// Hyperbolic Rogue -- nonisotropic spaces (Solv and Nil) // Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details /** \file nonisotropic.cpp * \brief nonisotropic spaces (Solv and Nil) */ namespace hr { EX namespace nisot { typedef array ptlow; EX transmatrix local_perspective; #if HDR inline bool local_perspective_used() { return nonisotropic || prod; } #endif EX bool geodesic_movement = true; EX transmatrix translate(hyperpoint h) { if(sl2) return slr::translate(h); transmatrix T = Id; for(int i=0; i inverse_exp_table; bool table_loaded; EX string solfname = "solv-geodesics.dat"; EX void load_table() { if(table_loaded) return; FILE *f = fopen(solfname.c_str(), "rb"); // if(!f) f = fopen("/usr/lib/soltable.dat", "rb"); if(!f) { addMessage(XLAT("geodesic table missing")); pmodel = mdPerspective; return; } fread(&PRECX, 4, 1, f); fread(&PRECY, 4, 1, f); fread(&PRECZ, 4, 1, f); inverse_exp_table.resize(PRECX * PRECY * PRECZ); fread(&inverse_exp_table[0], sizeof(nisot::ptlow) * PRECX * PRECY * PRECZ, 1, f); fclose(f); table_loaded = true; } hyperpoint christoffel(const hyperpoint at, const hyperpoint velocity, const hyperpoint transported) { return hpxyz3( -velocity[2] * transported[0] - velocity[0] * transported[2], velocity[2] * transported[1] + velocity[1] * transported[2], velocity[0] * transported[0] * exp(2*at[2]) - velocity[1] * transported[1] * exp(-2*at[2]), 0 ); } ld x_to_ix(ld u) { if(u == 0.) return 0.; ld diag = u*u/2.; ld x = diag; ld y = u; ld z = diag+1.; x /= (1.+z); y /= (1.+z); return 0.5 - atan((0.5-x) / y) / M_PI; } EX hyperpoint get_inverse_exp(hyperpoint h, bool lazy, bool just_direction) { load_table(); ld ix = h[0] >= 0. ? x_to_ix(h[0]) : x_to_ix(-h[0]); ld iy = h[1] >= 0. ? x_to_ix(h[1]) : x_to_ix(-h[1]); ld iz = tanh(h[2]); if(h[2] < 0.) { iz = -iz; swap(ix, iy); } ix *= PRECX-1; iy *= PRECY-1; iz *= PRECZ-1; hyperpoint res = C0; if(lazy) { auto r = inverse_exp_table[(int(iz)*PRECY+int(iy))*PRECX+int(ix)]; for(int i=0; i<3; i++) res[i] = r[i]; } else { if(ix >= PRECX-1) ix = PRECX-2; if(iy >= PRECX-1) iy = PRECX-2; if(iz >= PRECZ-1) iz = PRECZ-2; int ax = ix, bx = ax+1; int ay = iy, by = ay+1; int az = iz, bz = az+1; #define S0(x,y,z) inverse_exp_table[(z*PRECY+y)*PRECX+x][t] #define S1(x,y) (S0(x,y,az) * (bz-iz) + S0(x,y,bz) * (iz-az)) #define S2(x) (S1(x,ay) * (by-iy) + S1(x,by) * (iy-ay)) for(int t=0; t<3; t++) res[t] = S2(ax) * (bx-ix) + S2(bx) * (ix-ax); } if(h[2] < 0.) { swap(res[0], res[1]); res[2] = -res[2]; } if(h[0] < 0.) res[0] = -res[0]; if(h[1] < 0.) res[1] = -res[1]; if(!just_direction) { ld r = hypot_d(3, res); if(r == 0.) return res; return res * atanh(r) / r; } return res; } struct hrmap_sol : hrmap { hrmap *binary_map; unordered_map, heptagon*> at; unordered_map> coords; heptagon *origin; heptagon *getOrigin() override { return origin; } heptagon *get_at(heptagon *x, heptagon *y) { auto& h = at[make_pair(x, y)]; if(h) return h; h = tailored_alloc (S7); h->c7 = newCell(S7, h); coords[h] = make_pair(x, y); h->distance = x->distance; h->dm4 = 0; h->zebraval = x->emeraldval; h->emeraldval = y->emeraldval; h->fieldval = 0; h->cdata = NULL; h->alt = NULL; return h; } hrmap_sol() { heptagon *alt; if(true) { dynamicval g(geometry, gBinary4); alt = tailored_alloc (S7); alt->s = hsOrigin; alt->alt = alt; alt->cdata = NULL; alt->c7 = NULL; alt->zebraval = 0; alt->distance = 0; alt->emeraldval = 0; binary_map = binary::new_alt_map(alt); } origin = get_at(alt, alt); } heptagon *altstep(heptagon *h, int d) { dynamicval g(geometry, gBinary4); dynamicval cm(currentmap, binary_map); return h->cmove(d); } heptagon *create_step(heptagon *parent, int d) override { auto p = coords[parent]; auto pf = p.first, ps = p.second; auto rule = [&] (heptagon *c1, heptagon *c2, int d1) { auto g = get_at(c1, c2); parent->c.connect(d, g, d1, false); return g; }; switch(d) { case 0: // right return rule(altstep(pf, 2), ps, 4); case 1: // up return rule(pf, altstep(ps, 2), 5); case 2: // front left return rule(altstep(pf, 0), altstep(ps, 3), ps->zebraval ? 7 : 6); case 3: // front right return rule(altstep(pf, 1), altstep(ps, 3), ps->zebraval ? 7 : 6); case 4: // left return rule(altstep(pf, 4), ps, 0); case 5: // down return rule(pf, altstep(ps, 4), 1); case 6: // back down return rule(altstep(pf, 3), altstep(ps, 0), pf->zebraval ? 3 : 2); case 7: // back up return rule(altstep(pf, 3), altstep(ps, 1), pf->zebraval ? 3 : 2); default: return NULL; } } ~hrmap_sol() { delete binary_map; for(auto& p: at) clear_heptagon(p.second); } transmatrix adjmatrix(int i, int j) { ld z = log(2); ld bw = vid.binary_width * z; ld bwh = bw / 4; switch(i) { case 0: return xpush(+bw); case 1: return ypush(+bw); case 2: return xpush(-bwh) * zpush(+z) * ypush(j == 6 ? +bwh : -bwh); case 3: return xpush(+bwh) * zpush(+z) * ypush(j == 6 ? +bwh : -bwh); case 4: return xpush(-bw); case 5: return ypush(-bw); case 6: return ypush(-bwh) * zpush(-z) * xpush(j == 2 ? +bwh : -bwh); case 7: return ypush(+bwh) * zpush(-z) * xpush(j == 2 ? +bwh : -bwh); default:return Id; } } virtual transmatrix relative_matrix(heptagon *h2, heptagon *h1) override { for(int i=0; itype; i++) if(h1->move(i) == h2) return adjmatrix(i, h1->c.spin(i)); if(gmatrix0.count(h2->c7) && gmatrix0.count(h1->c7)) return inverse(gmatrix0[h1->c7]) * gmatrix0[h2->c7]; return Id; // not implemented yet } void draw() override { dq::visited.clear(); dq::enqueue(viewctr.at, cview()); while(!dq::drawqueue.empty()) { auto& p = dq::drawqueue.front(); heptagon *h = get<0>(p); transmatrix V = get<1>(p); dq::drawqueue.pop(); cell *c = h->c7; if(!do_draw(c, V)) continue; drawcell(c, V, 0, false); for(int i=0; icmove(i); dq::enqueue(h1, V * adjmatrix(i, h->c.spin(i))); } } } }; EX pair getcoord(heptagon *h) { return ((hrmap_sol*)currentmap)->coords[h]; } EX heptagon *get_at(heptagon *h1, heptagon *h2, bool gen) { auto m = ((hrmap_sol*)currentmap); if(!gen && !m->at.count(make_pair(h1, h2))) return nullptr; return m->get_at(h1, h2); } EX ld solrange_xy = 15; EX ld solrange_z = 4; EX ld glitch_xy = 2, glitch_z = 0.6; EX bool in_table_range(hyperpoint h) { if(abs(h[0]) > glitch_xy && abs(h[1]) > glitch_xy && abs(h[2]) < glitch_z) return false; return abs(h[0]) < solrange_xy && abs(h[1]) < solrange_xy && abs(h[2]) < solrange_z; } EX int approx_distance(heptagon *h1, heptagon *h2) { auto m = (hrmap_sol*) currentmap; dynamicval g(geometry, gBinary4); dynamicval cm(currentmap, m->binary_map); int d1 = binary::celldistance3_approx(m->coords[h1].first, m->coords[h2].first); int d2 = binary::celldistance3_approx(m->coords[h1].second, m->coords[h2].second); return d1 + d2 - abs(h1->distance - h2->distance); } EX string solshader = "uniform mediump sampler3D tInvExpTable;" "uniform mediump float PRECX, PRECY, PRECZ;" "float x_to_ix(float u) {" " if(u < 1e-6) return 0.;" " float diag = u*u/2.;" " float x = diag;" " float y = u;" " float z = diag+1.;" " x /= (1.+z);" " y /= (1.+z);" " return 0.5 - atan((0.5-x) / y) / 3.1415926535897932384626433832795;" " }" "vec4 inverse_exp(vec4 h) {" "float ix = h[0] >= 0. ? x_to_ix(h[0]) : x_to_ix(-h[0]);" "float iy = h[1] >= 0. ? x_to_ix(h[1]) : x_to_ix(-h[1]);" "float iz = tanh(h[2]);" "if(h[2] < 1e-6) { iz = -iz; float s = ix; ix = iy; iy = s; }" "if(iz < 0.) iz = 0.;" "vec4 res = texture3D(tInvExpTable, vec3(ix*(1.-1./PRECX) + 0.5/PRECX, iy*(1.-1./PRECY) + .5/PRECY, iz*(1.-1./PRECZ) + .5/PRECZ));" "if(h[2] < 1e-6) { res.xy = res.yx; res[2] = -res[2]; }" "if(h[0] < 0.) res[0] = -res[0];" "if(h[1] < 0.) res[1] = -res[1];" "return res;" "}"; EX } EX namespace nilv { hyperpoint christoffel(const hyperpoint Position, const hyperpoint Velocity, const hyperpoint Transported) { ld x = Position[0]; return point3( x * Velocity[1] * Transported[1] - 0.5 * (Velocity[1] * Transported[2] + Velocity[2] * Transported[1]), -.5 * x * (Velocity[1] * Transported[0] + Velocity[0] * Transported[1]) + .5 * (Velocity[2] * Transported[0] + Velocity[0] * Transported[2]), -.5 * (x*x-1) * (Velocity[1] * Transported[0] + Velocity[0] * Transported[1]) + .5 * x * (Velocity[2] * Transported[0] + Velocity[0] * Transported[2]) ); } EX hyperpoint formula_exp(hyperpoint v) { // copying Modelling Nil-geometry in Euclidean Space with Software Presentation // v[0] = c cos alpha // v[1] = c sin alpha // v[2] = w if(v[0] == 0 && v[1] == 0) return point31(v[0], v[1], v[2]); if(v[2] == 0) return point31(v[0], v[1], v[0] * v[1] / 2); ld alpha = atan2(v[1], v[0]); ld w = v[2]; ld c = hypot(v[0], v[1]) / v[2]; return point31( 2 * c * sin(w/2) * cos(w/2 + alpha), 2 * c * sin(w/2) * sin(w/2 + alpha), w * (1 + (c*c/2) * ((1 - sin(w)/w) + (1-cos(w))/w * sin(w + 2 * alpha))) ); } EX hyperpoint get_inverse_exp(hyperpoint h, int iterations) { ld wmin, wmax; ld side = h[2] - h[0] * h[1] / 2; if(hypot_d(2, h) < 1e-6) return point3(h[0], h[1], h[2]); else if(side > 1e-6) { wmin = 0, wmax = 2 * M_PI; } else if(side < -1e-6) { wmin = - 2 * M_PI, wmax = 0; } else return point3(h[0], h[1], 0); ld alpha_total = h[0] ? atan(h[1] / h[0]) : M_PI/2; ld b; if(abs(h[0]) > abs(h[1])) b = h[0] / 2 / cos(alpha_total); else b = h[1] / 2 / sin(alpha_total); ld s = sin(2 * alpha_total); for(int it=0;; it++) { ld w = (wmin + wmax) / 2; ld z = b * b * (s + (sin(w) - w)/(cos(w) - 1)) + w; if(it == iterations) { ld alpha = alpha_total - w/2; ld c = b / sin(w/2); return point3(c * w * cos(alpha), c * w * sin(alpha), w); } if(h[2] > z) wmin = w; else wmax = w; } } EX string nilshader = "vec4 inverse_exp(vec4 h) {" "float wmin, wmax;" "float side = h[2] - h[0] * h[1] / 2.;" "if(h[0]*h[0] + h[1]*h[1] < 1e-12) return vec4(h[0], h[1], h[2], 1);" "if(side > 1e-6) { wmin = 0.; wmax = 2.*PI; }" "else if(side < -1e-6) { wmin = -2.*PI; wmax = 0.; }" "else return vec4(h[0], h[1], 0., 1.);" "float at = h[0] != 0. ? atan(h[1] / h[0]) : PI/2.;" "float b = abs(h[0]) > abs(h[1]) ? h[0] / 2. / cos(at) : h[1] / 2. / sin(at);" "float s = sin(2. * at);" "for(int it=0; it<50; it++) {" "float w = (wmin + wmax) / 2.;" // the formula after ':' produces visible numerical artifacts for w~0 "float z = b * b * (s + (abs(w) < .1 ? w/3. + w*w*w/90. + w*w*w*w*w/2520.: (sin(w) - w)/(cos(w) - 1.))) + w;" "if(h[2] > z) wmin = w;" "else wmax = w;" "}" "float w = (wmin + wmax) / 2.;" "float alpha = at - w/2.;" "float c = b / sin(w/2.);" "return vec4(c*w*cos(alpha), c*w*sin(alpha), w, 1.);" "}"; struct mvec : array { mvec() { } mvec(int x, int y, int z) { auto& a = *this; a[0] = x; a[1] = y; a[2] = z; } mvec inverse() { auto& a = *this; return mvec(-a[0], -a[1], -a[2]+a[1] * a[0]); } mvec operator * (const mvec b) { auto& a = *this; return mvec(a[0] + b[0], a[1] + b[1], a[2] + b[2] + a[0] * b[1]); } }; static const mvec mvec_zero = mvec(0, 0, 0); hyperpoint mvec_to_point(mvec m) { return hpxy3(m[0], m[1], m[2]); } #if HDR static const int nilv_S7 = 8; #endif array movevectors = {{ mvec(-1,0,0), mvec(-1,0,1), mvec(0,-1,0), mvec(0,0,-1), mvec(1,0,0), mvec(1,0,-1), mvec(0,1,0), mvec(0,0,1) }}; EX array, nilv_S7> facevertices = {{ { point31(-0.5,-0.5,-0.25), point31(-0.5,-0.5,0.75), point31(-0.5,0.5,-0.25), }, { point31(-0.5,-0.5,0.75), point31(-0.5,0.5,0.75), point31(-0.5,0.5,-0.25), }, { point31(-0.5,-0.5,-0.25), point31(-0.5,-0.5,0.75), point31(0.5,-0.5,0.25), point31(0.5,-0.5,-0.75), }, { point31(-0.5,-0.5,-0.25), point31(-0.5,0.5,-0.25), point31(0.5,0.5,-0.75), point31(0.5,-0.5,-0.75), }, { point31(0.5,0.5,0.25), point31(0.5,-0.5,0.25), point31(0.5,-0.5,-0.75), }, { point31(0.5,0.5,-0.75), point31(0.5,0.5,0.25), point31(0.5,-0.5,-0.75), }, { point31(-0.5,0.5,0.75), point31(-0.5,0.5,-0.25), point31(0.5,0.5,-0.75), point31(0.5,0.5,0.25), }, { point31(-0.5,-0.5,0.75), point31(-0.5,0.5,0.75), point31(0.5,0.5,0.25), point31(0.5,-0.5,0.25), }, }}; struct hrmap_nil : hrmap { unordered_map at; unordered_map coords; heptagon *getOrigin() override { return get_at(mvec_zero); } ~hrmap_nil() { for(auto& p: at) clear_heptagon(p.second); } heptagon *get_at(mvec c) { auto& h = at[c]; if(h) return h; h = tailored_alloc (S7); h->c7 = newCell(S7, h); coords[h] = c; h->dm4 = 0; h->zebraval = c[0]; h->emeraldval = c[1]; h->fieldval = c[2]; h->cdata = NULL; h->alt = NULL; return h; } heptagon *create_step(heptagon *parent, int d) override { auto p = coords[parent]; auto q = p * movevectors[d]; auto child = get_at(q); parent->c.connect(d, child, (d + nilv_S7/2) % nilv_S7, false); return child; } transmatrix adjmatrix(int i) { return nisot::translate(mvec_to_point(movevectors[i])); } virtual transmatrix relative_matrix(heptagon *h2, heptagon *h1) override { return nisot::translate(mvec_to_point(coords[h1].inverse() * coords[h2])); } void draw() override { dq::visited.clear(); dq::enqueue(viewctr.at, cview()); while(!dq::drawqueue.empty()) { auto& p = dq::drawqueue.front(); heptagon *h = get<0>(p); transmatrix V = get<1>(p); dq::drawqueue.pop(); cell *c = h->c7; if(!do_draw(c, V)) continue; drawcell(c, V, 0, false); if(0) for(int t=0; ttype; t++) { if(!c->move(t)) continue; dynamicval g(poly_outline, darkena((0x142968*t) & 0xFFFFFF, 0, 255) ); queuepoly(V, cgi.shWireframe3D[t], 0); } for(int i=0; icmove(i); dq::enqueue(h1, V * adjmatrix(i)); } } } }; EX hyperpoint on_geodesic(hyperpoint s0, hyperpoint s1, ld x) { hyperpoint local = inverse(nisot::translate(s0)) * s1; hyperpoint h = get_inverse_exp(local, 100); return nisot::translate(s0) * formula_exp(h * x); } EX } EX namespace hybrid { EX int current_view_level; EX eGeometry underlying; EX geometry_information *underlying_cgip; EX void configure(eGeometry g) { if(g == gSL2) variation = eVariation::pure; if(vid.always3) { vid.always3 = false; geom3::apply_always3(); } check_cgi(); cgi.prepare_basics(); underlying = geometry; underlying_cgip = cgip; geometry = g; ginf[gProduct] = ginf[underlying]; ginf[gProduct].cclass = gcProduct; ginf[gProduct].g.gameplay_dimension++; ginf[gProduct].g.graphical_dimension++; } hrmap *pmap; geometry_information *pcgip; template auto in_actual(const T& t) -> decltype(t()) { dynamicval g(geometry, gProduct); dynamicval gc(cgip, pcgip); dynamicval gu(currentmap, pmap); dynamicval gup(pmap, NULL); return t(); } struct hrmap_hybrid : hrmap { hrmap *underlying_map; map, cell*> at; map> where; heptagon *getOrigin() override { return underlying_map->getOrigin(); } template auto in_underlying(const T& t) -> decltype(t()) { pcgip = cgip; dynamicval gpm(pmap, this); dynamicval g(geometry, underlying); dynamicval gc(cgip, underlying_cgip); dynamicval gu(currentmap, underlying_map); return t(); } cell *getCell(cell *u, int h) { if(sl2) h = gmod(h, 14); cell*& c = at[make_pair(u, h)]; if(!c) { c = newCell(u->type+2, u->master); where[c] = {u, h}; } return c; } cell* gamestart() override { return getCell(underlying_map->gamestart(), 0); } hrmap_hybrid() { in_underlying([this] { initcells(); underlying_map = currentmap; }); for(hrmap*& m: allmaps) if(m == underlying_map) m = NULL; } ~hrmap_hybrid() { in_underlying([this] { delete currentmap; }); for(auto& p: at) tailored_delete(p.second); } }; hrmap_hybrid* hmap() { return (hrmap_hybrid*) currentmap; } EX cell *get_at(cell *base, int level) { return hmap()->getCell(base, level); } EX pair get_where(cell *c) { return hmap()->where[c]; } void find_cell_connection(cell *c, int d) { auto m = hmap(); if(d >= c->type - 2) { cell *c1 = get_at(m->where[c].first, m->where[c].second + (d == c->type-1 ? 1 : -1)); c->c.connect(d, c1, c1->type - 3 + c->type - d, false); } else { auto cu = m->where[c].first; auto cu1 = m->in_underlying([&] { return cu->cmove(d); }); int d1 = cu->c.spin(d); int s = sl2 ? - d1*2 + d*2 + 7 : 0; cell *c1 = get_at(cu1, m->where[c].second + s); c->c.connect(d, c1, d1, cu->c.mirror(d)); } } EX void in_underlying_map(const reaction_t& f) { if(!hybri) f(); else hmap()->in_underlying(f); } #if HDR template auto in_underlying_geometry(const T& f) -> decltype(f()) { if(!hybri) return f(); dynamicval g(geometry, underlying); dynamicval gc(cgip, underlying_cgip); return f(); } #define PIU(x) hr::hybrid::in_underlying_geometry([&] { return (x); }) #endif EX } EX namespace product { struct hrmap_product : hybrid::hrmap_hybrid { transmatrix relative_matrix(cell *c2, cell *c1, const hyperpoint& point_hint) override { return in_underlying([&] { return calc_relative_matrix(where[c2].first, where[c1].first, point_hint); }) * mscale(Id, cgi.plevel * (where[c2].second - where[c1].second)); } void draw() override { in_underlying([this] { currentmap->draw(); }); } }; EX int cwall_offset, cwall_mask; void drawcell_stack(cell *c, transmatrix V, int spinv, bool mirrored) { if(sphere) gmatrix[c] = V; /* some computations need gmatrix0 for underlying geometry */ bool s = sphere; hybrid::in_actual([&] { cell *c0 = hybrid::get_at(c, hybrid::current_view_level); cwall_offset = wall_offset(c0); if(s) cwall_mask = (1<type) - 1; else { cwall_mask = 0; ld d = V[2][2]; for(int i=0; itype; i++) { ld d1 = (V * cgi.walltester[cwall_offset + i])[2]; if(d1 < d - 1e-6) cwall_mask |= (1<type); int flat_distance = hdist0(product_decompose(tC0(V)).second); int max_z = flat_distance > sightranges[gProduct] ? 0 : sqrt(sightranges[gProduct] * sightranges[gProduct] - flat_distance * flat_distance) + 1; for(int z=-max_z; z<=max_z; z++) { if(z == 0) cwall_mask ^= (2<type); if(z == 1) cwall_mask ^= (1<type); cell *c1 = hybrid::get_at(c, hybrid::current_view_level+z); setdist(c1, 7, NULL); drawcell(c1, V * mscale(Id, cgi.plevel * z), spinv, mirrored); } }); } EX hyperpoint get_corner(cell *c, int i, ld z) { ld lev = cgi.plevel * z / 2; dynamicval g(geometry, hybrid::underlying); dynamicval gc(cgip, hybrid::underlying_cgip); return mscale(get_corner_position(c, i), exp(lev)); } EX int wall_offset(cell *c) { int id = hybrid::underlying == gArchimedean ? arcm::id_of(c->master) + 20 * arcm::parent_index_of(c->master) : shvid(c); if(isize(cgi.walloffsets) <= id) cgi.walloffsets.resize(id+1, -1); int &wo = cgi.walloffsets[id]; if(wo == -1) { cell *c1 = hybrid::get_where(c).first; wo = isize(cgi.shWall3D); int won = wo + c->type; cgi.reserve_wall3d(won); for(int i=0; itype; i++) { hyperpoint w; hybrid::in_underlying_geometry([&] { /* mirror image of C0 in the axis h1-h2 */ hyperpoint h1 = get_corner_position(c1, i); hyperpoint h2 = get_corner_position(c1, i+1); transmatrix T = gpushxto0(h1); T = spintox(T * h2) * T; w = T * C0; w[1] = -w[1]; w = inverse(T) * w; }); cgi.walltester[wo + i] = w; } for(int i=0; itype; i++) cgi.make_wall(wo + i, {product::get_corner(c1, i, -1), product::get_corner(c1, i, +1), product::get_corner(c1, i+1, +1), product::get_corner(c1, i+1, -1)}); for(int a: {0,1}) { vector l; int z = a ? 1 : -1; for(int i=0; itype; i++) l.push_back(product::get_corner(c1, i, z)); cgi.make_wall(won-2+a, l); } cgi.compute_cornerbonus(); cgi.extra_vertices(); } return wo; } EX bool product_sphere() { return ginf[hybrid::underlying].cclass == gcSphere; } EX hyperpoint inverse_exp(hyperpoint h) { hyperpoint res; res[2] = zlevel(h); h = zshift(h, -res[2]); ld r = hypot_d(2, h); if(r < 1e-6) { res[0] = h[0]; res[1] = h[1]; } else { auto c = acos_auto_clamp(h[2]); r = c / r; res[0] = h[0] * r; res[1] = h[1] * r; } return res; } EX hyperpoint direct_exp(hyperpoint h) { hyperpoint res; ld d = hypot_d(2, h); ld cd = d == 0 ? 0 : sinh(d) / d; res[0] = h[0] * cd; res[1] = h[1] * cd; res[2] = cos_auto(d); return zshift(res, h[2]); } EX } EX namespace slr { /* This implementation is based on: // https://pdfs.semanticscholar.org/bf46/824df892593a1b6d1c84a5f99e90eece7c54.pdf // However, to make it consistent with the conventions in HyperRogue, // coordinates 0<->2 and 1<->3 are swapped, // then coordinates 2<->3 are swapped */ EX hyperpoint from_phigans(hyperpoint h) { ld r = asinh(hypot_d(2, h)); ld x = h[0]; ld y = h[1]; ld z = h[2]; return hyperpoint(x * cos(z) + y * sin(z), y * cos(z) - x * sin(z), cosh(r) * sin(z), cosh(r) * cos(z)); } EX hyperpoint to_phigans(hyperpoint h) { ld z = atan2(h[2], h[3]); ld x = h[0]; ld y = h[1]; return point31(x * cos(z) - y * sin(z), y * cos(z) + x * sin(z), z); } /** in the 'phigans' model */ hyperpoint christoffel(const hyperpoint Position, const hyperpoint Velocity, const hyperpoint Transported) { ld x = Position[0]; ld y = Position[1]; ld s = x*x + y*y + 1; ld x2 = x * x; ld y2 = y * y; ld x4 = x2 * x2; ld y4 = y2 * y2; return point3( + Velocity[ 0 ] * Transported[ 0 ] * (x*(4*x2*y2 + 4*y4 + 9*y2 + 1)) + Velocity[ 0 ] * Transported[ 1 ] * (-y*(4*x4 + 4*x2*y2 + 9*x2 + 2)) + Velocity[ 0 ] * Transported[ 2 ] * (-x*y*(x2 + y2 + 2)) + Velocity[ 1 ] * Transported[ 0 ] * (-y*(4*x4 + 4*x2*y2 + 9*x2 + 2)) + Velocity[ 1 ] * Transported[ 1 ] * (x*(4*x4 + 4*x2*y2 + 9*x2 + 5)) + Velocity[ 1 ] * Transported[ 2 ] * (x4 + x2*y2 + 2*x2 + 1) + Velocity[ 2 ] * Transported[ 0 ] * (-x*y*(x2 + y2 + 2)) + Velocity[ 2 ] * Transported[ 1 ] * (x4 + x2*y2 + 2*x2 + 1), + Velocity[ 0 ] * Transported[ 0 ] * (y*(4*x2*y2 + 4*y4 + 9*y2 + 5)) + Velocity[ 0 ] * Transported[ 1 ] * (-x*(4*x2*y2 + 4*y4 + 9*y2 + 2)) + Velocity[ 0 ] * Transported[ 2 ] * (-x2*y2 - y4 - 2*y2 - 1) + Velocity[ 1 ] * Transported[ 0 ] * (-x*(4*x2*y2 + 4*y4 + 9*y2 + 2)) + Velocity[ 1 ] * Transported[ 1 ] * (y*(4*x4 + 4*x2*y2 + 9*x2 + 1)) + Velocity[ 1 ] * Transported[ 2 ] * (x*y*(x2 + y2 + 2)) + Velocity[ 2 ] * Transported[ 0 ] * (-x2*y2 - y4 - 2*y2 - 1) + Velocity[ 2 ] * Transported[ 1 ] * (x*y*(x2 + y2 + 2)), + Velocity[ 0 ] * Transported[ 0 ] * (-4*x*y) + Velocity[ 0 ] * Transported[ 1 ] * (2*x2 - 2*y2) + Velocity[ 0 ] * Transported[ 2 ] * x + Velocity[ 1 ] * Transported[ 0 ] * (2*x2 - 2*y2) + Velocity[ 1 ] * Transported[ 1 ] * 4*x*y + Velocity[ 1 ] * Transported[ 2 ] * y + Velocity[ 2 ] * Transported[ 0 ] * x + Velocity[ 2 ] * Transported[ 1 ] * y ) / s; } EX transmatrix translate(hyperpoint h) { return matrix4( h[3], -h[2], h[1], h[0], h[2], h[3], -h[0], h[1], h[1], -h[0], h[3], h[2], h[0], h[1], -h[2], h[3] ); } EX hyperpoint polar(ld r, ld theta, ld phi) { return hyperpoint(sinh(r) * cos(theta-phi), sinh(r) * sin(theta-phi), cosh(r) * sin(phi), cosh(r) * cos(phi)); } EX hyperpoint xyz_point(ld x, ld y, ld z) { ld r = hypot(x, y); ld f = r ? sinh(r) / r : 1; return hyperpoint(x * f * cos(z) + y * f * sin(z), y * f * cos(z) - x * f * sin(z), cosh(r) * sin(z), cosh(r) * cos(z)); } ld rootsin(ld square, ld s) { if(square > 0) return sinh(sqrt(square) * s) / sqrt(square); else if(square < 0) return sin(sqrt(-square) * s) / sqrt(-square); else return s; } /** it==0 is standard asin, it==1 is the next solution (PI-asin) */ ld asin_it(ld z, int it) { auto ans = asin(z); if(it & 1) ans = M_PI - ans; return ans; } ld arootsin(ld square, ld v, int it) { if(square > 0) return asinh(v * sqrt(square)) / sqrt(square); else if(square < 0) return asin_it(v * sqrt(-square), it) / sqrt(-square); else return v; } ld roottan(ld square, ld s) { if(square > 0) return tanh(sqrt(square) * s) / sqrt(square); else if(square < 0) return tan(sqrt(-square) * s) / sqrt(-square); else return s; } hyperpoint geodesic_polar(ld alpha, ld beta, ld s) { auto c = cos(2*alpha); ld t; if(c > 0) t = atan(sin(alpha) * tanh(sqrt(c) * s) / sqrt(c)); else if(c < 0) { /* the formula in the paper is roughly atan(k*tan(s)) * however, atan is not always to be taken in [-PI/2,PI/2]: * if s is in [kPI-PI/2, kPI+PI/2], we should also increase the result by kPI */ ld x = sqrt(-c) * s; ld steps = floor(x/M_PI + 0.5); t = atan(sin(alpha) * tan(sqrt(-c) * s) / sqrt(-c)) + M_PI * steps; } else t = atan(sin(alpha) * s); return polar( asinh(cos(alpha) * rootsin(c, s)), beta - t, 2*sin(alpha)*s - t ); } EX hyperpoint formula_exp(hyperpoint h) { ld s = hypot_d(3, h); ld beta = atan2(h[1], h[0]); ld alpha = asin(h[2] / s); return geodesic_polar(alpha, beta, s); } void find_alpha(ld phi, ld r, ld theta, ld &alpha, ld &s, ld &beta) { if(phi < 0) { find_alpha(-phi, r, -theta, alpha, s, beta); alpha = -alpha; beta = -beta; return; } ld mina = 0, maxa = M_PI/2; bool next_nan; ld c; for(int it=0; it<40; it++) { alpha = (mina + maxa) / 2; c = cos(2 * alpha); s = arootsin(c, sinh(r) / cos(alpha), 0); if(isnan(s)) { next_nan = true, maxa = alpha; continue; } ld got_phi = 2*sin(alpha)*s - atan(sin(alpha) * roottan(c, s)); if(got_phi > phi) next_nan = false, maxa = alpha; else mina = alpha; } if(next_nan) { mina = M_PI/4; for(int it=0; it<40; it++) { alpha = (mina + maxa) / 2; c = cos(2 * alpha); s = arootsin(c, sinh(r) / cos(alpha), 1); ld got_phi = 2*sin(alpha)*s - atan(sin(alpha) * roottan(c, s)) - M_PI; if(got_phi < phi) maxa = alpha; else mina = alpha; } beta = theta + atan(sin(alpha) * roottan(c, s)) + M_PI; } else beta = theta + atan(sin(alpha) * roottan(c, s)); } EX hyperpoint get_inverse_exp(hyperpoint h) { if(sqhypot_d(2, h) < 1e-12) return point3(0, 0, atan2(h[2], h[3])); ld r = asinh(hypot_d(2, h)); ld phi = atan2(h[2], h[3]); ld theta = atan2(h[1], h[0]) + phi; ld alpha, s, beta; find_alpha(phi, r, theta, alpha, s, beta); return point3(s * cos(beta) * cos(alpha), s * sin(beta) * cos(alpha), s * sin(alpha)); } EX string slshader = "float atan2(float y, float x) {" " if(x == 0.) return y > 0. ? PI/2. : -PI/2.;" " if(x > 0.) return atan(y / x);" " if(y >= 0.) return atan(y / x) + PI;" " if(y < 0.) return atan(y / x) - PI;" " }" "vec4 inverse_exp(vec4 h) {" "if(h[0]*h[0] + h[1] * h[1] < 1e-6) return vec4(0, 0, atan(h[2], h[3]), 1);" "float r = asinh(sqrt(h[0] * h[0] + h[1] * h[1]));" "float phi = atan2(h[2], h[3]);" "float theta = atan2(h[1], h[0]) + phi;" "float alpha;" "float s;" "float beta;" "float sgn = 1.;" "if(phi < 0.) { phi = -phi; theta = -theta; sgn = -1.; }" "float c;" "s = sinh(r) / cos(PI/4.);" "float gphi = 2.*sin(PI/4.)*s - atan(sin(PI/4.) * s);" "if(gphi > phi) {" " float mina = 0.;" " float maxa = PI/4.;" " for(int it=0; it<40; it++) {" " alpha = (mina + maxa) / 2.;" " c = sqrt(cos(2. * alpha));" " s = asinh(sinh(r) / cos(alpha) * c) / c;" " gphi = 2.*sin(alpha)*s - atan(sin(alpha) * tanh(c * s) / c);" " if(gphi > phi) maxa = alpha;" " else mina = alpha;" " }" " beta = theta + atan(sin(alpha) * tanh(c * s) / c);" " }" "else {" " int next_nan = 1;" " float mina = PI/4.;" " float maxa = PI/2.;" " for(int it=0; it<40; it++) {" " alpha = (mina + maxa) / 2.;" " c = sqrt(-cos(2. * alpha));" " if(sinh(r) * c > cos(alpha)) { next_nan = 1; maxa = alpha; continue; }" " s = asin(sinh(r) * c / cos(alpha)) / c;" " gphi = 2.*sin(alpha)*s - atan(sin(alpha) * tan(c*s) / c);" " if(gphi > phi) { next_nan = 0; maxa = alpha; }" " else mina = alpha;" " }" " if(next_nan != 0) {" " mina = PI/4.;" " for(int it=0; it<10; it++) {" " alpha = (mina + maxa) / 2.;" " c = sqrt(-cos(2. * alpha));" " s = PI - asin(sinh(r) * c / cos(alpha)) / c;" " gphi = 2.*sin(alpha)*s - atan(sin(alpha) * tan(c*s) / c) - PI;" " if(gphi < phi) maxa = alpha; else mina = alpha;" " }" " beta = theta + atan(sin(alpha) * tanh(c * s) / c) + PI;" " }" " else beta = theta + atan(sin(alpha) * tanh(c * s) / c);" " }" "alpha = alpha * sgn; beta = beta * sgn;" "return vec4(s * cos(beta) * cos(alpha), s * sin(beta) * cos(alpha), s * sin(alpha), 1);" "}"; EX transmatrix adjmatrix(int i, int j) { ld zs = 2 * M_PI / 28; if(i == 7) return zpush(-zs) * spin(-2*zs); if(i == 8) return zpush(+zs) * spin(+2*zs); return spin(2 * M_PI * i / 7) * xpush(tessf7/2) * spin(M_PI - 2 * M_PI * j / 7); } struct hrmap_psl2 : hybrid::hrmap_hybrid { virtual transmatrix relative_matrix(cell *c2, cell *c1, const struct hyperpoint& point_hint) override { for(int i=0; itype; i++) if(c1->move(i) == c2) return adjmatrix(i, c1->c.spin(i)); if(gmatrix0.count(c2) && gmatrix0.count(c1)) return inverse(gmatrix0[c1]) * gmatrix0[c2]; return Id; // not implemented yet } void draw() override { set visited; cell* start = viewcenter(); vector> dq; visited.insert(start); dq.emplace_back(start, cview()); for(int i=0; icmove(i); if(visited.count(c1)) continue; visited.insert(c1); dq.emplace_back(c1, V * adjmatrix(i, c->c.spin(i))); } } } }; EX } EX namespace nisot { EX hyperpoint christoffel(const hyperpoint at, const hyperpoint velocity, const hyperpoint transported) { if(sol) return solv::christoffel(at, velocity, transported); else if(nil) return nilv::christoffel(at, velocity, transported); else if(sl2) return slr::christoffel(at, velocity, transported); else return point3(0, 0, 0); } EX bool in_table_range(hyperpoint h) { if(sol) return solv::in_table_range(h); return true; } EX void geodesic_step(hyperpoint& at, hyperpoint& velocity) { auto acc = christoffel(at, velocity, velocity); auto at2 = at + velocity / 2; auto velocity2 = velocity + acc / 2; auto acc2 = christoffel(at2, velocity2, velocity2); at = at + velocity + acc2 / 2; velocity = velocity + acc; } EX hyperpoint numerical_exp(hyperpoint v, int steps) { hyperpoint at = point31(0, 0, 0); v /= steps; v[3] = 0; for(int i=0; i g(geometry, gSphere); hr::fixmatrix(gtl); } T = push * gtl; } EX transmatrix parallel_transport(const transmatrix Position, const transmatrix LPe, hyperpoint h) { if(prod) { hyperpoint h = product::direct_exp(inverse(LPe) * product::inverse_exp(h)); return Position * rgpushxto0(h); } auto P = Position; nisot::fixmatrix(P); if(!geodesic_movement) return inverse(eupush(Position * translate(-h) * inverse(Position) * C0)) * Position; return parallel_transport_bare(P, h); } EX transmatrix spin_towards(const transmatrix Position, const hyperpoint goal) { hyperpoint at = tC0(Position); transmatrix push_back = inverse(translate(at)); hyperpoint back_goal = push_back * goal; back_goal = inverse_exp(back_goal, iTable); transmatrix back_Position = push_back * Position; return rspintox(inverse(back_Position) * back_goal); } EX hrmap *new_map() { if(sol) return new solv::hrmap_sol; if(nil) return new nilv::hrmap_nil; if(sl2) return new slr::hrmap_psl2; if(geometry == gProduct) return new product::hrmap_product; return NULL; } auto config = addHook(hooks_args, 0, [] () { using namespace arg; if(argis("-solrange")) { shift_arg_formula(solv::solrange_xy); shift_arg_formula(solv::solrange_z); return 0; } else if(argis("-fsol")) { shift(); solv::solfname = args(); return 0; } else if(argis("-solglitch")) { shift_arg_formula(solv::glitch_xy); shift_arg_formula(solv::glitch_z); return 0; } else if(argis("-solgeo")) { geodesic_movement = true; pmodel = mdGeodesic; return 0; } else if(argis("-solnogeo")) { geodesic_movement = false; pmodel = mdPerspective; return 0; } else if(argis("-product")) { PHASEFROM(2); set_geometry(gProduct); return 0; } return 1; }); } }