// Hyperbolic Rogue // Copyright (C) 2011-2012 Zeno Rogue, see 'hyper.cpp' for details // heptagon here refers to underlying heptagonal tesselation // (which you can see by changing the conditions in graph.cpp) #define MIRR(x) x.mirrored // automaton state enum hstate { hsOrigin, hsA, hsB, hsError, hsA0, hsA1, hsB0, hsB1, hsC }; int fixrot(int a) { return (a+490)% S7; } int fix42(int a) { return (a+420)% S42; } struct heptagon; struct cell; cell *newCell(int type, heptagon *master); // spintable functions int tspin(uint32_t& t, int d) { return (t >> (d<<2)) & 7; } int tmirror(uint32_t& t, int d) { return (t >> ((d<<2)+3)) & 1; } void tsetspin(uint32_t& t, int d, int spin) { t &= ~(15 << (d<<2)); t |= spin << (d<<2); } struct heptagon { // automaton state hstate s : 8; // we are spin[i]-th neighbor of move[i] uint32_t spintable; int spin(int d) { return tspin(spintable, d); } int mirror(int d) { return tmirror(spintable, d); } void setspin(int d, int sp) { tsetspin(spintable, d, sp); } // neighbors; move[0] always goes towards origin, // and then we go clockwise heptagon* move[7]; // distance from the origin short distance; // emerald/wineyard generator short emeraldval; // fifty generator short fiftyval; // zebra generator (1B actually) short zebraval; // field id int fieldval; // evolution data short rval0, rval1; struct cdata *cdata; // central cell cell *c7; // associated generator of alternate structure, for Camelot and horocycles heptagon *alt; // functions heptagon*& modmove(int i) { return move[fixrot(i)]; } unsigned char gspin(int i) { return spin(fixrot(i)); } }; // the automaton is used to generate each heptagon in an unique way // (you can see the tree obtained by changing the conditions in graph.cpp) // from the origin we can go further in any direction, and from other heptagons // we can go in directions 3 and 4 (0 is back to origin, so 3 and 4 go forward), // and sometimes in direction 5 hstate transition(hstate s, int dir) { if(sphere) { if(S7 == 4) { if(s == hsOrigin) return dir == 0 ? hsB0 : hsB1; } if(S7 == 3) { if(s == hsOrigin) return hsB1; } if(s == hsOrigin) return dir == 0 ? hsA0 : hsA1; if(s == hsA0 && dir == 2) return hsB0; if(s == hsA1 && dir == 2) return hsB1; if(s == hsB0 && dir == S7-2) return hsC; return hsError; } else { if(s == hsOrigin) return hsA; if(s == hsA && dir >= 3 && dir <= 4) return hsA; if(s == hsA && dir == 5) return hsB; if(s == hsB && dir == 4) return hsB; if(s == hsB && dir == 3) return hsA; } return hsError; } heptagon dodecahedron[12]; #define origin (dodecahedron[0]) vector allAlts; // create h->move[d] if not created yet heptagon *createStep(heptagon *h, int d); // create a new heptagon heptagon *buildHeptagon(heptagon *parent, int d, hstate s, int pard = 0) { heptagon *h = new heptagon; h->alt = NULL; h->s = s; for(int i=0; i<7; i++) h->move[i] = NULL; h->spintable = 0; h->move[pard] = parent; tsetspin(h->spintable, pard, d); parent->move[d] = h; tsetspin(parent->spintable, d, pard); if(parent->c7) { h->c7 = newCell(7, h); h->emeraldval = emerald_heptagon(parent->emeraldval, d); h->zebraval = zebra_heptagon(parent->zebraval, d); h->fieldval = fp43.connections[fieldpattern::btspin(parent->fieldval, d)]; h->rval0 = h->rval1 = 0; h->cdata = NULL; if(parent == &origin || parent == origin.alt) h->fiftyval = fiftytable[0][d]; else h->fiftyval = nextfiftyval(parent->fiftyval, parent->move[0]->fiftyval, d); } else { h->c7 = NULL; h->emeraldval = 0; h->fiftyval = 0; } //generateEmeraldval(parent); //generateEmeraldval(h); if(pard == 0) { if(purehepta) h->distance = parent->distance + 1; else if(parent->s == hsOrigin) h->distance = 2; else if(h->spin(0) == 5) h->distance = parent->distance + 1; else if(h->spin(0) == 4 && h->move[0]->s == hsB) h->distance = createStep(h->move[0], (h->spin(0)+2)%7)->distance + 3; else h->distance = parent->distance + 2; } else h->distance = parent->distance - (purehepta?1:2); return h; } void addSpin(heptagon *h, int d, heptagon *from, int rot, int spin) { rot = fixrot(rot); createStep(from, rot); h->move[d] = from->move[rot]; h->setspin(d, fixrot(from->spin(rot) + spin)); h->move[d]->move[fixrot(from->spin(rot) + spin)] = h; h->move[d]->setspin(fixrot(from->spin(rot) + spin), d); //generateEmeraldval(h->move[d]); generateEmeraldval(h); } extern int hrand(int); heptagon *createStep(heptagon *h, int d) { d = fixrot(d); if(!h->move[0] && h->s != hsOrigin) { buildHeptagon(h, 0, hsA, 3 + hrand(2)); } if(h->move[d]) return h->move[d]; if(h->s == hsOrigin) { buildHeptagon(h, d, hsA); } else if(d == 1) { addSpin(h, d, h->move[0], h->spin(0)-1, -1); } else if(d == 6) { addSpin(h, d, h->move[0], h->spin(0)+1, +1); } else if(d == 2) { createStep(h->move[0], h->spin(0)-1); addSpin(h, d, h->move[0]->modmove(h->spin(0)-1), 5 + h->move[0]->gspin(h->spin(0)-1), -1); } else if(d == 5 && h->s == hsB) { createStep(h->move[0], h->spin(0)+1); addSpin(h, d, h->move[0]->modmove(h->spin(0)+1), 2 + h->move[0]->gspin(h->spin(0)+1), +1); } else buildHeptagon(h, d, (d == 5 || (h->s == hsB && d == 4)) ? hsB : hsA); return h->move[d]; } // a structure used to walk on the heptagonal tesselation // (remembers not only the heptagon, but also direction) struct heptspin { heptagon *h; int spin; bool mirrored; heptspin() { mirrored = false; } }; heptspin hsstep(const heptspin &hs, int spin) { createStep(hs.h, hs.spin); heptspin res; res.h = hs.h->move[hs.spin]; res.mirrored = hs.mirrored ^ hs.h->mirror(hs.spin); res.spin = fixrot(hs.h->spin(hs.spin) + (MIRR(res)?-spin:spin)); return res; } heptspin hsspin(const heptspin &hs, int val) { heptspin res; res.h = hs.h; res.spin = fixrot(hs.spin + (MIRR(hs)?-val:val)); res.mirrored = hs.mirrored; return res; } // display the coordinates of the heptagon void backtrace(heptagon *pos) { if(pos == &origin) return; backtrace(pos->move[0]); printf(" %d", pos->spin(0)); } void hsshow(const heptspin& t) { printf("ORIGIN"); backtrace(t.h); printf(" (spin %d)\n", t.spin); }