation_yz(ret[2], ret[1]); } #endif EX vector> extra_projections; EX void apply_other_model(shiftpoint H_orig, hyperpoint& ret, eModel md) { hyperpoint H = H_orig.h; if(models::product_model(md)) { ld zlev = zlevel(H_orig.h); H_orig.h /= exp(zlev); hybrid::in_underlying_geometry([&] { applymodel(H_orig, ret); }); ret[2] = zlev * pconf.product_z_scale; ret = NLP * ret; return; } switch(md) { case mdPerspective: { if(gproduct) H = product::inverse_exp(H); apply_nil_rotation(H); H = lp_apply(H); apply_perspective(H, ret); return; } case mdGeodesic: { auto S = lp_apply(inverse_exp(H_orig, pNORMAL | pfNO_DISTANCE)); apply_perspective(S, ret); return; } case mdLiePerspective: { if(false) { hyperpoint h = point31(0, 0, 1); hyperpoint a = point31(0, 0, 0); hyperpoint b = point31(0.1, 0, 0); println(hlog, rgpushxto0(h) * a); println(hlog, rgpushxto0(h) * b); exit(1); /* x wanes as z grows! */ } hyperpoint S = lie_log_correct(H_orig, H); S[3] = 1; S = lp_apply(S); if(hyperbolic) { models::apply_orientation(ret[1], ret[0]); models::apply_orientation_yz(ret[2], ret[1]); } apply_perspective(S, ret); return; } case mdRelPerspective: { auto S = rel_log(H_orig, true); S[3] = 1; S = lp_apply(S); apply_perspective(S, ret); return; } case mdPixel: ret = H / current_display->radius; return; case mdBall: { if(vrhr::rendering()) { vr_disk(ret, H); return; } ld zlev = find_zlev(H); ld zl = vid.depth-geom3::factor_to_lev(zlev) * pconf.depth_scaling; ballmodel(ret, atan2(H), hdist0(H), zl); break; } case mdDisk: { if(nonisotropic) { ret = lp_apply(inverse_exp(H_orig, pNORMAL | pfNO_DISTANCE)); ld w; if(sn::in()) { // w = 1 / sqrt(1 - sqhypot_d(3, ret)); // w = w / (pconf.alpha + w); w = 1 / (sqrt(1 - sqhypot_d(3, ret)) * pconf.alpha + 1); } else { w = hypot_d(3, ret); w = sinh(w) / ((pconf.alpha + cosh(w)) * w); } for(int i=0; i<3; i++) ret[i] *= w; ret[3] = 1; break; } if(vrhr::rendering() && WDIM == 2) { vr_disk(ret, H); return; } ld tz = get_tz(H); if(!pconf.camera_angle) { ret[0] = H[0] / tz; ret[1] = H[1] / tz; if(GDIM == 3) ret[2] = H[2] / tz; else ret[2] = vid.xres * current_display->eyewidth() / 2 / current_display->radius - vid.ipd / tz / 2; if(MAXMDIM == 4) ret[3] = 1; } else { ld tx = H[0]; ld ty = H[1]; ld cam = pconf.camera_angle * degree; GLfloat cc = cos(cam); GLfloat ss = sin(cam); ld ux = tx, uy = ty * cc - ss * tz, uz = tz * cc + ss * ty; ret[0] = ux / uz; ret[1] = uy / uz; ret[2] = vid.xres * current_display->eyewidth() / 2 / current_display->radius - vid.ipd / uz / 2; } return; } case mdCentralInversion: { ld tz = get_tz(H); for(int d=0; d 1e-9) height += H[1] * (pow(zlev, models::ocos) - 1); if(abs(models::ocos) > 1e-9 && models::osin) height += H[0] * models::osin * (pow(zlev, models::ocos) - 1) / models::ocos; else if(models::osin) height += H[0] * models::osin * log(zlev); } ret[1] = models::ocos + H[1]; ret[2] = GDIM == 3 ? H[2] : 0; if(MAXMDIM == 4) ret[3] = 1; if(zlev != 1 && use_z_coordinate()) apply_depth(ret, height); else ret[1] += height * pconf.depth_scaling; break; } case mdAxial: { models::apply_orientation_yz(H[1], H[2]); models::apply_orientation(H[0], H[1]); ld& mt = pconf.model_transition; ld z = H[LDIM]; if(mt != 1) z += (1-mt) * pconf.alpha; ret[0] = H[0] / z; ret[1] = H[1] / z; if(GDIM == 3) ret[2] = H[2] / z; else ret[2] = 0; ret[3] = 1; if(mt) for(int i=0; i 0 ? 1 : -1; ret = H; ret /= ret[2]; ret[2] = sqrt(1 + ret[0]*ret[0] + ret[1]*ret[1]) * s; ret *= z; ld& topz = pconf.top_z; if(abs(ret[2]) > topz || (hemi_side && s != hemi_side)) { ld scale = sqrt(topz*topz-1) / hypot_d(2, ret); ret *= scale; ret[2] = topz * s; } if(pconf.depth_scaling != 1) { ld v = intval(H, Hypc); ret *= pow(v, (dir * pconf.depth_scaling-1) / 2); } ret /= 3; break; } } if(vrhr::rendering()) return; swap(ret[1], ret[2]); models::apply_ball(ret[2], ret[1]); break; } case mdHyperboloidFlat: case mdHyperboloid: { if(nonisotropic) { // if(nisot::local_perspective_used()) H = NLP * H; ret = lp_apply(H); break; } if(gproduct) { ret = H; break; } #if CAP_VR if(vrhr::rendering()) { if(sphere) { vr_sphere(ret, H, md); return; } ret[0] = H[0] * pconf.hyperboloid_scaling; ret[1] = H[1] * pconf.hyperboloid_scaling; ret[2] = (pconf.alpha + H[2]); if(pconf.depth_scaling != 1) { ld v = intval(H, Hypc); ret *= pow(v, (pconf.depth_scaling-1) / 2); } return; } #endif ret = H; if(sphere && pmodel == mdHyperboloidFlat) { int s = H[2] > 0 ? 1 : -1; ret /= ret[2]; ret[2] = sqrt(1 + ret[0]*ret[0] + ret[1]*ret[1]) * s; } if(pconf.depth_scaling != 1) { ld v = intval(ret, Hypc); ret *= pow(v, (pconf.depth_scaling-1) / 2); } if(pmodel == mdHyperboloid) { ld& topz = pconf.top_z; if(ret[2] > topz) { ld scale = sqrt(topz*topz-1) / hypot_d(2, ret); ret *= scale; ret[2] = topz; } } else { ret = space_to_perspective(ret, pconf.alpha); ret[2] = 1 - pconf.alpha; if(sphere) ret[2] = -ret[2]; } ret[0] = ret[0] / 3; tie(ret[1], ret[2]) = make_pair(((sphere?0:1) - ret[2]) / 3, ret[1] / 3); models::apply_ball(ret[2], ret[1]); break; } case mdFisheye: { ld zlev; if(nonisotropic) { H = lp_apply(inverse_exp(H_orig)); zlev = 1; } else { zlev = find_zlev(H); H = space_to_perspective(H); } H /= pconf.fisheye_param; H[LDIM] = zlev; ret = H / sqrt(1 + sqhypot_d(GDIM+1, H)); if(GDIM == 3) ret[LDIM] = zlev; break; } case mdSimulatedPerspective: { models::apply_orientation_yz(H[1], H[2]); models::apply_orientation(H[0], H[1]); auto yz = move_z_to_y(H); hyperpoint Hl = xpush(-pconf.twopoint_param) * H; hyperpoint Hr = xpush(+pconf.twopoint_param) * H; ld lyx = (Hl[1] + 1e-7) / (Hl[0] + 1e-8); ld ryx = (Hr[1] + 1e-7) / (Hr[0] + 1e-8); // (r.x + t) * lyx = (r.x - t) * ryx = r.y // r.x * lyx + t * lyx = r.x * ryx - t * ryx // r.x * (lyx-ryx) = - t * (ryx + lyx) // r.x = -t * (ryx+lyx) / (lyx-ryx) // r.x = - 2 * t * lyx * ryx / lyx / ryx ret[0] = -pconf.twopoint_param * (ryx + lyx) / (lyx - ryx); ret[1] = (ret[0] + pconf.twopoint_param) * lyx; ret[2] = 0; ret[0] = -ret[0]; ret[1] = -ret[1]; move_y_to_z(ret, yz); models::apply_orientation(ret[1], ret[0]); models::apply_orientation_yz(ret[2], ret[1]); break; } case mdTwoHybrid: { models::apply_orientation_yz(H[1], H[2]); models::apply_orientation(H[0], H[1]); auto yz = move_z_to_y(H); ret = compute_hybrid(H, whateveri[0]); move_y_to_z(ret, yz); models::apply_orientation(ret[1], ret[0]); models::apply_orientation_yz(ret[2], ret[1]); break; } case mdJoukowsky: case mdJoukowskyInverted: { models::apply_orientation_yz(H[1], H[2]); models::apply_orientation(H[0], H[1]); // with equal speed skiprope: models::apply_orientation(H[1], H[0]); if(pconf.skiprope) { static ld last_skiprope = 0; static transmatrix lastmatrix; if(pconf.skiprope != last_skiprope) { ret = mobius(C0, -pconf.skiprope, 2); const cld c1(1, 0); const cld c2(2, 0); const cld c4(4, 0); cld w(ret[0], ret[1]); cld z = sqrt(c4*w*w-c1) + c2*w; if(abs(z) > 1) z = c1 / z; hyperpoint zr = hpxyz(real(z), imag(z), 0); hyperpoint inhyp = perspective_to_space(zr, 1, gcHyperbolic); last_skiprope = pconf.skiprope; lastmatrix = rgpushxto0(inhyp); } H = lastmatrix * H; } H = space_to_perspective(H); auto yz = move_z_to_y(H); ld r = hypot_d(2, H); ld c = H[0] / r; ld s = H[1] / r; ld& mt = pconf.model_transition; ld a = 1 - .5 * mt, b = .5 * mt; swap(a, b); ret[0] = (a * r + b/r) * c / 2; ret[1] = (a * r - b/r) * s / 2; ret[2] = 0; if(pconf.skiprope) ret = mobius(ret, pconf.skiprope, 2); if(pmodel == mdJoukowskyInverted) { ld r2 = sqhypot_d(2, ret); if(pconf.dualfocus_autoscale) ret *= (1-pconf.model_transition) / 2; ret[0] = ret[0] / r2; ret[1] = -ret[1] / r2; move_y_to_z(ret, yz); models::apply_orientation(ret[1], ret[0]); /* ret[0] += 1; ld alpha = atan2(ret[1], ret[0]); ld mod = hypot(ret[0], ret[1]); // ret[0] = cos(alpha/2) * sqrt(mod); // ret[1] = sin(alpha/2) * sqrt(mod); ret[0] = alpha; ret[1] = log(mod); */ } else { move_y_to_z(ret, yz); models::apply_orientation(ret[0], ret[1]); } models::apply_orientation_yz(ret[2], ret[1]); break; } case mdPolygonal: case mdPolynomial: { H = space_to_perspective(H); models::apply_orientation(H[0], H[1]); pair p = polygonal::compute(H[0], H[1]); models::apply_orientation(p.second, p.first); ret[0] = p.first; ret[1] = p.second; ret[2] = 0; break; } case mdBand: if(pconf.model_transition != 1) { H = unshift(H_orig); ld& mt = pconf.model_transition; H = space_to_perspective(H); models::apply_orientation(H[0], H[1]); H[0] += 1; double rad = H[0]*H[0] + H[1]*H[1]; H[1] /= rad; H[0] /= rad; H[0] -= .5; ld phi = atan2(H); ld r = hypot_d(2, H); r = pow(r, 1 - mt); phi *= (1 - mt); ret[0] = r * cos(phi); ret[1] = r * sin(phi); ret[2] = 0; ret[0] -= pow(0.5, 1-mt); ret[0] /= -(1-mt) * 90._deg; ret[1] /= (1-mt) * 90._deg; models::apply_orientation(ret[1], ret[0]); } else makeband(H_orig, ret, band_conformal); break; case mdMiller: makeband(H_orig, ret, [] (ld& x, ld& y) { y *= pconf.miller_parameter; band_conformal(x, y); y /= pconf.miller_parameter; }); break; case mdLoximuthal: makeband(H_orig, ret, [] (ld&x, ld &y) { ld orig_y = y; band_conformal(x, y); ld x0 = 0, y0 = pconf.loximuthal_parameter; band_conformal(x0, y0); y -= y0; orig_y -= pconf.loximuthal_parameter; if(y) x = x * orig_y / y; y = orig_y; }); break; case mdTwoPoint: makeband(H_orig, ret, make_twopoint); break; case mdThreePoint: #if MAXMDIM >= 4 threepoint_projection(H, ret); #else throw hr_exception(); #endif break; case mdMollweide: makeband(H_orig, ret, [] (ld& x, ld& y) { ld theta = hyperbolic ? min(y / 2 + 0.572365, y * 0.78509) : euclid ? y : y > 0 ? max(y * 0.012/0.015, 90._deg - (90._deg-y) * 0.066262/0.015708) : min(y * 0.012/0.015, -90._deg + (90._deg+y) * 0.066262/0.015708); if(sphere && abs(theta) >= 90._deg - 1e-6) ; else { for(int it=0; it<4; it++) { auto a = (sin_auto(2*theta) +2*theta - M_PI * sin_auto(y)); auto b = (2 + 2 * cos_auto(2*theta)); theta = theta - a / b; } } y = 90._deg * sin_auto(theta); x = x * cos_auto(theta); }); break; case mdCentralCyl: makeband(H_orig, ret, [] (ld& x, ld& y) { y = tan_auto(y); ld top = vid.yres * M_PI / current_display->radius; if(y>top) y=top; if(y<-top) y=-top; }); break; case mdGallStereographic: makeband(H_orig, ret, [] (ld& x, ld& y) { y = 2 * sin_auto(y) / (1 + cos_auto(y)); ld top = vid.yres * M_PI / current_display->radius; if(y>top) y=top; if(y<-top) y=-top; }); break; case mdAitoff: case mdHammer: case mdWinkelTripel: makeband(H_orig, ret, [&] (ld& x, ld& y) { ld ox = x, oy = y; x *= pconf.aitoff_parameter; ld x0 = sin_auto(x) * cos_auto(y); ld y0 = cos_auto(x) * cos_auto(y); ld z0 = sin_auto(y); ld d = acos_auto(y0); ld d0 = hypot(x0, z0); if(md == mdAitoff || md == mdWinkelTripel) ; else if(sphere) d = sqrt(2*(1 - cos(d))) * 90._deg; else d = sqrt(2*(cosh(d) - 1)) / 1.5; x = x0 * d / d0 / pconf.aitoff_parameter, y = z0 * d / d0; if(md == mdWinkelTripel) x = lerp(x, ox, pconf.winkel_parameter), y = lerp(y, oy, pconf.winkel_parameter); }); break; case mdWerner: { models::apply_orientation_yz(H[1], H[2]); models::apply_orientation(H[0], H[1]); find_zlev(H); // ignored for now ld r = hdist0(H); if(r == 0) { ret = H; return; } ld angle = atan2(H[0], H[1]); angle *= sin_auto(r) / r; ret[0] = sin(angle) * r; ret[1] = cos(angle) * r; ret[2] = 0; ret[3] = 1; models::apply_orientation(ret[1], ret[0]); models::apply_orientation_yz(ret[2], ret[1]); break; } case mdCollignon: find_zlev(H_orig.h); makeband(H_orig, ret, [] (ld& x, ld& y) { ld sgn = 1; if(pconf.collignon_reflected && y > 0) y = -y, sgn = -1; y = signed_sqrt(sin_auto(y) + pconf.collignon_parameter); x *= y / 1.2; y -= signed_sqrt(pconf.collignon_parameter); y *= sgn; y *= M_PI; }); break; case mdBandEquiarea: makeband(H_orig, ret, [] (ld& x, ld& y) { y = sin_auto(y); }); break; case mdBandEquidistant: makeband(H_orig, ret, [] (ld& x, ld& y) { }); break; case mdSinusoidal: makeband(H_orig, ret, [] (ld& x, ld& y) { x *= cos_auto(y); }); break; case mdEquidistant: case mdEquiarea: case mdEquivolume: { if(vrhr::rendering() && GDIM == 3 && pmodel == mdEquidistant) { ret = inverse_exp(H_orig); ret[3] = 1; return; } if(nonisotropic || gproduct) { ret = lp_apply(inverse_exp(H_orig)); ret[3] = 1; break; } ld zlev = find_zlev(H); ld rad = hypot_d(GDIM, H); if(rad == 0) rad = 1; ld d = hdist0(H); ld df, zf; hypot_zlev(zlev, d, df, zf); if(md == mdEquivolume) d = pow(volume_auto(d), 1/3.) * pow(90._deg, 1/3.); else if(md == mdEquiarea && sphere) { d = sqrt(2*(1 - cos(d))) * 90._deg; } else if(pmodel == mdEquiarea && hyperbolic) d = sqrt(2*(cosh(d) - 1)) / 1.5; ld factor = d * df / rad; if(!vrhr::rendering()) factor /= M_PI; ret = H * factor; if(GDIM == 2) ret[2] = 0; if(MAXMDIM == 4) ret[3] = 1; if(zlev != 1 && use_z_coordinate()) apply_depth(ret, d * zf / M_PI); break; } case mdRotatedHyperboles: { // ld zlev = <- not implemented find_zlev(H); // + vid.depth; models::apply_orientation(H[0], H[1]); ld y = asin_auto(H[1]); ld x = asin_auto_clamp(H[0] / cos_auto(y)); // ld z = zlev == 1 ? 0 : geom3::factor_to_lev(zlev); ld factor = geom3::lev_to_factor(y + vid.depth); ret[0] = sinh(x) * factor; ret[1] = cosh(x) * factor; ret[2] = 0; if(pconf.use_atan) { ret[0] = atan(ret[0]); ret[1] = atan(ret[1]); } break; } case mdFormula: { dynamicval m(pmodel, pconf.basic_model); applymodel(H_orig, ret); exp_parser ep; ep.extra_params["z"] = cld(ret[0], ret[1]); ep.extra_params["cx"] = ret[0]; ep.extra_params["cy"] = ret[1]; ep.extra_params["cz"] = ret[2]; ep.extra_params["ux"] = H[0]; ep.extra_params["uy"] = H[1]; ep.extra_params["uz"] = H[2]; ep.s = pconf.formula; cld res; try { res = ep.parse(); } catch(hr_parse_exception&) { res = 0; } ret[0] = real(res); ret[1] = imag(res); ret[2] = 0; break; } case mdSpiral: { cld z; if(hyperbolic || sphere) makeband(H_orig, ret, band_conformal); else ret = H; z = cld(ret[0], ret[1]) * models::spiral_multiplier; if(pconf.spiral_cone < 360) { ld alpha = imag(z) * 360 / pconf.spiral_cone; ld r = real(z); r = exp(r); ret[0] = -sin(alpha) * r; ret[1] = cos(alpha) * r; if(euclid) ret = models::euclidean_spin * ret; ret[2] = (r-1) * sqrt( pow(360/pconf.spiral_cone, 2) - 1); models::apply_ball(ret[2], ret[1]); } else { z = exp(z); ret[0] = real(z); ret[1] = imag(z); if(euclid) ret = models::euclidean_spin * ret; if(pconf.skiprope) ret = mobius(ret, pconf.skiprope, 1); } break; } case mdRetroCraig: { makeband(H_orig, ret, [] (ld& x, ld& y) { if(x) y = x / sin_auto(x) * (sin_auto(y) * cos_auto(x) - tan_auto(pconf.loximuthal_parameter) * cos_auto(y)); else y = sin_auto(y) - tan_auto(pconf.loximuthal_parameter) * cos_auto(y); }); break; } case mdRetroLittrow: { makeband(H_orig, ret, [] (ld& x, ld& y) { tie(x, y) = make_pair( sin_auto(x) / cos_auto(y), cos_auto(x) * tan_auto(y) ); }); break; } case mdRetroHammer: { ld d = hdist(H, ypush0(pconf.loximuthal_parameter)); makeband(H_orig, ret, [d,H] (ld& x, ld& y) { if(x == 0 && y == 0) return; if(x) y = x / sin_auto(x) * (sin_auto(y) * cos_auto(x) - tan_auto(pconf.loximuthal_parameter) * cos_auto(y)); else y = sin_auto(y) - tan_auto(pconf.loximuthal_parameter) * cos_auto(y); ld scale = d / hypot(x, y); if(H[2] < 0) scale = -scale; x *= scale; y *= scale; }); break; } case mdPanini: { find_zlev(H); models::apply_orientation_yz(H[1], H[2]); models::apply_orientation(H[0], H[1]); ld proh = sqrt(H[2]*H[2] + curvature() * H[0] * H[0]); H /= proh; H /= (H[2] + pconf.alpha); ret = H; ret[2] = 0; ret[3] = 1; models::apply_orientation(ret[1], ret[0]); models::apply_orientation_yz(ret[2], ret[1]); break; } case mdPoorMan: { find_zlev(H); H = space_to_perspective(H); models::apply_orientation_yz(H[1], H[2]); models::apply_orientation(H[0], H[1]); ld u = H[0], v = H[1]; if(abs(u) > 1e-3 && abs(v) > 1e-3) { ld r2 = u*u+v*v; ld scale = sqrt((-r2+sqrt(r2*(r2+4*u*u*v*v*(r2-2))))/(2*(r2-2))) / u / v; if(u*v<0) scale = -scale; H = scale * H; } ret = H; ret[2] = 0; ret[3] = 1; models::apply_orientation(ret[1], ret[0]); models::apply_orientation_yz(ret[2], ret[1]); break; } case mdGUARD: case mdManual: break; default: if(md < isize(extra_projections) && extra_projections[md]) extra_projections[md](H_orig, H, ret); break; } ghcheck(ret,H_orig); } // game-related graphics EX transmatrix sphereflip; // on the sphere, flip EX bool playerfound; // has player been found in the last drawing? EX bool outofmap(hyperpoint h) { if(GDIM == 3) return false; else if(euclid) return h[2] < .5; // false; // h[0] * h[0] + h[1] * h[1] > 15 * cgi.crossf; else if(sphere) return h[2] < .1 && h[2] > -.1 && h[1] > -.1 && h[1] < .1 && h[0] > -.1 && h[0] < .1; else return h[2] < .5; } EX hyperpoint mirrorif(const hyperpoint& V, bool b) { if(b) return Mirror*V; else return V; } EX shiftmatrix mirrorif(const shiftmatrix& V, bool b) { if(b) return V*Mirror; else return V; } // -1 if away, 0 if not away EX int away(const transmatrix& V2) { return (intval(C0, V2 * xpush0(.1)) > intval(C0, tC0(V2))) ? -1 : 0; } /* double zgrad(double f1, double f2, int nom, int den) { using namespace geom3; ld fo1 = factor_to_lev(f1); ld fo2 = factor_to_lev(f2); return lev_to_factor(fo1 + (fo2-fo1) * nom / den); } */ EX double zgrad0(double l1, double l2, int nom, int den) { using namespace geom3; return lev_to_factor(l1 + (l2-l1) * nom / den); } EX bool behindsphere(const hyperpoint& h) { if(!sphere) return false; if(mdBandAny()) return false; if(pconf.alpha > 1) { if(h[LDIM] > -1/pconf.alpha) return true; } if(pconf.alpha <= 1) { if(h[LDIM] < .2-pconf.alpha) return true; } return false; } ld to01(ld a0, ld a1, ld x) { if(x < a0) return 0; if(x > a1) return 1; return (x-a0) / (a1-a0); } EX ld spherity(const hyperpoint& h) { if(!sphere) return 1; if(pconf.alpha > 1) { return to01(1/pconf.alpha, 1, abs(h[2])); } if(pconf.alpha <= 1) { return to01(-1.5, 1, h[2]); } return 1; } EX bool behindsphere(const transmatrix& V) { return behindsphere(tC0(V)); } EX bool behindsphere(const shiftmatrix& V) { return behindsphere(tC0(V.T)); } EX ld spherity(const transmatrix& V) { return spherity(tC0(V)); } EX bool confusingGeometry() { #if MAXMDIM >= 4 if(reg3::ultra_mirror_in()) return true; #endif return quotient || elliptic || (fake::in() && fake::multiple); } EX ld master_to_c7_angle() { if(dont_inverse()) return 0; if(mhybrid) return hybrid::in_underlying_geometry(master_to_c7_angle); if(WDIM == 3) return 0; ld alpha = 0; #if CAP_GP if(cgi.gpdata) alpha = cgi.gpdata->alpha; #endif return (!BITRUNCATED && !bt::in() && !arcm::in()) ? M_PI + alpha : 0; } EX transmatrix actualV(const heptspin& hs, const transmatrix& V) { if(gproduct) return PIU(actualV(hs, V)); if(WDIM == 3) return V; #if CAP_IRR if(IRREGULAR) return V * spin(M_PI + TAU / S7 * (hs.spin + irr::periodmap[hs.at].base.spin)); #endif #if CAP_ARCM if(arcm::in()) return V * spin(-arcm::current.triangles[arcm::id_of(hs.at)][hs.spin].first); #endif #if CAP_BT if(bt::in()) return V; #endif if(kite::in()) return V; return (hs.spin || !BITRUNCATED) ? V * spin(hs.spin*TAU/hs.at->type + master_to_c7_angle()) : V; } EX shiftmatrix actualV(const heptspin& hs, const shiftmatrix& V) { return shiftless(actualV(hs, V.T), V.shift); } EX bool point_behind(const shiftpoint h) { if(sphere) return false; if(!in_perspective()) return false; hyperpoint h1; if(pmodel == mdGeodesic) h1 = inverse_exp(h, pQUICK); if(pmodel == mdPerspective && gproduct) h1 = product::inverse_exp(h.h); h1 = lp_apply(h1); return h1[2] < 1e-8; } void raise_error() { println(hlog, "something wrong"); } EX bool invalid_matrix(const transmatrix T) { for(int i=0; i 1e8 || T[i][j] < -1e8 || std::isinf(T[i][j])) return true; if(gproduct || (cgflags & qAFFINE)) { for(int i=0; i 1e-60) return false; } else for(int i=0; i .5 || T[i][j] < -.5) return false; return true; } EX bool invalid_point(const hyperpoint h) { return std::isnan(h[LDIM]) || h[LDIM] > 1e8 || std::isinf(h[LDIM]); } EX bool invalid_point(const shiftpoint h) { return invalid_point(h.h); } EX bool in_smart_range(const shiftmatrix& T) { shiftpoint h = tC0(T); if(invalid_point(h)) return false; if(nil || nih) return true; #if CAP_SOLV if(pmodel == mdGeodesic) return nisot::in_table_range(h.h); #endif hyperpoint h1; applymodel(h, h1); if(invalid_point(h1)) return false; ld x = current_display->xcenter + current_display->radius * h1[0]; ld y = current_display->ycenter + current_display->radius * h1[1] * pconf.stretch; bool culling = !geom3::euc_in_hyp(); bool inp = in_perspective(); if(culling) { if(x > current_display->xtop + current_display->xsize * 2) return false; if(x < current_display->xtop - current_display->xsize * 1) return false; if(y > current_display->ytop + current_display->ysize * 2) return false; if(y < current_display->ytop - current_display->ysize * 1) return false; if(GDIM == 3 && !inp) { if(-h1[2] < pconf.clip_min * 2 - pconf.clip_max) return false; if(-h1[2] > pconf.clip_max * 2 - pconf.clip_min) return false; } } ld epsilon = 0.01; transmatrix ar; ld dx = 0, dy = 0, dz = 0, dh[MAXMDIM]; for(int i=0; iradius * abs(h2[0] - h1[0]) / epsilon; ld y1 = current_display->radius * abs(h2[1] - h1[1]) * pconf.stretch / epsilon; for(int j=0; jradius * (h2[j]-h1[j]) / epsilon; dx = max(dx, x1); dy = max(dy, y1); if(GDIM == 3) dz = max(dz, abs(h2[2] - h1[2])); dh[i] = hypot(x1, y1); } if(GDIM == 2 && vid.smart_area_based) { ld area = det2(ar); ld scale = sqrt(area) * cgi.scalefactor * hcrossf7; if(scale <= vid.smart_range_detail) return false; } else if(GDIM == 3) { if(!inp && (-h1[2] + 2 * dz < pconf.clip_min || -h1[2] - 2 * dz > pconf.clip_max)) return false; sort(dh, dh+3); ld scale = sqrt(dh[1] * dh[2]) * cgi.scalefactor * hcrossf7; if(scale <= (WDIM == 2 ? vid.smart_range_detail : vid.smart_range_detail_3)) return false; } else { ld scale = sqrt(dh[0] * dh[1]) * cgi.scalefactor * hcrossf7; if(scale <= vid.smart_range_detail) return false; } if(!culling) return true; return x - 2 * dx < current_display->xtop + current_display->xsize && x + 2 * dx > current_display->xtop && y - 2 * dy < current_display->ytop + current_display->ysize && y + 2 * dy > current_display->ytop; } #if CAP_GP namespace gp { /* void drawrec(cell *c, const transmatrix& V) { if(dodrawcell(c)) drawcell(c, V, 0, false); for(int i=0; itype; i++) { cell *c2 = c->move(i); if(!c2) continue; if(c2->move(0) != c) continue; if(c2 == c2->master->c7) continue; transmatrix V1 = V * ddspin(c, i) * xpush(cgi.crossf) * iddspin(c2, 0) * spin(M_PI); drawrec(c2, V1); } } */ bool drawrec(cell *c, const shiftmatrix& V, gp::loc at, int dir, int maindir, local_info li) { bool res = false; shiftmatrix V1 = V * cgi.gpdata->Tf[li.last_dir][at.first&GOLDBERG_MASK][at.second&GOLDBERG_MASK][fixg6(dir)]; if(do_draw(c, V1)) { /* auto li = get_local_info(c); if((dir - li.total_dir) % S6) printf("totaldir %d/%d\n", dir, li.total_dir); if(at != li.relative) printf("at %s/%s\n", disp(at), disp(li.relative)); if(maindir != li.last_dir) printf("ld %d/%d\n", maindir, li.last_dir); */ li.relative = at; li.total_dir = fixg6(dir); current_li = li; li_for = c; drawcell(c, V1); res = true; } for(int i=0; itype; i++) { cell *c2 = c->move(i); if(!c2) continue; if(c2->move(0) != c) continue; if(c2 == c2->master->c7) continue; res |= drawrec(c2, V, at + eudir(dir+i), dir + i + SG3, maindir, li); } return res; } bool drawrec(cell *c, const shiftmatrix& V) { local_info li; li.relative = loc(0,0); li.total_dir = 0; li.last_dir = -1; li.first_dir = -1; li_for = c; current_li = li; bool res = false; if(do_draw(c, V)) drawcell(c, V), res = true; for(int i=0; itype; i++) { cell *c2 = c->move(i); if(!c2) continue; if(c2->move(0) != c) continue; if(c2 == c2->master->c7) continue; li.last_dir = i; res |= drawrec(c2, V, gp::loc(1,0), SG3, i, li); } return res; } } #endif vector > drawn_cells; EX bool drawcell_subs(cell *c, const shiftmatrix& V) { #if CAP_GP if(GOLDBERG) { return gp::drawrec(c, V); } #endif bool draw = false; #if CAP_IRR if(IRREGULAR) { auto& hi = irr::periodmap[c->master]; auto& vc = irr::cells_of_heptagon[hi.base.at]; for(int i=0; ic.spin(d) == 0) { shiftmatrix V2 = V * currentmap->adj(c, d); if(do_draw(c1, V2)) draw = true, drawcell(c1, V2); } } return draw; } void hrmap::draw_all() { if(sphere && pmodel == mdSpiral) { if(models::ring_not_spiral) { int qty = ceil(1. / pconf.sphere_spiral_multiplier); if(qty > 100) qty = 100; for(int i=-qty; i < qty; i++) draw_at(centerover, cview(TAU * i)); } else { draw_at(centerover, cview()); if(vid.use_smart_range) for(int i=1;; i++) { int drawn = cells_drawn; draw_at(centerover, cview(TAU * i)); draw_at(centerover, cview(-TAU * i)); if(drawn == cells_drawn) break; } } } else draw_at(centerover, cview()); } void hrmap::draw_at(cell *at, const shiftmatrix& where) { dq::clear_all(); auto& enq = confusingGeometry() ? dq::enqueue_by_matrix_c : dq::enqueue_c; enq(at, where); while(!dq::drawqueue_c.empty()) { auto& p = dq::drawqueue_c.front(); cell *c = p.first; shiftmatrix V = p.second; dq::drawqueue_c.pop(); if(!do_draw(c, V)) continue; drawcell(c, V); if(in_wallopt() && isWall3(c) && isize(dq::drawqueue) > 1000) continue; #if MAXMDIM >= 4 if(reg3::ultra_mirror_in()) for(auto& T: cgi.ultra_mirrors) enq(c, optimized_shift(V * T)); #endif for(int i=0; itype; i++) { // note: need do cmove before c.spin cell *c1 = c->cmove(i); if(c1 == &out_of_bounds) continue; enq(c1, optimized_shift(V * adj(c, i))); } } } void hrmap_standard::draw_at(cell *at, const shiftmatrix& where) { if(S3 > 4) { hrmap::draw_at(at, where); return; } drawn_cells.clear(); drawn_cells.emplace_back(at->master, hsOrigin, where * master_relative(at, true)); for(int i=0; i(2 * drawn_cells.size(), 128)); const auto& dc = drawn_cells[i]; auto& hs = get<0>(dc); auto& s = get<1>(dc); auto& V = get<2>(dc); cell *c = hs.at->c7; const shiftmatrix& V1 = hs.mirrored ? V * Mirror : V; bool draw = drawcell_subs(c, actualV(hs, V1)); if(sphere) draw = true; if(draw) for(int d=0; dmaster->type; d++) { hstate s2 = transition(s, d); if(s2 == hsError) continue; heptspin hs2 = hs + d + wstep; shiftmatrix Vd; if(inforder::mixed()) { int d1 = gmod(hs.spin+d, c->type); Vd = V * spin(-TAU*d/c->type) * xpush(spacedist(c, d1)) * spin180(); } else Vd = V * cgi.heptmove[d]; optimize_shift(Vd); drawn_cells.emplace_back(hs2, s2, Vd); } } } EX bool keep_vertical() { if((WDIM == 2 || gproduct) && GDIM == 3 && vid.fixed_yz) return !CAP_ORIENTATION; if(downseek.qty) return true; return false; } EX hyperpoint vertical_vector() { auto& ds = downseek; if(msphere && !sphere && !gproduct && vid.fixed_yz) { hyperpoint h = get_view_orientation() * C0; if(vid.wall_height > 0) h = -h; return h; } if(meuclid && hyperbolic && vid.fixed_yz) { hyperpoint h = iso_inverse(View) * C0; return View * (orthogonal_move(h, vid.wall_height) - h); } if(gproduct && vid.fixed_yz) { return get_view_orientation() * lztangent(embedded_plane ? vid.wall_height : 1); } if(embedded_plane && geom3::same_in_same()) return get_view_orientation() * lztangent(vid.wall_height); if(embedded_plane && vid.fixed_yz && nonisotropic) { return NLP * lztangent(vid.wall_height); } else if(ds.qty && gproduct) return get_view_orientation() * product::inverse_exp(ds.point); else if(ds.qty) return ds.point; return C0; } EX bool down_is_forward; EX void spinEdge(ld aspd) { #if CAP_VR if(vrhr::active() && keep_vertical() && !vrhr::first) { transmatrix T = vrhr::hmd_ref_at; T = vrhr::sm * inverse(T); vrhr::be_33(T); transmatrix V = T * get_view_orientation(); hyperpoint h = inverse(V) * C0; if(!gproduct) { V = V * rgpushxto0(h); } int dir = down_is_forward ? 0 : 1; V = cspin90(2, dir) * V; if(1) { dynamicval g(geometry, gSphere); bool b = vid.always3; vid.always3 = false; geom3::apply_always3(); V = gpushxto0(V*C0) * V; fixmatrix(V); if(b) { vid.always3 = b; geom3::apply_always3(); } } vrhr::be_33(V); V = cspin90(dir, 2) * V; V = inverse(T) * V; if(!gproduct) V = V * gpushxto0(h); get_view_orientation() = V; return; } #endif ld downspin = 0; auto& ds = downseek; if(dual::state == 2 && (dual::one_euclidean ? !euclid : dual::currently_loaded != dual::main_side)) { transmatrix our = dual::get_orientation(); transmatrix their = dual::player_orientation[dual::main_side]; fixmatrix(our); fixmatrix(their); if(GDIM == 2) { transmatrix T = their * iso_inverse(our); hyperpoint H = T * xpush0(1); downspin = -atan2(H[1], H[0]); } else rotate_view(their * iso_inverse(our)); } else if(playerfound && vid.fixed_facing) { hyperpoint H = gpushxto0(unshift(playerV) * C0) * unshift(playerV) * xpush0(5); downspin = atan2(H[1], H[0]); downspin += vid.fixed_facing_dir * degree; if(flipplayer) downspin += M_PI; cyclefix(downspin, 0); aspd = (1 + 2 * abs(downspin)) * aspd; } else if(keep_vertical()) { hyperpoint h = vertical_vector(); downspin = -atan2(h[0], h[1]); if(ds.qty && GDIM == 2) { downspin += models::rotation * degree; } if(ds.qty) { cyclefix(downspin, 0); downspin = downspin * min(ds.speed, (double)1); } else aspd = 999999; } if(downspin > aspd) downspin = aspd; if(downspin < -aspd) downspin = -aspd; rotate_view(cspin(0, 1, downspin)); } /** \brief convert a shiftmatrix to the coordinate system of View * usually used to set which_copy */ EX transmatrix back_to_view(const shiftmatrix& V) { // ortho_inverse does not work in 2.5D, iso_inverse does not work in Nil. // just use inverse return inverse(actual_view_transform) * unshift(V); } EX void fix_whichcopy(cell *c) { if(!gmatrix.count(cwt.at)) return; current_display->which_copy = back_to_view(gmatrix[c]); } void fix_whichcopy_if_near() { if(!gmatrix.count(cwt.at)) return; transmatrix T = back_to_view(gmatrix[cwt.at]); if(!eqmatrix(T, current_display->which_copy)) return; current_display->which_copy = T; } EX void adjust_eye(transmatrix& T, cell *c, ld sign) { if(!embedded_plane) return; geom3::do_auto_eye(); int sl = snakelevel(c); if(isWorm(c->monst) && sl < 3) sl++; int i = moved_center() ? 1 : 0; if(sl || vid.eye || i) T = T * lzpush(sign * (cgi.SLEV[sl] - cgi.FLOOR - vid.eye + i)); } /** achieve top-down perspective */ EX transmatrix default_spin() { return cspin90(0, 1) * inverse(logical_to_actual()); } EX void centerpc(ld aspd) { if(subscreens::split([=] () {centerpc(aspd);})) return; if(dual::split([=] () { centerpc(aspd); })) return; #if CAP_CRYSTAL && CAP_RUG if(cryst) crystal::centerrug(aspd); #endif #if CAP_RACING if(racing::on && racing::set_view()) return; #endif #if MAXMDIM >= 4 if(shmup::on && vid.sspeed > -5 && GDIM == 3) { int id = subscreens::in ? subscreens::current_player : 0; auto& pc = shmup::pc[id]; centerover = pc->base; transmatrix T = pc->at; if(nonisotropic) { transmatrix rot = inverse(rgpushxto0(T * C0)) * T; T = T * inverse(rot); adjust_eye(T, pc->base, +1); T = T * rot; } else { adjust_eye(T, pc->base, +1); } View = iview_inverse(T); if(gproduct) NLP = ortho_inverse(pc->ori); if(WDIM == 2) { if(vid.wall_height < 0) rotate_view(cspin180(2, 1)); rotate_view( cspin(2, 1, -90._deg - shmup::playerturny[id]) * default_spin()); } return; } #endif if(ors::mode == 2 && vid.sspeed < 5) return; if(vid.sspeed >= 4.99) aspd = 1000; DEBBI(DF_GRAPH, ("center pc")); auto& W = current_display->which_copy; ors::unrotate(W); ors::unrotate(View); ors::unrotate(cwtV.T); /* what should we center? */ transmatrix T; if(multi::players > 1) T = unshift(cwtV); /* do not even try */ else { T = W; if(shmup::on) T = T * shmup::pc[0]->at; } if(invalid_matrix(T)) return; adjust_eye(T, cwt.at, +1); hyperpoint H = tC0(T); ld R = (zero_d(GDIM, H) && !gproduct) ? 0 : hdist0(H); if(R < 1e-9) { // either already centered or direction unknown /* if(playerfoundL && playerfoundR) { } */ spinEdge(aspd); fixmatrix(View); fix_whichcopy(cwt.at); fixmatrix(current_display->which_copy); } else { aspd *= euclid ? (2+3*R*R) : (1+R+(shmup::on?1:0)); if(R < aspd) fix_whichcopy_if_near(); if(R < aspd) shift_view_to(shiftless(H), shift_method(smaAutocenter)); else shift_view_towards(shiftless(H), aspd, shift_method(smaAutocenter)); fixmatrix(View); fixmatrix(current_display->which_copy); spinEdge(aspd); } if(set_multi && multi::two_focus) { pconf.model_orientation = atan2(multi_point) / degree; auto& d = pconf.twopoint_param; d = hdist0(multi_point); if(among(pmodel, mdJoukowsky, mdJoukowskyInverted)) { pconf.model_orientation += 90; pconf.model_transition = sinh(d) / (1 + cosh(d)); pconf.dualfocus_autoscale = true; } } ors::rerotate(W); ors::rerotate(cwtV.T); ors::rerotate(View); } EX transmatrix oView; EX purehookset hooks_preoptimize, hooks_postoptimize; EX void optimizeview() { if(subscreens::split(optimizeview)) return; if(dual::split(optimizeview)) return; cell *c = centerover; transmatrix iView = view_inverse(View); callhooks(hooks_preoptimize); virtualRebase(centerover, iView); if(c != centerover && (sphere || sl2)) { transmatrix T = currentmap->relative_matrix(centerover, c, C0); T = stretch::itranslate(tC0(T)) * T; stretch::mstretch_matrix = T * stretch::mstretch_matrix; } View = iview_inverse(iView); fixmatrix(View); callhooks(hooks_postoptimize); walking::handle(); if(is_boundary(centerover)) centerover = c, View = oView; else oView = View; #if CAP_ANIMATIONS if(centerover && inmirror(centerover)) { anims::reflect_view(); } #endif } void addball(ld a, ld b, ld c) { hyperpoint h; ballmodel(h, a, b, c); for(int i=0; i<3; i++) h[i] *= current_display->radius; curvepoint(h); } void ballgeometry() { queuereset(mdPixel, PPR::CIRCLE); for(int i=0; i<60; i++) addball(TAU * i / 60, 10, 0); for(double d=10; d>=-10; d-=.2) addball(0, d, 0); for(double d=-10; d<=10; d+=.2) addball(0, d, vid.depth); addball(0, 0, -vid.camera); addball(0, 0, vid.depth); addball(0, 0, -vid.camera); addball(0, -10, 0); addball(0, 0, -vid.camera); queuecurve(shiftless(Id), darkena(0xFF, 0, 0x80), 0, PPR::CIRCLE); queuereset(pmodel, PPR::CIRCLE); } EX void resetview() { DEBBI(DF_GRAPH, ("reset view")); // EUCLIDEAN NLP = Id; stretch::mstretch_matrix = Id; if(cwt.at) { centerover = cwt.at; View = iddspin(cwt.at, cwt.spin); if(!flipplayer) View = spin180() * View; if(cwt.mirrored) View = lmirror() * View; if(centering) { hyperpoint vl = View * get_corner_position(cwt.at, cwt.spin); hyperpoint vr = View * get_corner_position(cwt.at, (cwt.spin+1) % cwt.at->type); hyperpoint vm = (centering == eCentering::edge) ? mid(vl, vr) : vl; transmatrix rm = gpushxto0(vm); View = spintox(rm*vr) * rm * View; } } else if(currentmap) { centerover = currentmap->gamestart(); View = Id; } adjust_eye(View, cwt.at, -1); if(WDIM == 2) View = spin(M_PI + vid.fixed_facing_dir * degree) * View; if(WDIM == 3 && !gproduct) View = cspin90(0, 2) * View; if(gproduct) NLP = cspin90(0, 2); View = inverse(logical_to_actual()) * View; if(embedded_plane) get_view_orientation() = cspin90(1, 2) * get_view_orientation(); if(embedded_plane && vid.wall_height < 0) View = cspin180(0, 1) * View; cwtV = shiftless(View); current_display->which_copy = nonisotropic ? gpushxto0(tC0(view_inverse(View))) : View; // SDL_LockSurface(s); // SDL_UnlockSurface(s); } EX void panning(shiftpoint hf0, shiftpoint ht0) { hyperpoint hf = hf0.h; hyperpoint ht = unshift(ht0, hf0.shift); View = rgpushxto0(hf) * rgpushxto0(gpushxto0(hf) * ht) * gpushxto0(hf) * View; playermoved = false; } EX int cells_drawn, cells_generated; EX void fullcenter() { if(history::saved_ends == 0) history::path_for_lineanimation.clear(); if(playerfound && false) centerpc(INF); else { bfs(); resetview(); drawthemap(); if(!centering) centerpc(INF); centerover = cwt.at; } playermoved = !centering; } transmatrix screenpos(ld x, ld y) { transmatrix V = Id; V[0][2] += (x - current_display->xcenter) / current_display->radius * (1+pconf.alpha); V[1][2] += (y - current_display->ycenter) / current_display->radius * (1+pconf.alpha); return V; } /** In 3D, we use the standard translation matrices to place stuff on the screen. In 2D, this does not work (as HyperRogue reduces matrices to 3x3) so we use the native disk projection */ EX int flat_on; eGeometry backup_geometry; eVariation backup_variation; videopar backup_vid; bool backup_lpu; /** \brief enable the 'flat' model for drawing HUD. See hr::flat_model_enabler */ EX void enable_flat_model(int val) { if(flat_on < 1 && flat_on + val >= 1) { #if CAP_GL glClear(GL_DEPTH_BUFFER_BIT); #endif backup_geometry = geometry; backup_variation = variation; backup_lpu = nisot::local_perspective_used; backup_vid = vid; geometry = gNormal; variation = eVariation::bitruncated; nisot::local_perspective_used = false; pmodel = mdDisk; pconf.alpha = 1; pconf.scale = 1; pconf.camera_angle = 0; pconf.stretch = 1; vid.always3 = false; vid.wall_height = .3; vid.human_wall_ratio = .7; vid.camera = 1; vid.depth = 1; geom3::apply_always3(); check_cgi(); cgi.require_shapes(); calcparam(); } if(flat_on >= 1 && flat_on + val < 1) { geometry = backup_geometry; variation = backup_variation; nisot::local_perspective_used = backup_lpu; vid = backup_vid; geom3::apply_always3(); calcparam(); check_cgi(); } flat_on += val; } #if HDR struct flat_model_enabler { flat_model_enabler() { enable_flat_model(+1); } ~flat_model_enabler() { enable_flat_model(-1); } }; #endif EX transmatrix atscreenpos(ld x, ld y, ld size) { transmatrix V = Id; if(pmodel == mdPixel) { V[0][3] += (x - current_display->xcenter); V[1][3] += (y - current_display->ycenter); V[0][0] = size * 2 * cgi.hcrossf / cgi.crossf; V[1][1] = size * 2 * cgi.hcrossf / cgi.crossf; if(WDIM == 3) V[2][2] = -1; } else if(pmodel == mdHorocyclic) { V[0][3] += (x - current_display->xcenter) * 2 / current_display->radius; V[1][3] += (y - current_display->ycenter) * 2/ current_display->radius; V[0][0] = size * 2 / current_display->radius; V[1][1] = size * 2 / current_display->radius; } else { V[0][2] += (x - current_display->xcenter); V[1][2] += (y - current_display->ycenter); V[0][0] = size * 2 * cgi.hcrossf / cgi.crossf; V[1][1] = size * 2 * cgi.hcrossf / cgi.crossf; V[2][2] = current_display->radius; if(S3 >= OINF) V[0][0] /= 5, V[1][1] /= 5; } return V; } void circle_around_center(ld radius, color_t linecol, color_t fillcol, PPR prio) { #if CAP_QUEUE if(among(pmodel, mdDisk, mdEquiarea, mdEquidistant, mdFisheye) && !(pmodel == mdDisk && hyperbolic && pconf.alpha <= -1) && pconf.camera_angle == 0) { hyperpoint ret; applymodel(shiftless(xpush0(radius)), ret); ld r = hypot_d(2, ret); queuecircle(current_display->xcenter, current_display->ycenter, r * current_display->radius, linecol, prio, fillcol); return; } #endif #if CAP_QUEUE for(int i=0; i<=360; i++) curvepoint(xspinpush0(i * degree, 10)); auto& c = queuecurve(shiftless(Id), linecol, fillcol, prio); if(pmodel == mdDisk && hyperbolic && pconf.alpha <= -1) c.flags |= POLY_FORCE_INVERTED; if(pmodel == mdJoukowsky) c.flags |= POLY_FORCE_INVERTED; c.flags |= POLY_ALWAYS_IN; #endif } EX color_t periodcolor = 0x00FF0080; EX color_t ringcolor = 0xFFFF; EX color_t modelcolor = 0; #if CAP_QUEUE EX void draw_model_elements() { #if CAP_VR if(vrhr::active() && models::is_hyperboloid(pmodel)) return; #endif dynamicval lw(vid.linewidth, vid.linewidth * vid.multiplier_ring); switch(pmodel) { case mdRelOrthogonal: case mdRelPerspective: { constexpr ld cc = 3; if(sl2) for(ld dist: {-0.1, 0.1}) { transmatrix Lorentz = Id; Lorentz[0][0] = Lorentz[2][2] = cosh(cc); Lorentz[0][2] = Lorentz[2][0] = sinh(cc); hyperpoint h = Lorentz * cspin(3, 2, dist) * C0; for(int s=0; s<=360; s++) curvepoint(spin(s*degree) * h); queuecurve(shiftless(Id), ringcolor, 0, PPR::CIRCLE); } if(hyperbolic) for(ld dist: {-0.1, 0.1}) { transmatrix Lorentz = Id; Lorentz[0][0] = Lorentz[3][3] = cosh(cc); Lorentz[0][3] = Lorentz[3][0] = sinh(cc); hyperpoint h = Lorentz * hyperpoint(0, 0, cosh(dist), sinh(dist)); for(int s=0; s<=360; s++) curvepoint(spin(s*degree) * h); queuecurve(shiftless(Id), ringcolor, 0, PPR::CIRCLE); } return; } case mdRotatedHyperboles: { queuestr(current_display->xcenter, current_display->ycenter + current_display->radius * pconf.alpha, 0, vid.fsize, "X", ringcolor, 1, 8); return; } case mdTwoHybrid: { queuereset(mdPixel, PPR::CIRCLE); for(int mode=0; mode<4; mode++) { for(int s=-200; s<=200; s ++) { ld p = tanh(s / 40.); ld a = pconf.twopoint_param * (1+p); ld b = pconf.twopoint_param * (1-p); ld h = ((mode & 2) ? -1 : 1) * sqrt(asin_auto(tan_auto(a) * tan_auto(b))); hyperpoint H = xpush(p * pconf.twopoint_param) * ypush0(h); hyperpoint res = compute_hybrid(H, 2 | mode); models::apply_orientation(res[0], res[1]); models::apply_orientation_yz(res[2], res[1]); curvepoint(res * current_display->radius); } queuecurve(shiftless(Id), ringcolor, 0, PPR::CIRCLE); } queuereset(pmodel, PPR::CIRCLE); goto fallthrough; } case mdTwoPoint: case mdSimulatedPerspective: fallthrough: { if(set_multi) return; /* no need */ ld a = -pconf.model_orientation * degree; queuestr(shiftless(xspinpush0(a, +pconf.twopoint_param)), vid.xres / 100, "X", ringcolor >> 8); queuestr(shiftless(xspinpush0(a, -pconf.twopoint_param)), vid.xres / 100, "X", ringcolor >> 8); return; } case mdThreePoint: { vid.linewidth *= 5; for(int i=0; i<=3; i++) { hyperpoint h = xspinpush0(120._deg*i, pconf.twopoint_param); models::apply_orientation(h[1], h[0]); models::apply_orientation_yz(h[2], h[1]); curvepoint(h); } queuecurve(shiftless(Id), ringcolor, 0, PPR::SUPERLINE); vid.linewidth /= 5; return; } case mdBall: { queuecircle(current_display->xcenter, current_display->ycenter, current_display->radius, ringcolor, PPR::OUTCIRCLE, modelcolor); ballgeometry(); return; } case mdHyperboloid: case mdHemisphere: { if(!pconf.show_hyperboloid_flat) return; if(models::is_hyperboloid(pmodel)) { #if CAP_QUEUE curvepoint(point3(0,0,1)); curvepoint(point3(0,0,-pconf.alpha)); queuecurve(shiftless(Id), ringcolor, 0, PPR::CIRCLE); ld& tz = pconf.top_z; ld z = acosh(tz); hyperpoint a = xpush0(z); ld cb = models::cos_ball; ld sb = models::sin_ball; a[1] = sb * a[2] / -cb; a[0] = sqrt(-1 + a[2] * a[2] - a[1] * a[1]); curvepoint(point3(0,0,-pconf.alpha)); curvepoint(a); curvepoint(point3(0,0,0)); a[0] = -a[0]; curvepoint(a); curvepoint(point3(0,0,-pconf.alpha)); queuecurve(shiftless(Id), ringcolor, 0, PPR::CIRCLE); curvepoint(point3(-1,0,0)); curvepoint(point3(1,0,0)); queuecurve(shiftless(Id), ringcolor, 0, PPR::CIRCLE); a[1] = sb * tz / -cb; a[0] = sqrt(tz * tz - a[1] * a[1]); a[2] = tz - pconf.alpha; curvepoint(a); curvepoint(point3(0,0,-pconf.alpha)); a[0] = -a[0]; curvepoint(a); queuecurve(shiftless(Id), ringcolor, 0, PPR::CIRCLE); #endif } return; } default: break; } } void queuestraight(hyperpoint X, int style, color_t lc, color_t fc, PPR p) { hyperpoint H0, H1; applymodel(shiftless(X), H0); H0 *= current_display->radius; ld mul0 = hypot(vid.xres, vid.yres) / hypot_d(2, H0); if(style == 1) { H1 = H0 * -mul0; } else { applymodel(shiftless(pispin * X), H1); H1 *= current_display->radius; } ld mul1 = hypot(vid.xres, vid.yres) / hypot_d(2, H1); queuereset(mdPixel, p); curvepoint(H0 + spin90() * H0 * mul0); curvepoint(H0 - spin90() * H0 * mul0); curvepoint(H1 + spin90() * H1 * mul1); curvepoint(H1 - spin90() * H1 * mul1); curvepoint(H0 + spin90() * H0 * mul0); queuecurve(shiftless(Id), lc, fc, p).flags |= POLY_ALWAYS_IN | POLY_FORCEWIDE; queuereset(pmodel, p); /* for(int i=0; i<1; i++) { hyperpoint h = spin(i * 45 * degree) * X; hyperpoint res; applymodel(h, res); if(hypot2(res) < 1000 && !std::isnan(res[0]) && !std::isnan(res[1])) queuestr(h, 16, "X", 0xFF0000 + i * 0x20); } */ } EX void draw_boundary(int w) { if(w == 1) return; if(nonisotropic || euclid || gproduct) return; #if CAP_VR if(vrhr::active() && pmodel == mdHyperboloid) return; #endif dynamicval lw(vid.linewidth, vid.linewidth * vid.multiplier_ring); color_t lc = ringcolor; color_t fc = modelcolor; PPR p = PPR::OUTCIRCLE; if(haveaura()) lc = 0; if(lc == 0 && fc == 0) return; if(pmodel == mdRotatedHyperboles) return; ld fakeinf = sphere ? M_PI-1e-5 : hyperbolic ? 10 : exp(10); #if CAP_SVG dynamicval dw(vid.linewidth, vid.linewidth * (svg::in ? svg::divby : 1)); #endif if(elliptic && !among(pmodel, mdBand, mdBandEquidistant, mdBandEquiarea, mdSinusoidal, mdMollweide, mdCollignon)) circle_around_center(90._deg, periodcolor, 0, PPR::CIRCLE); int broken_coord = models::get_broken_coord(pmodel); if(broken_coord) { int unbroken_coord = 3 - broken_coord; const ld eps = 1e-3; const ld rem = sqrt(1-eps*eps); for(int s: {-1, 1}) { for(int a=1; a<180; a++) { hyperpoint h = Hypc; h[broken_coord] = -sin_auto(a*degree) * rem; h[0] = sin_auto(a*degree) * eps * s; h[unbroken_coord] = cos_auto(a*degree); models::apply_orientation(h[1], h[0]); curvepoint(h); } queuecurve(shiftless(Id), periodcolor, 0, PPR::CIRCLE).flags |= POLY_FORCEWIDE; } } if(pmodel == mdWerner && hyperbolic) return; switch(pmodel) { case mdTwoPoint: { if(twopoint_do_flips || current_display->stereo_active() || !sphere) return; queuereset(mdPixel, p); for(int b=-1; b<=1; b+=2) for(ld a=-90; a<=90+1e-6; a+=pow(.5, vid.linequality)) { ld x = sin(a * pconf.twopoint_param * b / 90); ld y = 0; ld z = -sqrt(1 - x*x); models::apply_orientation(y, x); hyperpoint h1; applymodel(shiftless(hpxyz(x,y,z)), h1); models::apply_orientation(h1[0], h1[1]); h1[1] = abs(h1[1]) * b; models::apply_orientation(h1[1], h1[0]); curvepoint(h1); } queuecurve(shiftless(Id), lc, fc, p).flags |= POLY_FORCEWIDE; queuereset(pmodel, p); return; } case mdBand: case mdBandEquidistant: case mdBandEquiarea: case mdSinusoidal: case mdMollweide: case mdCentralCyl: case mdCollignon: case mdGallStereographic: case mdMiller: { if(GDIM == 3) return; if(pmodel == mdBand && pconf.model_transition != 1) return; bool bndband = (among(pmodel, mdBand, mdMiller, mdGallStereographic, mdCentralCyl) ? hyperbolic : sphere); transmatrix T = spin(-pconf.model_orientation * degree); ld right = 90._deg - 1e-5; if(bndband) queuestraight(T * ypush0(hyperbolic ? 10 : right), 2, lc, fc, p); ld xperiod = elliptic ? fakeinf/2 : fakeinf; if(sphere && !bndband) { queuestraight(T * xpush0(xperiod), 2, periodcolor, 0, PPR::CIRCLE); } if(sphere && bndband) { ld adegree = degree-1e-6; for(ld a=-90; a<90+1e-6; a+=pow(.5, vid.linequality)) { curvepoint(T * xpush(xperiod) * ypush0(a * adegree)); } for(ld a=-90; a<90+1e-6; a+=pow(.5, vid.linequality)) { curvepoint(T * xpush(-xperiod) * ypush0(-a * adegree)); } curvepoint(T * xpush(xperiod) * ypush0(-90 * adegree)); queuecurve(shiftless(Id), periodcolor, 0, PPR::CIRCLE).flags |= POLY_FORCEWIDE; } return; } case mdHalfplane: if(hyperbolic && GDIM == 2) { queuestraight(xspinpush0(-pconf.model_orientation * degree - 90._deg, fakeinf), 1, lc, fc, p); return; } break; case mdHemisphere: { if(hyperbolic) { queuereset(mdPixel, p); for(int i=0; i<=360; i++) { ld s = sin(i * degree); curvepoint(point3(current_display->radius * cos(i * degree), current_display->radius * s * (models::cos_ball * s >= 0 - 1e-6 ? 1 : abs(models::sin_ball)), 0)); } queuecurve(shiftless(Id), lc, fc, p); queuereset(pmodel, p); p = PPR::CIRCLE; fc = 0; queuereset(mdPixel, p); for(int i=0; i<=360; i++) { ld s = sin(i * degree); curvepoint(point3(current_display->radius * cos(i * degree), current_display->radius * s * models::sin_ball, 0)); } queuecurve(shiftless(Id), lc, fc, p); queuereset(pmodel, p); } if(euclid) { queuereset(mdPixel, p); for(int i=0; i<=360; i++) { curvepoint(point3(current_display->radius * cos(i * degree), current_display->radius * sin(i * degree), 0)); } queuecurve(shiftless(Id), lc, fc, p); queuereset(pmodel, p); } if(sphere) goto as_hyperboloid; return; } case mdHyperboloid: { if(hyperbolic) { as_hyperboloid: ld& tz = pconf.top_z; ld mz = sphere ? atan(sqrt(tz*tz-1)) : acosh(tz); ld cb = models::cos_ball; ld sb = models::sin_ball; if(abs(sb) <= abs(cb) + 1e-5) { ld step = .01 / (1 << vid.linequality); hyperpoint a; for(ld t=-1; t<=1; t += step) { a = xpush0(t * mz); if(t != 0) { a[1] = sb * a[2] / -cb; ld v = -1 + a[2] * a[2] - a[1] * a[1]; if(v < 0) continue; a[0] = sqrt(v); if(t < 0) a[0] = -a[0]; } curvepoint(a); } if((sb > 0) ^ (cb < 0)) { ld alpha = M_PI - atan2(a[0], -a[1]); for(ld t=-1; t<=1; t += step) curvepoint(xspinpush0(-90._deg - t * alpha, mz)); } else { ld alpha = - atan2(a[0], -a[1]); for(ld t=-1; t<=1; t += step) curvepoint(xspinpush0(+90._deg - t * alpha, mz)); } queuecurve(shiftless(Id), lc, fc, p); fc = 0; p = PPR::CIRCLE; } for(ld t=0; t<=360; t ++) curvepoint(xspinpush0(t * degree, mz)); queuecurve(shiftless(Id), lc, fc, p); if(sphere) { for(ld t=0; t<=360; t ++) curvepoint(xspinpush0(t * degree, M_PI-mz)); queuecurve(shiftless(Id), lc, fc, p); } } return; } case mdSpiral: { if(euclid) return; if(models::ring_not_spiral) return; // if(p == PPR::CIRCLE) p = PPR::OUTCIRCLE; auto& sm = models::spiral_multiplier; ld u = hypot(1, imag(sm) / real(sm)); if(real(sm)) { queuereset(mdPixel, p); for(ld a=-10; a<=10; a+=0.01 / (1 << vid.linequality) / u) { cld z = exp(cld(a, a * imag(sm) / real(sm) + M_PI)); hyperpoint ret = point2(real(z), imag(z)); ret = mobius(ret, pconf.skiprope, 1); ret *= current_display->radius; curvepoint(ret); } queuecurve(shiftless(Id), ringcolor, 0, p).flags |= POLY_ALWAYS_IN; queuereset(pmodel, p); } return; } default: break; } if(sphere && pmodel == mdDisk && pconf.alpha > 1) { double rad = current_display->radius / sqrt(pconf.alpha*pconf.alpha - 1); queuecircle(current_display->xcenter, current_display->ycenter, rad, lc, p, fc); return; } if(sphere && !among(pmodel, mdEquidistant, mdEquiarea)) return; circle_around_center(fakeinf, lc, fc, p); } #endif EX void change_shift(shiftpoint& h, ld by) { if(!by) return; h.shift += by; if(sl2) { ld ca = cos(by), sa = sin(by); tie(h[2], h[3]) = make_pair(h[2] * ca - h[3] * sa, h[3] * ca + h[2] * sa); tie(h[0], h[1]) = make_pair(h[0] * ca - h[1] * sa, h[1] * ca + h[0] * sa); } else if((mdinf[pmodel].flags & mf::uses_bandshift) || (sphere && pmodel == mdSpiral)) { h.h = spin(pconf.model_orientation * degree) * h.h; h.h = xpush(-by) * h.h; h.h = spin(-pconf.model_orientation * degree) * h.h; } } EX void change_shift(shiftmatrix& T, ld by) { if(!by) return; T.shift += by; if(sl2) { ld ca = cos(by), sa = sin(by); for(int a=0; a<4; a++) { tie(T[2][a], T[3][a]) = make_pair(T[2][a] * ca - T[3][a] * sa, T[3][a] * ca + T[2][a] * sa); tie(T[0][a], T[1][a]) = make_pair(T[0][a] * ca - T[1][a] * sa, T[1][a] * ca + T[0][a] * sa); } } else if((mdinf[pmodel].flags & mf::uses_bandshift) || (sphere && pmodel == mdSpiral)) { T.T = spin(pconf.model_orientation * degree) * T.T; T.T = xpush(-by) * T.T; fixmatrix(T.T); T.T = spin(-pconf.model_orientation * degree) * T.T; } } EX transmatrix unshift(shiftmatrix T, ld to IS(0)) { change_shift(T, to - T.shift); return T.T; } EX hyperpoint unshift(shiftpoint T, ld to IS(0)) { change_shift(T, to - T.shift); return T.h; } EX transmatrix inverse_shift(const shiftmatrix& T1, const shiftmatrix& T2) { return iso_inverse(T1.T) * unshift(T2, T1.shift); } EX hyperpoint inverse_shift(const shiftmatrix& T1, const shiftpoint& T2) { return iso_inverse(T1.T) * unshift(T2, T1.shift); } EX void optimize_shift(shiftpoint& h) { if(sl2) { change_shift(h, atan2(h[2], h[3])); } } EX void optimize_shift(shiftmatrix& T) { if(sl2) { change_shift(T, atan2(T[2][3], T[3][3])); if(hybrid::csteps) { auto period = (M_PI * hybrid::csteps) / cgi.psl_steps; while(T.shift > period*.4999) T.shift -= period; while(T.shift < -period*.5001) T.shift += period; } return; } else if(((mdinf[pmodel].flags & mf::uses_bandshift) && T[LDIM][LDIM] > 30) || (sphere && pmodel == mdSpiral)) { T.T = spin(pconf.model_orientation * degree) * T.T; hyperpoint H = tC0(T.T); find_zlev(H); ld y = asin_auto(H[1]); ld x = asin_auto_clamp(H[0] / cos_auto(y)); if(sphere) { if(H[LDIM] < 0 && x > 0) x = M_PI - x; else if(H[LDIM] < 0 && x <= 0) x = -M_PI - x; } T.shift += x; T.T = xpush(-x) * T.T; fixmatrix(T.T); T.T = spin(-pconf.model_orientation * degree) * T.T; } } EX shiftmatrix optimized_shift(const shiftmatrix& T) { shiftmatrix U = T; optimize_shift(U); return U; } EX namespace dq { EX queue> drawqueue; EX unsigned bucketer(const shiftpoint& T) { return bucketer(T.h) + unsigned(floor(T.shift*81527+.5)); } EX set visited; EX void enqueue(heptagon *h, const shiftmatrix& T) { if(!h || visited.count(h)) { return; } visited.insert(h); drawqueue.emplace(h, T); } EX set visited_by_matrix; EX void enqueue_by_matrix(heptagon *h, const shiftmatrix& T) { if(!h) return; unsigned b = bucketer(T * tile_center()); if(visited_by_matrix.count(b)) { return; } visited_by_matrix.insert(b); drawqueue.emplace(h, T); } EX queue> drawqueue_c; EX set visited_c; EX void enqueue_c(cell *c, const shiftmatrix& T) { if(!c || visited_c.count(c)) { return; } visited_c.insert(c); drawqueue_c.emplace(c, T); } EX void enqueue_by_matrix_c(cell *c, const shiftmatrix& T) { if(!c) return; unsigned b = bucketer(T * tile_center()); if(visited_by_matrix.count(b)) { return; } visited_by_matrix.insert(b); drawqueue_c.emplace(c, T); } EX void clear_all() { visited.clear(); visited_by_matrix.clear(); visited_c.clear(); while(!drawqueue_c.empty()) drawqueue_c.pop(); while(!drawqueue.empty()) drawqueue.pop(); } EX } EX bool do_draw(cell *c) { // do not display out of range cells, unless on torus if(c->pathdist == PINFD && !(meuclid && quotient) && vid.use_smart_range == 0) return false; // do not display not fully generated cells, unless changing range allowed if(c->mpdist > 7 && !allowChangeRange()) return false; // in the Yendor Challenge, scrolling back is forbidden if(c->cpdist > get_sightrange() && (yendor::on || isHaunted(cwt.at->land)) && !cheater && !autocheat) return false; return true; } EX ld extra_generation_distance = 99; // returns false if limited bool limited_generation(cell *c) { if(c->mpdist <= 7) return true; if(cells_generated > vid.cells_generated_limit) return false; setdist(c, 7, c); cells_generated++; return true; } EX int min_cells_drawn = 50; EX bool do_draw(cell *c, const shiftmatrix& T) { if(WDIM == 3) { // do not care about cells outside of the track if(GDIM == 3 && racing::on && c->land == laMemory && cells_drawn >= S7+1) return false; if(cells_drawn > vid.cells_drawn_limit) return false; if(cells_drawn < min_cells_drawn) { limited_generation(c); return true; } #if MAXMDIM >= 4 if(nil && models::is_perspective(pmodel)) { ld dist = hypot_d(3, inverse_exp(tC0(T), pQUICK)); if(dist > sightranges[geometry] + (vid.sloppy_3d ? 0 : 0.9)) return false; if(dist <= extra_generation_distance && !limited_generation(c)) return false; } else if(sol && models::is_perspective(pmodel)) { if(!nisot::in_table_range(tC0(T.T))) return false; if(!limited_generation(c)) return false; } else if(nih && models::is_perspective(pmodel)) { hyperpoint h = inverse_exp(tC0(T), pQUICK); ld dist = hypot_d(3, h); if(dist > sightranges[geometry] + (vid.sloppy_3d ? 0 : cgi.corner_bonus)) return false; if(dist <= extra_generation_distance && !limited_generation(c)) return false; } else if(sl2 && models::is_perspective(pmodel)) { if(hypot(tC0(T.T)[2], tC0(T.T)[3]) > cosh(slr::range_xy)) return false; if(abs(T.shift) > (slr::range_z)) return false; if(abs(T.shift * stretch::not_squared()) > sightranges[geometry]) return false; if(!limited_generation(c)) return false; } #endif else if(vid.use_smart_range) { if(cells_drawn >= min_cells_drawn && !in_smart_range(T)) return false; if(!limited_generation(c)) return false; } else { ld dist = hdist0(tC0(T.T)); if(dist > sightranges[geometry] + (vid.sloppy_3d ? 0 : cgi.corner_bonus)) return false; if(dist <= extra_generation_distance && !limited_generation(c)) return false; } return true; } #if MAXMDIM >= 4 if(rots::drawing_underlying && euclid && hdist0(tC0(T)) > 6) return false; #endif if(just_gmatrix && sphere) return true; if(!do_draw(c)) return false; if(euclid && pmodel == mdSpiral) { hyperpoint h = tC0(T.T); cld z(h[0], h[1]); z = z * models::spiral_multiplier; ld iz = imag(z) + 1.14279e-2; // make it never fall exactly on PI if(iz < -M_PI || iz >= M_PI) return false; } if(pmodel == mdSpiral && models::ring_not_spiral) { cld z; shiftpoint H = tC0(T); hyperpoint ret; makeband(H, ret, band_conformal); z = cld(ret[0], ret[1]) * models::spiral_multiplier; if(imag(z) < -models::spiral_cone_rad/2-1e-5 || imag(z) >= models::spiral_cone_rad/2-1e-5) return false; } if(cells_drawn > vid.cells_drawn_limit) return false; bool usr = vid.use_smart_range || quotient; if(usr && cells_drawn >= min_cells_drawn && !in_smart_range(T) && !(WDIM == 2 && GDIM == 3 && hdist0(tC0(T)) < 2.5)) return false; if(vid.use_smart_range == 2 && !limited_generation(c)) return false; return true; } EX int cone_side(const shiftpoint H) { hyperpoint ret; if(hyperbolic) makeband(H, ret, band_conformal); else ret = unshift(H); cld z = cld(ret[0], ret[1]) * models::spiral_multiplier; auto zth = [&] (cld z) { ld alpha = imag(z) * 360 / pconf.spiral_cone; ld r = real(z); r = exp(r); hyperpoint ret; ret[0] = -sin(alpha) * r; ret[1] = cos(alpha) * r; ret[2] = (r-1) * sqrt( pow(360/pconf.spiral_cone, 2) - 1); models::apply_ball(ret[2], ret[1]); return ret; }; hyperpoint ret0 = zth(z); hyperpoint ret1 = zth(z + cld(1e-3, 0)); hyperpoint ret2 = zth(z + cld(0, 1e-3)); return (ret1[1] - ret0[1]) * (ret2[0] - ret0[0]) < (ret2[1] - ret0[1]) * (ret1[0] - ret0[0]) ? 1 : -1; } /** get the current orientation of the view */ EX transmatrix& get_view_orientation() { return gproduct ? NLP : View; } EX hookset hooks_rotate_view; EX hookset hooks_shift_view; /** rotate the view using the given rotation matrix */ EX void rotate_view(transmatrix T) { if(callhandlers(false, hooks_rotate_view, T)) return; transmatrix& which = get_view_orientation(); which = T * which; if(!gproduct && !rug::rugged) current_display->which_copy = T * current_display->which_copy; } EX shiftpoint lie_exp(hyperpoint h1) { shiftpoint sh = shiftless(h1); auto& h = sh.h; if(nil) { h[3] = 1; h[2] += h[0] * h[1] / 2; } else if(sol && !nih) { h[3] = 1; if(abs(h[2]) > 1e-6) { h[0] *= (exp(-h[2]) - 1) / -h[2]; h[1] *= (exp(+h[2]) - 1) / h[2]; } } else if(sol && nih) { h[3] = 1; if(abs(h[2]) > 1e-6) { ld z = h[2] * log(2); h[0] *= (exp(-z) - 1) / -z; z = h[2] * log(3); h[1] *= (exp(+z) - 1) / z; } } else if(nih) { h[3] = 1; if(abs(h[2]) > 1e-6) { ld z = h[2] * log(2); h[0] *= (exp(+z) - 1) / z; z = h[2] * log(3); h[1] *= (exp(+z) - 1) / z; } } else if(sl2) { h[3] = 0; ld v = h[0] * h[0] + h[1] * h[1] - h[2] * h[2]; println(hlog, "v = ", v); if(v < 0) { v = sqrt(-v); h *= sin(v) / v; h[3] += cos(v); ld cycles = floor(v / TAU + .5); sh.shift += TAU * cycles * (h[2] > 0 ? 1 : -1); } else if(v > 0) { v = sqrt(v); h *= sinh(v) / v; h[3] += cosh(v); } else h[3]++; return sh; } else { /* not implemented -- approximate for now */ const int steps = 16; h /= (1< 0) { ld r = sqrt(choice); ld z = asin_clamp(r); if(h1[3] < 0) z = M_PI - z; z += cycles * TAU; } else if(cycles || h1[3] < -1) { /* impossible, or light-like */ r = 1; z = 0; } else if(choice == 0) { if(!relativistic_length) return h1 - C0; /* impossible, or light-like */ r = 1; z = 0; } else { r = sqrt(-choice); z = asinh(r); } h1 = h1 * z / r; h1[3] = 0; return h1; } if(hyperbolic && GDIM == 3) { hyperpoint h1 = h.h; ld choice = h1[3] * h1[3] - h1[0] * h1[0] - h1[1] * h1[1]; ld r, z; if(choice > 0) { r = sqrt(choice); z = asinh(r); } else { r = sqrt(-choice); z = asin_clamp(r); if(h1[2] < 0) z = M_PI - z; } if(!relativistic_length) r = sqrt(h1[3] * h1[3] + h1[0] * h1[0] + h1[1] * h1[1]); h1 = h1 * z / r; h1[2] = h1[3]; h1[3] = 0; return h1; } throw hr_exception("rel_log in wrong geometry"); } /** Is Lie movement available? Depends on map geometry, not ambient geometry. */ EX bool lie_movement_available() { if(nonisotropic && !embedded_plane) return true; if(mhyperbolic && bt::in()) return true; return false; }; EX hyperpoint lie_log(const shiftpoint h1) { hyperpoint h = unshift(h1); if(nil) { h[3] = 0; h[2] -= h[0] * h[1] / 2; } else if(sol && !nih) { h[3] = 0; if(abs(h[2]) > 1e-6) { h[0] *= -h[2] / (exp(-h[2]) - 1); h[1] *= h[2] / (exp(+h[2]) - 1); } } else if(sol && nih) { h[3] = 0; if(abs(h[2]) > 1e-6) { ld z = h[2] * log(2); h[0] *= -z / (exp(-z) - 1); z = h[2] * log(3); h[1] *= z / (exp(+z) - 1); } } else if(nih) { h[3] = 1; if(abs(h[2]) > 1e-6) { ld z = h[2] * log(2); h[0] *= z / (exp(+z) - 1); z = h[2] * log(3); h[1] *= z / (exp(+z) - 1); } } else if(euclid) { h[LDIM] = 0; } else if(hyperbolic) { h = deparabolic13(h); if(abs(h[0]) > 1e-6) for(int i=1; i r(recursive, true); #if MAXMDIM >= 4 && CAP_RAY intra::shift_view_portal(H); #endif return; } View = get_shift_view_of(H, View, sm); auto& wc = current_display->which_copy; wc = get_shift_view_of(H, wc, sm); } /** works in embedded_plane (except embedded product where shift_view works) */ EX transmatrix get_shift_view_embedded_of(const transmatrix V, const transmatrix T) { transmatrix IV = view_inverse(V); transmatrix rot = V * map_relative_push(IV * C0); transmatrix V1 = T * V; transmatrix IV1 = view_inverse(V1); transmatrix rot1 = V1 * map_relative_push(IV1 * C0); return rot * inverse(rot1) * T; } /** works in embedded_plane (except embedded product where shift_view works) */ void shift_view_embedded(const transmatrix T) { transmatrix R = get_shift_view_embedded_of(View, T); View = R * View; auto& wc = current_display->which_copy; wc = R * wc; } /** works in isotropic and product spaces */ void shift_view_mmul(const transmatrix T) { View = T * View; auto& wc = current_display->which_copy; wc = T * wc; } void shift_view_by_matrix(const transmatrix T, eShiftMethod sm) { switch(sm) { case smEmbedded: shift_view_embedded(T); return; case smIsotropic: case smProduct: shift_view_mmul(T); return; default: throw hr_exception("unsupported shift method in shift_view_by_matrix"); } } /* like rgpushxto0 but keeps the map orientation correct */ EX transmatrix map_relative_push(hyperpoint h) { if(!embedded_plane) return rgpushxto0(h); if(geom3::same_in_same()) { ld z = -asin_auto(h[2]); ld u = 1 / cos_auto(z); auto h1 = hpxy3(h[0] * u, h[1] * u, 0); transmatrix T = rgpushxto0(h1) * zpush(-z); return T; } if(geom3::euc_in_hyp()) { auto h1 = deparabolic13(h); return parabolic13_at(h1); } if(msphere) { ld z = hdist0(h); geom3::light_flip(true); auto h1 = normalize(h); transmatrix T = rgpushxto0(h1); geom3::light_flip(false); return T * zpush(z); } if(geom3::euc_in_sph()) { ld tx = hypot(h[0], h[2]); ld ty = hypot(h[1], h[3]); return cspin(0, 2, atan2(h[0], h[2])) * cspin(1, 3, atan2(h[1], h[3])) * cspin(2, 3, atan2(tx, ty)); } return rgpushxto0(h); } EX void shift_view_to(shiftpoint H, eShiftMethod sm IS(shift_method(smaManualCamera))) { switch(sm) { case smIsotropic: case smEmbedded: case smProduct: shift_view_by_matrix(gpushxto0(unshift(H)), sm); return; case smLie: shift_view(-lie_log(H), sm); return; case smGeodesic: shift_view(-inverse_exp(H), sm); return; default: throw hr_exception("unsupported shift method in shift_view_to"); } } EX void shift_view_towards(shiftpoint H, ld l, eShiftMethod sm IS(shift_method(smaManualCamera))) { switch(sm) { case smIsotropic: case smEmbedded: shift_view_by_matrix(rspintox(unshift(H)) * xpush(-l) * spintox(unshift(H)), sm); return; case smLie: shift_view(tangent_length(unshift(H)-C0, -l), sm); return; case smGeodesic: case smProduct: { hyperpoint ie = inverse_exp(H, pNORMAL | pfNO_DISTANCE); if(gproduct) ie = lp_apply(ie); shift_view(tangent_length(ie, -l), sm); return; } default: throw hr_exception("unsupported shift method in shift_view_towards"); } } EX void set_view(hyperpoint camera, hyperpoint forward, hyperpoint upward) { if(GDIM == 2) { View = gpushxto0(camera); View = spin90() * spintox(View * upward) * View; return; } transmatrix V = gpushxto0(camera); forward = V * forward; upward = V * upward; if(pmodel == mdGeodesic || hyperbolic || sphere) { forward = inverse_exp(shiftless(forward)); } else { // apply_nil_rotation(forward); forward -= C0; } if(hypot_d(3, forward) == 0) forward[0] = 1; forward /= hypot_d(3, forward); if(pmodel == mdGeodesic || hyperbolic || sphere) upward = inverse_exp(shiftless(upward)); else { // apply_nil_rotation(upward); upward -= C0; } upward -= (forward|upward) * forward; if(hypot_d(3, upward) == 0) return; upward /= hypot_d(3, upward); hyperpoint rightward = (forward ^ upward); transmatrix rotator = Id; rotator[2] = forward; rotator[1] = -upward; rotator[0] = -rightward; if(det(rotator) < 0) rotator[0] = -rotator[0]; View = iso_inverse(rgpushxto0(camera)); if(gproduct) NLP = rotator; else View = rotator * View; } }