// Hyperbolic Rogue -- Field Quotient geometry // Copyright (C) 2011-2018 Zeno Rogue, see 'hyper.cpp' for details /** \file fieldpattern.cpp * \brief Field Quotient geometry */ #include "hyper.h" #if CAP_FIELD namespace hr { EX namespace fieldpattern { #if HDR #define currfp fieldpattern::getcurrfp() struct primeinfo { int p; int cells; bool squared; }; struct fgeomextra { eGeometry base; vector primes; int current_prime_id; fgeomextra(eGeometry b, int i) : base(b), current_prime_id(i) {} }; #endif bool isprime(int n) { for(int k=2; k= Prime && tx % Prime) neasy++; if(ty >= Prime && ty % Prime) neasy++; int x[2], y[2], z[3]; for(int i=0; i<3; i++) z[i] = 0; for(int i=0; i<2; i++) x[i] = tx%Prime, tx /= Prime; for(int i=0; i<2; i++) y[i] = ty%Prime, ty /= Prime; for(int i=0; i<2; i++) for(int j=0; j<2; j++) z[i+j] = (z[i+j] + x[i] * y[j]) % Prime; z[0] += z[2] * wsquare; return m(z[0]) + Prime * m(z[1]); #endif } int sqr(int x) { return mul(x,x); } matrix mmul(const matrix& A, const matrix& B) { matrix res; for(int i=0; i matcode; vector matrices; vector qpaths; vector qcoords; // S7 in 2D, but e.g. 4 for a 3D cube int rotations; // S7 in 2D, but e.g. 24 for a 3D cube int local_group; // Id: Identity // R : rotate by 1/rotations of the full circle // P : make a step and turn backwards // X : in 3-dim, turn by 90 degrees matrix Id, R, P, X; matrix strtomatrix(string s) { matrix res = Id; matrix m = Id; for(int i=isize(s)-1; i>=0; i--) if(s[i] == 'R') res = mmul(R, res); else if (s[i] == 'P') res = mmul(P, res); else if (s[i] == 'x') { m[0][0] = -1; res = mmul(m, res); m[0][0] = +1; } else if (s[i] == 'y') { m[1][1] = -1; res = mmul(m, res); m[1][1] = +1; } else if (s[i] == 'z') { m[2][2] = -1; res = mmul(m, res); m[2][2] = +1; } return res; } void addas(const matrix& M, int i) { if(!matcode.count(M)) { matcode[M] = i; for(int j=0; j connections; vector inverses; // NYI in 3D // 2D only vector rrf; // rrf[i] equals gmul(i, rotations-1) vector rpf; // rpf[i] equals gmul(i, rotations) matrix mpow(matrix M, int N) { while((N&1) == 0) N >>= 1, M = mmul(M, M); matrix res = M; N >>= 1; while(N) { M = mmul(M,M); if(N&1) res = mmul(res, M); N >>= 1; } return res; } int gmul(int a, int b) { return matcode[mmul(matrices[a], matrices[b])]; } int gpow(int a, int N) { return matcode[mpow(matrices[a], N)]; } pair gmul(pair a, int b) { return make_pair(gmul(a.first,b), a.second); } int order(const matrix& M); string decodepath(int i) { string s; while(i) { if(i % S7) i--, s += 'R'; else i = connections[i], s += 'P'; } return s; } int orderstats(); int cs, sn, ch, sh; int solve(); void build(); static const int MAXDIST = 120; vector disthep; vector disthex; vector distwall, distriver, distwall2, distriverleft, distriverright, distflower; int distflower0; vector markers; int getdist(pair a, vector& dists); int getdist(pair a, pair b); int dijkstra(vector& dists, vector indist[MAXDIST]); void analyze(); int maxdist, otherpole, circrad, wallid, wallorder, riverid; bool easy(int i) { return i < Prime || !(i % Prime); } // 11 * 25 // (1+z+z^3) * (1+z^3+z^4) == // 1+z+z^7 == 1+z+z^2(z^5) == 1+z+z^2(1+z^2) = 1+z+z^2+z^4 void init(int p) { Prime = p; if(solve()) { printf("error: could not solve the fieldpattern\n"); exit(1); } build(); } fpattern(int p) { if(!p) return; init(p); } void findsubpath(); }; #endif int fpattern::solve() { for(int a=0; a3) break; Field = pw==1? Prime : Prime*Prime; if(pw == 2) { for(wsquare=1; wsquare sqrts(Prime, 0); for(int k=1-Prime; k sqrts(Field); for(int k=0; k a, vector& dists) { if(!a.second) return dists[a.first]; int m = MAXDIST; int ma = dists[a.first]; int mb = dists[connections[btspin(a.first, 3)]]; int mc = dists[connections[btspin(a.first, 4)]]; m = min(m, 1 + ma); m = min(m, 1 + mb); m = min(m, 1 + mc); if(m <= 2 && ma+mb+mc <= m*3-2) return m-1; // special case m = min(m, 2 + dists[connections[btspin(a.first, 2)]]); m = min(m, 2 + dists[connections[btspin(a.first, 5)]]); m = min(m, 2 + dists[connections[btspin(connections[btspin(a.first, 3)], 5)]]); return m; } int fpattern::getdist(pair a, pair b) { if(a.first == b.first) return a.second == b.second ? 0 : 1; if(b.first) a.first = gmul(a.first, inverses[b.first]), b.first = 0; return getdist(a, b.second ? disthex : disthep); } int fpattern::dijkstra(vector& dists, vector indist[MAXDIST]) { int N = connections.size(); dists.resize(N); for(int i=0; i indist[MAXDIST]; indist[0].push_back(0); int md0 = dijkstra(disthep, indist); indist[1].push_back(0); indist[1].push_back(connections[3]); indist[1].push_back(connections[4]); indist[2].push_back(connections[btspin(connections[3], 5)]); indist[2].push_back(connections[2]); indist[2].push_back(connections[5]); int md1 = dijkstra(disthex, indist); maxdist = max(md0, md1); otherpole = 0; for(int i=0; i disthep[otherpole]) otherpole = i; // for(int r=0; r g(geometry, gSpace435); static fpattern fp(5); return fp; } if(S7 == 8 && S3 == 3) { static fpattern fp(17); return fp; } if(S7 == 5 && S3 == 4) { static fpattern fp(11); return fp; } if(S7 == 6 && S3 == 4) { static fpattern fp(13); return fp; } if(S7 == 7 && S3 == 4) { static fpattern fp(13); return fp; } if(sphere || euclid) return fp_invalid; if(S7 == 7 && S3 == 3) return fp43; return fp_invalid; } // todo undefined behavior EX int subpathid = currfp.matcode[currfp.strtomatrix("RRRPRRRRRPRRRP")]; EX int subpathorder = currfp.order(currfp.matrices[subpathid]); // extra information for field quotient extra configuration EX vector fgeomextras = { fgeomextra(gNormal, 3), fgeomextra(gOctagon, 1), fgeomextra(g45, 0), fgeomextra(g46, 3), fgeomextra(g47, 0), /* fgeomextra(gSphere, 0), fgeomextra(gSmallSphere, 0), -> does not find the prime fgeomextra(gEuclid, 0), fgeomextra(gEuclidSquare, 0), fgeomextra(gTinySphere, 0) */ }; EX int current_extra = 0; EX void nextPrime(fgeomextra& ex) { dynamicval g(geometry, ex.base); int nextprime; if(isize(ex.primes)) nextprime = ex.primes.back().p + 1; else nextprime = 2; while(true) { fieldpattern::fpattern fp(0); fp.Prime = nextprime; if(fp.solve() == 0) { fp.build(); int cells = fp.matrices.size() / S7; ex.primes.emplace_back(primeinfo{nextprime, cells, (bool) fp.wsquare}); break; } nextprime++; } } EX void nextPrimes(fgeomextra& ex) { while(isize(ex.primes) < 4) nextPrime(ex); } EX void enableFieldChange() { fgeomextra& gxcur = fgeomextras[current_extra]; fieldpattern::quotient_field_changed = true; nextPrimes(gxcur); dynamicval g(geometry, gFieldQuotient); ginf[geometry].sides = ginf[gxcur.base].sides; ginf[geometry].vertex = ginf[gxcur.base].vertex; ginf[geometry].distlimit = ginf[gxcur.base].distlimit; ginf[geometry].tiling_name = ginf[gxcur.base].tiling_name; fieldpattern::current_quotient_field.init(gxcur.primes[gxcur.current_prime_id].p); } EX } #define currfp fieldpattern::getcurrfp() EX int currfp_gmul(int a, int b) { return currfp.gmul(a,b); } EX int currfp_inverses(int i) { return currfp.inverses[i]; } EX int currfp_distwall(int i) { return currfp.distwall[i]; } EX int currfp_n() { return isize(currfp.matrices); } EX int currfp_get_R() { return currfp.matcode[currfp.R]; } EX int currfp_get_P() { return currfp.matcode[currfp.P]; } EX int currfp_get_X() { return currfp.matcode[currfp.X]; } } #endif