// RogueViz - Grigorchuk group // Copyright (C) 2011-2019 Zeno and Tehora Rogue, see 'hyper.cpp' for details /** \file rogueviz/grigorchuk.cpp * \brief Grigorchuk group * * This is a visualization of the Grigorchuk group. It is the first known group with * intermediate growth (i.e., superpolynomial and subexponential). * * The implementation is based on: * * Rostislav Grigorchuk, Igor Pak, * Groups of Intermediate Growth: an Introduction for Beginners * https://arxiv.org/pdf/math/0607384.pdf * * which presents the material in a simple way. * * This creates a map whose tiles correspond to the elements of the Grigorchuk group. * More precisely, the tiles correspond to the subgroup of index 2 generated by ac, ca, and b * (this is "more playable"). The three tiles adjacent to g are gb, gac, and gca. * * The 'lines' drawn split each tile into two halves, which correspond to the elements of the * actual Grigorchuk group (g and ga; ga is the one close to gac). * * Every element of the Grigorchuk group has finite order. Therefore, if you choose a specific * way of travelling (e.g. turn left, go, turn right, go) you will always eventually reach the * starting point. * * Command line options: * * -grigorchuk -- play on the Grigorchuk group * -grig-limit 100000 -canvas G -- color the tiles according to the distance from the starting point * (i.e., the neutral element), the number is the number of tiles colored * -grig-nolines -- show no splitting lines (also can be switched in the experiments menu) * -grig-nolabels -- show no labels (also can be switched in the experiments menu) * */ #include "rogueviz.h" namespace grigorchuk { using namespace hr; typedef tuple<bool, string, string> splitter; void add(string& s, char c) { if(s.size() == 0) s.push_back(c); else if(c == s.back()) s.pop_back(); else if(c != 'a' && s.back() != 'a') s.back() = s.back() ^ c ^ 'd' ^ 'b' ^ 'c'; else s.push_back(c); } splitter split(string s) { bool swapped = false; string s0, s1; for(char c: s) { if(c == 'b') add(s0, swapped?'a':'c'), add(s1, swapped?'c':'a'); if(c == 'c') add(s0, swapped?'a':'d'), add(s1, swapped?'d':'a'); if(c == 'd') add(swapped ? s1 : s0, 'b'); if(c == 'a') swapped = !swapped; } return splitter{swapped, s0, s1}; } splitter split_slow(string s) { bool swapped = false; string s0, s1; for(char c: s) { if(c == 'b') (s0 += swapped?'a':'c'), (s1 += swapped?'c':'a'); if(c == 'c') (s0 += swapped?'a':'d'), (s1 += swapped?'d':'a'); if(c == 'd') ((swapped ? s1 : s0) += 'b'), ((swapped ? s0 : s1) += '-'); if(c == 'a') swapped = !swapped, s0 += '-', s1 += '-'; } return splitter{swapped, s0, s1}; } string reduce(const string& x) { string res; for(char c: x) add(res, c); return res; } #define Split(x) auto sw = split(x); auto swapped = get<0>(sw); auto s0 = get<1>(sw); auto s1 = get<2>(sw) bool empt(const string& x) { Split(x); // auto [swapped, s0, s1] = split(x); if(x == "") return true; if(x == "d") return false; if(swapped) return false; return empt(s0) && empt(s1); } bool empt_slow(const string& x) { Split(x); // auto [swapped, s0, s1] = split_slow(x); printf("%s -> %d %s %s\n", x.c_str(), swapped, s0.c_str(), s1.c_str()); if(x == "") return true; if(x == "d") return false; if(swapped) return false; return empt(s0) && empt(s1); } typedef const struct rep* prep; struct rep { bool swapped; prep a0; prep a1; mutable char last; mutable bool visited = false; mutable int len; rep(bool s, prep a0, prep a1, char l, bool vis = false) : swapped(s), a0(a0), a1(a1), last(l), visited(vis), len(-1) {} }; bool operator < (const rep a, const rep b) { return tie(a.swapped, a.a0, a.a1) < tie(b.swapped, b.a0, b.a1); } bool operator == (const rep a, const rep b) { return tie(a.swapped, a.a0, a.a1) == tie(b.swapped, b.a0, b.a1); } rep grig_I = rep{false, &grig_I, &grig_I, 0, false}; extern rep grig_a, grig_b, grig_c, grig_d; rep grig_a = rep{true, &grig_I, &grig_I, 'a', false}; rep grig_b = rep{false, &grig_a, &grig_c, 'b', false}; rep grig_c = rep{false, &grig_a, &grig_d, 'c', false}; rep grig_d = rep{false, &grig_I, &grig_b, 'd', false}; // (ab) c = a (a,c) (a,d) = a(a,c) (a,d) = map<rep, char> all_reps; // = {grigid, &grigid}; prep lookup(rep x) { if(x == grig_I) return &grig_I; else if(x == grig_a) return &grig_a; else if(x == grig_b) return &grig_b; else if(x == grig_c) return &grig_c; else if(x == grig_d) return &grig_d; else if(all_reps.count(x)) return &(all_reps.find(x)->first); else return &(all_reps.emplace(x, 0).first->first); } /*prep add_a(prep x) { return lookup({!x->swapped, x->a0, x->a1, 'a'}); } prep add_d(prep x) { if(x == &grig_I) return &grig_d; if(x == &grig_d) return &grig_I; return lookup({x->swapped, x->swapped?add_d(x->a0):x->a0, x->swapped?x->a1:add_d(x->a1), 'd'}); } prep add_c(prep x) { return lookup({x->swapped, (x->swapped?add_a:add_d)(x->a0), (x->swapped?add_d:add_a)(x->a1), 'c'}); } prep add_b(prep x) { return lookup({x->swapped, (x->swapped?add_a:add_c)(x->a0), (x->swapped?add_c:add_a)(x->a1), 'b'}); } */ /* ostream& operator << (ostream& os, prep x) { if(x == &grig_I) return os << "I"; // else if(x == &grig_a) return os << "a"; else if(x == &grig_b) return os << "b"; else if(x == &grig_c) return os << "c"; else if(x == &grig_d) return os << "d"; else { if(x->swapped) os << "a"; os << "(" << x->a0 << "," << x->a1 << ")"; return os; } } */ prep mul (prep x, prep y) { if(x == &grig_I) return y; if(y == &grig_I) return x; if(x == &grig_a && y == &grig_a) return &grig_I; if(x == &grig_b && y == &grig_b) return &grig_I; if(x == &grig_c && y == &grig_c) return &grig_I; if(x == &grig_d && y == &grig_d) return &grig_I; if(x == &grig_b && y == &grig_c) return &grig_d; if(x == &grig_c && y == &grig_b) return &grig_d; if(x == &grig_b && y == &grig_d) return &grig_c; if(x == &grig_d && y == &grig_b) return &grig_c; if(x == &grig_c && y == &grig_d) return &grig_b; if(x == &grig_d && y == &grig_c) return &grig_b; if(!y->swapped) return lookup(rep{x->swapped, mul(x->a0, y->a0), mul(x->a1, y->a1), y->last}); else return lookup(rep{!x->swapped, mul(x->a1, y->a0), mul(x->a0, y->a1), y->last}); } string encode(string s) { if(s == "") return "I"; else if( s == "d") return "d"; else { Split(s); // auto [swapped, s0, s1] = split(s); return (swapped ? "a(" : "(") + encode(s0) + "," + encode(s1) + ")"; } } set<string> seen; void addmore(const string& s, int more) { if(more == 0) { string sr = s; reverse(sr.begin(), sr.end()); for(string q: seen) { string qo = q; for(char cr: sr) add(q, cr); if(empt(q)) { // printf("%s = %s /%s\n", s.c_str(), qo.c_str(), sr.c_str()); return; } } seen.insert(s); // printf("%s\n", s.c_str()); return; } for(char c: {'a', 'b', 'c', 'd'}) { string s1 = s; add(s1, c); if(isize(s1) != isize(s)+1) continue; addmore(s1, more-1); } } string deform(prep x2) { string t = ""; while(x2 != &grig_I) { if(x2->last == 'a') t += 'a', x2 = mul(x2, &grig_a); else if(x2->last == 'b') t += 'b', x2 = mul(x2, &grig_b); else if(x2->last == 'c') t += 'c', x2 = mul(x2, &grig_c); else if(x2->last == 'd') t += 'd', x2 = mul(x2, &grig_d); else if(x2->last == 'A') t += "ca", x2 = mul(mul(x2, &grig_c), &grig_a); else if(x2->last == 'C') t += "ac", x2 = mul(mul(x2, &grig_a), &grig_c); else return "?" + t + "?"; } reverse(t.begin(), t.end()); return t; } bool prepared = false; prep ac, ca; int grig_limit = 10000; int prepared_dists = 0; int next; int length = 0; vector<prep> all; void visit(prep x, char l, int d) { if(!x->visited) x->visited = true, x->last = l, all.push_back(x), x->len = d; } void prepare_to_next(bool verbose) { while(true) { int i = prepared_dists++; prep x = all[i]; if(!x->visited) println(hlog, "visited or not"); if(1) { // printf("%s\n", deform(x).c_str()); } visit(mul(x, &grig_b), 'b', x->len + 1); visit(mul(x, ac), 'A', x->len + 1); visit(mul(x, ca), 'C', x->len + 1); if(i == next) { if(verbose) addMessage("there are "+its(i)+" elements in distance up to "+its(length)); println(hlog, "Grigorchuk: ", tie(length, i)); next = all.size(), length++; break; } } } void prepare() { prepared = true; // rep* grigid = lookup(rep { false, NULL, NULL }); ac = mul(&grig_a, &grig_c); ca = mul(&grig_c, &grig_a); // prep where = &grig_I; string s = ""; all.clear(); /* for(int a=0; a<=32; a++) { // printf("%p -> %d %p %p\n", where, where->swapped, where->a0, where->a1); cout << where << " | " << encode(s) << "\n"; where = ((a&1) ? add_a : add_b) (where); s += (a&1) ? 'a' : 'b'; } string test = "ba"; string pw = ""; for(int i=0; i<=16; i++) { printf("%d: %d\n", i, empt(pw)); pw += test; } */ // printf("TEST %s\n", encode("bcd").c_str()); visit(&grig_I, 0, 0); length = 0; next = all.size(); prepared_dists = 0; while(prepared_dists < grig_limit) prepare_to_next(false); prep test = &grig_b; test = mul(test, &grig_a); test = mul(test, &grig_d); test = mul(test, &grig_a); test = mul(test, &grig_d); printf("badad = %s\n", deform(test).c_str()); } bool view_labels = true, view_lines = true; } namespace hr { struct hrmap_grigorchuk : hrmap_standard { heptagon *origin; heptagon *getOrigin() override { return origin; } map<heptagon*, grigorchuk::prep> dec; map<grigorchuk::prep, heptagon*> enc; void gtie(heptagon* h, grigorchuk::prep p) { dec[h] = p; enc[p] = h; } hrmap_grigorchuk() { if(!grigorchuk::prepared) grigorchuk::prepare(); origin = tailored_alloc<heptagon> (S7); origin->s = hsOrigin; origin->emeraldval = 0; origin->zebraval = 0; origin->fiftyval = 0; origin->fieldval = 0; origin->rval0 = origin->rval1 = 0; origin->cdata = NULL; origin->alt = NULL; origin->c7 = NULL; origin->distance = 0; origin->c7 = newCell(3, origin); gtie(origin, &grigorchuk::grig_I); } heptagon *create_step(heptagon *p, int d) override { auto pr = dec[p]; // auto pr1 = pr; switch(d) { using namespace grigorchuk; case 0: pr = mul(mul(pr, &grig_a), &grig_c); break; case 1: pr = mul(mul(pr, &grig_c), &grig_a); break; case 2: pr = mul(pr, &grig_b); break; } heptagon *h; if(enc.count(pr)) { h = enc[pr]; // println(hlog, deform(pr), "*", "acd"[d], " = ", deform(pr1)); } else { if(!pr->visited) pr->last = "ACb" [d]; h = tailored_alloc<heptagon> (S7); h->s = hsOrigin; h->emeraldval = 0; h->zebraval = 0; h->fiftyval = 0; h->fieldval = 0; h->rval0 = h->rval1 = 0; h->cdata = NULL; h->alt = NULL; h->c7 = newCell(3, h); h->distance = p->distance + 1; gtie(h, pr); } h->c.connect(d == 2 ? 2 : 1-d, p, d, false);; return h; } void draw_at(cell *at, const shiftmatrix& where) override { dq::clear_all(); dq::enqueue_by_matrix(at->master, where * master_relative(centerover, true)); while(!dq::drawqueue.empty()) { auto& p = dq::drawqueue.front(); heptagon *h = get<0>(p); shiftmatrix V = get<1>(p); dq::drawqueue.pop(); cell *c = h->c7; if(!do_draw(c, V)) continue; if(grigorchuk::view_lines) queueline(V * ddspin(c, 2) * xpush0(cgi.tessf/2), V * ddspin(c, 2) * xpush0(-cgi.tessf), 0xFF00FFFF, 2); if(grigorchuk::view_labels) queuestr(V, 0.3, grigorchuk::deform(dec[c->master]), 0xFFFFFF); if(patterns::whichCanvas == 'G' && c->landparam == 0) c->landparam = 0x102008 * (1 + ((hrmap_grigorchuk*)currentmap)->dec[c->master]->len); drawcell(c, V * master_relative(c, false)); for(int i=0; i<3; i++) if(c->move(i)) dq::enqueue_by_matrix(h->cmove(i), optimized_shift(V * adj(h, i))); } } transmatrix relative_matrix(heptagon *h2, heptagon *h1, const hyperpoint& hint) override { if(gmatrix0.count(h2->c7) && gmatrix0.count(h1->c7)) return inverse_shift(gmatrix0[h1->c7], gmatrix0[h2->c7]); return Id; } transmatrix relative_matrix(cell *c2, cell *c1, const struct hyperpoint& hint) override { if(gmatrix0.count(c2) && gmatrix0.count(c1)) return inverse_shift(gmatrix0[c1], gmatrix0[c2]); return Id; } }; eGeometry gGrigorchuk(eGeometry(-1)); void create_grigorchuk_geometry() { if(gGrigorchuk != eGeometry(-1)) return; ginf.push_back(ginf[gNormal]); gGrigorchuk = eGeometry(isize(ginf) - 1); auto& gi = ginf[gGrigorchuk]; gi.sides = 3; gi.vertex = 8; gi.flags = qANYQ | qEXPERIMENTAL; gi.tiling_name = "{3,8}"; gi.quotient_name = "Grigorchuk"; gi.menu_displayed_name = "Grigorchuk group"; gi.shortname = "Grig"; gi.default_variation = eVariation::pure; } int readArgsG() { using namespace arg; if(0) ; else if(argis("-grig-limit")) { shift(); grigorchuk::grig_limit = argi(); } else if(argis("-grigorchuk")) { PHASEFROM(3); stop_game(); create_grigorchuk_geometry(); set_geometry(gGrigorchuk); set_variation(eVariation::pure); } else if(argis("-grig-nolines")) { grigorchuk::view_lines = false; } else if(argis("-grig-nolabels")) { grigorchuk::view_labels = false; } else return 1; return 0; } auto hook = addHook(hooks_args, 100, readArgsG) + addHook(hooks_newmap, 100, [] { return geometry == gGrigorchuk ? new hrmap_grigorchuk : nullptr; }) + addHook(patterns::hooks_generate_canvas, 100, [] (cell* c) { if(patterns::whichCanvas == 'G' && geometry == gGrigorchuk) return 0x102008 * (1 + ((hrmap_grigorchuk*)currentmap)->dec[c->master]->len); return -1; }) + addHook(dialog::hooks_display_dialog, 100, [] () { if(current_screen_cfunction() == showEuclideanMenu && geometry == gGrigorchuk) { dialog::addBoolItem_action(XLAT("Grigorchuk lines"), grigorchuk::view_lines, 'L'); dialog::addBoolItem_action(XLAT("Grigorchuk labels"), grigorchuk::view_labels, 'M'); } }) + addHook(hooks_initialize, 100, create_grigorchuk_geometry) + addHook(rogueviz::pres::hooks_build_rvtour, 140, [] (string s, vector<tour::slide>& v) { if(s != "mixed") return; using namespace rogueviz::pres; v.push_back(tour::slide{ "Grigorchuk group", 10, tour::LEGAL::NONE, "This is a visualization of the Grigorchuk group. It is the first known group with " "intermediate growth (i.e., superpolynomial and subexponential).\n\n" "Each tile corresponds to two elements of the Grigorchuk group.\n\n" "Every element of the Grigorchuk group has finite order. Therefore, if you choose a specific " "way of travelling (e.g. turn left, go, turn right, go) you will always eventually reach the " "starting point.\n\n" "Cells are color-coded by the distance to the origin. Distance is only known for a given number of cells " "(initially 10000); if you want to compute more distances, press '5'. Press 'o' to enable/disable lines.\n\n" "See grigorchuk.cpp for more comments.", [] (tour::presmode mode) { slide_url(mode, 'p', "a paper about Grigorchuk group", "https://arxiv.org/pdf/math/0607384.pdf"); if(mode == pmStart) { grigorchuk::grig_limit = 10000; gamestack::push(); slide_backup(patterns::whichCanvas, 'G'); slide_backup(firstland, laCanvas); slide_backup(specialland, laCanvas); set_geometry(gGrigorchuk); start_game(); resetview(); } if(mode == pmKey) { grigorchuk::prepare_to_next(true); } if(mode == pmStop) { gamestack::pop(); slide_restore_all(); } }} );}); }