// Hyperbolic Rogue -- Locations // Copyright (C) 2011-2018 Zeno Rogue, see 'hyper.cpp' for details /** \file locations.cpp * \brief definition of connection tables, walkers, cell and heptagon structures * * The standard geometry uses 'heptagons' for the underlying heptagonal tessellation, * and 'cells' for the tessellation that the game is actually played on. * Other geometries also use the class 'heptagon' even if they are not heptagon-based; * there may be one 'heptagon' per each cell. Heptagons are not used in masterless * geometries, though. This file implements the basic types and functions for navigating both graphs. */ #include "hyper.h" namespace hr { #if HDR extern int cellcount, heptacount; #define NODIR 126 #define NOBARRIERS 127 /** Cell information for the game. struct cell builds on this */ struct gcell { #if CAP_BITFIELD /** which land does this cell belong to */ eLand land : 8; /** wall type (waNone for no walls) */ eWall wall : 8; /** monster on this cell -- note that player characters are handled separately */ eMonster monst : 8; /** item on this cell */ eItem item : 8; /** if this is a barrier, what lands on are on the sides? */ eLand barleft : 8, barright : 8; /** is it currently sparkling with lightning? */ unsigned ligon : 1; signed mpdist : 7, ///< minimum player distance, the smaller value, the more generated it is */ pathdist : 8, ///< distance from the target -- actual meaning may change cpdist : 8; ///< current distance to the player unsigned mondir : 8, ///< which direction the monster is facing (if relevant), also used for boats bardir : 8, ///< may equal NODIR (no barrier here), NOBARRIERS (barriers not allowed here), or the barrier direction stuntime : 8, ///< for stunned monsters, stun time left; also used for Mutant Ivy timing hitpoints : 7, ///< hitpoints left, for Palace monsters, Dragons, Krakens etc. Also reused as cpid for mirrors monmirror : 1; ///< monster mirroring state for nonorientable geometries unsigned landflags : 8; ///< some lands need additional flags #else eLand land; eWall wall; eMonster monst; eItem item; eLand barleft, barright; bool ligon, monmirror; signed char pathdist, cpdist, mpdist; unsigned char mondir, bardir, stuntime, hitpoints; unsigned char landflags; #endif /** 'landparam' is used for: * heat in Icy/Cocytus; * heat in Dry (0..10); * CR2 structure; * hive Weird Rock color / pheromones; * Ocean/coast depth; * Bomberbird Egg hatch time / mine marking; * number of Ancient Jewelry; * improved tracking in Trollheim */ union { int32_t landpar; unsigned int landpar_color; float heat; char bytes[4]; struct fieldinfo { uint16_t fieldval; unsigned rval : 4; unsigned flowerdist : 4; unsigned walldist : 4; unsigned walldist2 : 4; } fi; } LHU; /** wall parameter, used e.g. for remaining power of Bonfires and Thumpers */ char wparam; #ifdef CELLID int cellid; #endif gcell() { cellcount++; #ifdef CELLID cellid = cellcount; #endif } ~gcell() { cellcount--; } }; #define landparam LHU.landpar #define landparam_color LHU.landpar_color #define fval LHU.fi.fieldval #define MAX_EDGE 18 template struct walker; /** Connection tables are used by heptagon and cell structures. They basically * describe the structure of the graph on the given manifold. We assume that * the class T has a field c of type connection_table, * as its last field. Edges are listed in the clockwise order (for 2D tilings, * for 3D tilings the order is more arbitrary). For each edge we remember which other T * we are connected to, as well as the index of this edge in the other T, and whether it is * mirrored (for graphs on non-orientable manifolds). * To conserve memory, these classes need to be allocated with tailored_alloc * and freed with tailored_free. */ template struct connection_table { /** Table of moves. This is the maximum size, but tailored_alloc allocates less. */ T* move_table[MAX_EDGE + (MAX_EDGE + sizeof(char*) - 1) / sizeof(char*)]; unsigned char *spintable() { return (unsigned char*) (&move_table[full()->degree()]); } /** get the full T from the pointer to this connection table */ T* full() { T* x = (T*) this; return (T*)((char*)this - ((char*)(&(x->c)) - (char*)x)); } /** for the edge d, set the `spin` and `mirror` attributes */ void setspin(int d, int spin, bool mirror) { unsigned char& c = spintable() [d]; c = spin; if(mirror) c |= 128; } /** we are spin(i)-th neighbor of move[i] */ int spin(int d) { return spintable() [d] & 127; } /** on non-orientable surfaces, the d-th edge may be mirrored */ bool mirror(int d) { return spintable() [d] & 128; } /** 'fix' the edge number d to get the actual index in [0, degree()) */ int fix(int d) { return (d + MODFIXER) % full()->degree(); } /** T in the direction i */ T*& move(int i) { return move_table[i]; } /** T in the direction i, modulo degree() */ T*& modmove(int i) { return move(fix(i)); } unsigned char modspin(int i) { return spin(fix(i)); } /** initialize the table */ void fullclear() { for(int i=0; idegree(); i++) move_table[i] = NULL; } /** connect this in direction d0 to c1 in direction d1, possibly mirrored */ void connect(int d0, T* c1, int d1, bool m) { move(d0) = c1; c1->move(d1) = full(); setspin(d0, d1, m); c1->c.setspin(d1, d0, m); } /* like the other connect, but take the parameters of the other cell from a walker */ void connect(int d0, walker hs) { connect(d0, hs.at, hs.spin, hs.mirrored); } }; /** Allocate a class T with a connection_table, but * with only `degree` connections. Also set yet * unknown connections to NULL. * Generating the hyperbolic world consumes lots of * RAM, so we really need to be careful on low memory devices. */ template T* tailored_alloc(int degree) { const T* sample = (T*) °ree; T* result; #ifndef NO_TAILORED_ALLOC int b = (char*)&sample->c.move_table[degree] + degree - (char*) sample; result = (T*) new char[b]; new (result) T(); #else result = new T; #endif result->type = degree; for(int i=0; ic.move_table[i] = NULL; return result; } /** Counterpart to tailored_alloc(). */ template void tailored_delete(T* x) { x->~T(); delete[] ((char*) (x)); } static const struct wstep_t { wstep_t() {} } wstep; static const struct wmirror_t { wmirror_t() {}} wmirror; static const struct rev_t { rev_t() {} } rev; static const struct revstep_t { revstep_t() {}} revstep; extern int hrand(int); /** the walker structure is used for walking on surfaces defined via \ref connection_table. */ template struct walker { /** where we are at */ T *at; /** in which direction (edge) we are facing */ int spin; /** are we mirrored */ bool mirrored; walker (T *at = NULL, int s = 0, bool m = false) : at(at), spin(s), mirrored(m) { if(at) s = at->c.fix(s); } /** spin by i to the left (or right, when mirrored */ walker& operator += (int i) { spin = at->c.fix(spin+(mirrored?-i:i)); return (*this); } /** spin by i to the right (or left, when mirrored */ walker& operator -= (int i) { spin = at->c.fix(spin-(mirrored?-i:i)); return (*this); } /** add wmirror to mirror this walker */ walker& operator += (wmirror_t) { mirrored = !mirrored; return (*this); } /** add wstep to make a single step, after which we are facing the T we were originally on */ walker& operator += (wstep_t) { at->cmove(spin); int nspin = at->c.spin(spin); if(at->c.mirror(spin)) mirrored = !mirrored; at = at->move(spin); spin = nspin; return (*this); } /** add wrev to face the other direction, may be non-deterministic and use hrand */ walker& operator += (rev_t) { auto rd = reverse_directions(at, spin); if(rd.size() == 1) spin = rd[0]; else spin = rd[hrand(rd.size())]; return (*this); } /** adding revstep is equivalent to adding rev and step */ walker& operator += (revstep_t) { (*this) += rev; return (*this) += wstep; } bool operator != (const walker& x) const { return at != x.at || spin != x.spin || mirrored != x.mirrored; } bool operator == (const walker& x) const { return at == x.at && spin == x.spin && mirrored == x.mirrored; } bool operator < (const walker& cw2) const { return tie(at, spin, mirrored) < tie(cw2.at, cw2.spin, cw2.mirrored); } walker& operator ++ (int) { return (*this) += 1; } walker& operator -- (int) { return (*this) -= 1; } template walker operator + (U t) const { walker w = *this; w += t; return w; } template walker operator - (U t) const { walker w = *this; w += (-t); return w; } /** what T are we facing, without creating it */ T*& peek() { return at->move(spin); } /** what T are we facing, with creating it */ T* cpeek() { return at->cmove(spin); } /** would we create a new T if we stepped forwards? */ bool creates() { return !peek(); } /** mirror this walker with respect to the d-th edge */ walker mirrorat(int d) { return walker (at, at->c.fix(d+d - spin), !mirrored); } }; struct cell; // automaton state enum hstate { hsOrigin, hsA, hsB, hsError, hsA0, hsA1, hsB0, hsB1, hsC }; struct cell *createMov(struct cell *c, int d); struct heptagon *createStep(struct heptagon *c, int d); struct cdata { int val[4]; int bits; }; /** in bitruncated/irregular/Goldberg geometries, heptagons form the * underlying regular tiling (not necessarily heptagonal); in pure * geometries, they correspond 1-1 to tiles; in 'masterless' geometries * heptagons are unused */ struct heptagon { /** Automata are used to generate the standard maps. s is the state of this automaton */ hstate s : 6; /** distance modulo 4, in heptagons */ unsigned int dm4: 2; /** distance from the origin; based on the final geometry of cells, not heptagons themselves */ short distance; /** Wmerald/wineyard generator. May have different meaning in other geometries. */ short emeraldval; /** Palace pattern generator. May have different meaning in other geometries. */ short fiftyval; /** Zebra pattern generator. May have different meaning in other geometries. */ short zebraval; /** Field quotient pattern ID. May have different meaning in other geometries. */ int fieldval : 24; /** the number of adjacent heptagons */ unsigned char type : 8; /** data for fractal landscapes */ short rval0, rval1; /** for the main map, it contains the fractal landscape data * * For alternate structures, cdata contains the pointer to the original. */ struct cdata *cdata; /** which central cell does this heptagon correspond too * * For alternate geometries, c7 is NULL */ cell *c7; /** associated generator of alternate structure, for Camelot and horocycles */ heptagon *alt; /** connection table */ connection_table c; // DO NOT add any fields after connection_table! (see tailored_alloc) heptagon*& move(int d) { return c.move(d); } heptagon*& modmove(int d) { return c.modmove(d); } // functions heptagon () { heptacount++; } ~heptagon () { heptacount--; } heptagon *cmove(int d) { return createStep(this, d); } heptagon *cmodmove(int d) { return createStep(this, c.fix(d)); } inline int degree() { return type; } // prevent accidental copying heptagon(const heptagon&) = delete; heptagon& operator=(const heptagon&) = delete; }; struct cell : gcell { char type; ///< our degree int degree() { return type; } int listindex; ///< used by celllister heptagon *master; ///< heptagon who owns us; for 'masterless' tilings it contains coordinates instead connection_table c; // DO NOT add any fields after connection_table! (see tailored_alloc) cell*& move(int d) { return c.move(d); } cell*& modmove(int d) { return c.modmove(d); } cell* cmove(int d) { return createMov(this, d); } cell* cmodmove(int d) { return createMov(this, c.fix(d)); } cell() {} // prevent accidental copying cell(const cell&) = delete; heptagon& operator=(const cell&) = delete; }; /** abbreviations */ typedef walker heptspin; typedef walker cellwalker; /** A structure useful when walking on the cell graph in arbitrary way, * or listing cells in general. * Only one celllister may be active at a time, using the stack semantics. * Only the most recently created one works; the previous one will resume * working when this one is destroyed. */ struct manual_celllister { /** list of cells in this list */ vector lst; vector tmps; /** is the given cell on the list? */ bool listed(cell *c) { return c->listindex >= 0 && c->listindex < isize(lst) && lst[c->listindex] == c; } /** add a cell to the list */ bool add(cell *c) { if(listed(c)) return false; tmps.push_back(c->listindex); c->listindex = isize(lst); lst.push_back(c); return true; } ~manual_celllister() { for(int i=0; ilistindex = tmps[i]; } }; /** automatically generate a list of nearby cells */ struct celllister : manual_celllister { vector dists; void add_at(cell *c, int d) { if(add(c)) dists.push_back(d); } /** automatically generate a list of nearby cells @param orig where to start @param maxdist maximum distance to cover @param maxcount maximum number of cells to cover @param breakon we are actually looking for this cell, so stop when reaching it */ celllister(cell *orig, int maxdist, int maxcount, cell *breakon) { add_at(orig, 0); cell *last = orig; for(int i=0; i= maxcount || dists[i]+1 == maxdist) break; last = lst[isize(lst)-1]; } } } /** for a given cell c on the list, return its distance from orig */ int getdist(cell *c) { return dists[c->listindex]; } }; /** translate heptspins to cellwalkers and vice versa */ static const struct cth_t { cth_t() {}} cth; inline heptspin operator+ (cellwalker cw, cth_t) { return heptspin(cw.at->master, cw.spin * DUALMUL, cw.mirrored); } inline cellwalker operator+ (heptspin hs, cth_t) { return cellwalker(hs.at->c7, hs.spin / DUALMUL, hs.mirrored); } #endif }