// Hyperbolic Rogue // geometrical constants // Copyright (C) 2011-2018 Zeno Rogue, see 'hyper.cpp' for details namespace hr { bool debug_geometry = false; ld tessf, crossf, hexf, hcrossf, hexhexdist, hexvdist, hepvdist, rhexf; // tessf: distance from heptagon center to another heptagon center // hexf: distance from heptagon center to small heptagon vertex // hcrossf: distance from heptagon center to big heptagon vertex // crossf: distance from heptagon center to adjacent cell center (either hcrossf or tessf) // hexhexdist: distance between adjacent hexagon vertices // hexvdist: distance between hexagon vertex and hexagon center // hepvdist: distance between heptagon vertex and hexagon center (either hcrossf or something else) // rhexf: distance from heptagon center to heptagon vertex (either hexf or hcrossf) int base_distlimit; hyperpoint Crad[MAX_S84]; transmatrix heptmove[MAX_EDGE], hexmove[MAX_EDGE]; transmatrix invheptmove[MAX_EDGE], invhexmove[MAX_EDGE]; ld hexshift; // the results are: // hexf = 0.378077 hcrossf = 0.620672 tessf = 1.090550 // hexhexdist = 0.566256 ld hcrossf7 = 0.620672; ld hexf7 = 0.378077; ld scalefactor, orbsize, floorrad0, floorrad1, zhexf; // the distance between two hexagon centers void precalc() { DEBB(DF_INIT, (debugfile,"precalc\n")); hexshift = 0; int vertexdegree = S6/2; ld fmin, fmax; if(archimedean) ginf[gArchimedean].cclass = gcHyperbolic; if(euclid) { // dynamicval<eGeometry> g(geometry, gNormal); // precalc(); } // for(int i=0; i<S84; i++) spinmatrix[i] = spin(i * M_PI / S42); if(a4 && !BITRUNCATED) { crossf = .5; hexf = .5; hcrossf = crossf * sqrt(2) / 2; hexhexdist = crossf; hexvdist = hexf; hepvdist = hexf; rhexf = crossf * sqrt(2) / 2; tessf = crossf; } else if(a4 && BITRUNCATED) { ld s2 = sqrt(2); ld xx = 1 - s2 / 2; crossf = .5; tessf = crossf * s2; hexf = .5 * xx * s2; hcrossf = crossf; hexhexdist = crossf * s2; hexvdist = crossf * hypot(1-xx, xx); hepvdist = crossf; rhexf = hexf; tessf = crossf; } else { crossf = .5; tessf = crossf * sqrt(3); hexf = tessf/3; hcrossf = crossf; hexhexdist = crossf; hexvdist = hexf; hepvdist = crossf; rhexf = hexf; } goto finish; } fmin = 0, fmax = 3; for(int p=0; p<100; p++) { ld f = (fmin+fmax) / 2; ld v1=0, v2=0; if(vertexdegree == 3) { hyperpoint H = xpush0(f); v1 = intval(H, C0), v2 = intval(H, spin(2*M_PI/S7)*H); } else if(vertexdegree == 4) { hyperpoint H = xpush0(f); ld opposite = hdist(H, spin(2*M_PI/S7)*H); hyperpoint Hopposite = xspinpush0(M_PI/S7, opposite); v2 = intval(H, Hopposite), v1 = intval(H, C0); } if(sphere ? v1 < v2 : v1 > v2) fmin = f; else fmax = f; } tessf = fmin; if(elliptic && S7 == 4) tessf = M_PI/2; if(vertexdegree == 3) { fmin = 0, fmax = sphere ? M_PI / 2 : 2; for(int p=0; p<100; p++) { ld f = (fmin+fmax) / 2; hyperpoint H = xspinpush0(M_PI/S7, f); ld v1 = intval(H, C0), v2 = intval(H, xpush0(tessf)); if(v1 < v2) fmin = f; else fmax = f; } hcrossf = fmin; } else { hcrossf = hdist(xpush0(tessf), xspinpush0(2*M_PI/S7, tessf)) / 2; } crossf = BITRUNCATED ? hcrossf : tessf; fmin = 0, fmax = tessf; for(int p=0; p<100; p++) { ld f = (fmin+fmax) / 2; hyperpoint H = xpush0(f); hyperpoint H1 = spin(2*M_PI/S7) * H; hyperpoint H2 = xpush0(tessf-f); ld v1 = intval(H, H1), v2 = intval(H, H2); if(v1 < v2) fmin = f; else fmax = f; } hexf = fmin; rhexf = BITRUNCATED ? hexf : hcrossf; if(!euclid && BITRUNCATED && !(S7&1)) hexshift = ALPHA/2 + ALPHA * ((S7-1)/2) + M_PI; finish: for(int i=0; i<S42; i++) Crad[i] = xspinpush0(2*M_PI*i/S42, .4); for(int d=0; d<S7; d++) heptmove[d] = spin(-d * ALPHA) * xpush(tessf) * spin(M_PI); for(int d=0; d<S7; d++) hexmove[d] = spin(hexshift-d * ALPHA) * xpush(-crossf)* spin(M_PI); for(int d=0; d<S7; d++) invheptmove[d] = inverse(heptmove[d]); for(int d=0; d<S7; d++) invhexmove[d] = inverse(hexmove[d]); hexhexdist = hdist(xpush0(crossf), xspinpush0(M_PI*2/S7, crossf)); hexvdist = hdist(xpush0(hexf), xspinpush0(ALPHA/2, hcrossf)); if(debug_geometry) printf("S7=%d S6=%d hexf = " LDF" hcross = " LDF" tessf = " LDF" hexshift = " LDF " hexhex = " LDF " hexv = " LDF "\n", S7, S6, hexf, hcrossf, tessf, hexshift, hexhexdist, hexvdist); base_distlimit = ginf[geometry].distlimit[!BITRUNCATED]; gp::compute_geometry(); irr::compute_geometry(); if(archimedean) { arcm::current.compute_geometry(); crossf = hcrossf7 * arcm::current.scale(); hexvdist = arcm::current.scale() * .5; rhexf = arcm::current.scale() * .5; } if(binarytiling) hexvdist = rhexf = 1, tessf = 1, scalefactor = 1, crossf = hcrossf7; scalefactor = crossf / hcrossf7; orbsize = crossf; zhexf = BITRUNCATED ? hexf : crossf* .55; floorrad0 = hexvdist* 0.92; floorrad1 = rhexf * 0.94; if(euclid4) { if(!BITRUNCATED) floorrad0 = floorrad1 = rhexf * .94; else floorrad0 = hexvdist * .9, floorrad1 = rhexf * .8; } set_sibling_limit(); } transmatrix xspinpush(ld dir, ld dist) { if(euclid) return eupush(cos(dir) * dist, -sin(dir) * dist); else return spin(dir) * xpush(dist) * spin(-dir); } namespace geom3 { int tc_alpha=3, tc_depth=1, tc_camera=2; ld depth = 1; // world below the plane ld camera = 1; // camera above the plane ld wall_height = .3; ld slev = .08; ld lake_top = .25, lake_bottom = .9; ld rock_wall_ratio = .9; ld human_wall_ratio = .7; ld human_height; bool gp_autoscale_heights = true; ld highdetail = 8, middetail = 8; // Here we convert between the following parameters: // abslev: level below the plane // lev: level above the world (abslev = depth-lev) // projection: projection parameter // factor: zoom factor ld abslev_to_projection(ld abslev) { if(sphere || euclid) return camera+abslev; return tanh(abslev) / tanh(camera); } ld projection_to_abslev(ld proj) { if(sphere || euclid) return proj-camera; // tanh(abslev) / tanh(camera) = proj return atanh(proj * tanh(camera)); } ld lev_to_projection(ld lev) { return abslev_to_projection(depth - lev); } ld projection_to_factor(ld proj) { return lev_to_projection(0) / proj; } ld factor_to_projection(ld fac) { return lev_to_projection(0) / fac; } ld lev_to_factor(ld lev) { return projection_to_factor(lev_to_projection(lev)); } ld factor_to_lev(ld fac) { return depth - projection_to_abslev(factor_to_projection(fac)); } // how should we scale at level lev ld scale_at_lev(ld lev) { if(sphere || euclid) return 1; return cosh(depth - lev); } ld INFDEEP, BOTTOM, HELLSPIKE, LAKE, WALL, SLEV[4], FLATEYE, LEG1, LEG, LEG3, GROIN, GROIN1, GHOST, BODY, NECK1, NECK, NECK3, HEAD, ABODY, AHEAD, BIRD; string invalid; ld actual_wall_height() { if(GOLDBERG && gp_autoscale_heights) return wall_height * min<ld>(4 / hypot2(gp::next), 1); return wall_height; } void compute() { // tanh(depth) / tanh(camera) == vid.alpha invalid = ""; if(tc_alpha < tc_depth && tc_alpha < tc_camera) vid.alpha = tan_auto(depth) / tan_auto(camera); else if(tc_depth < tc_alpha && tc_depth < tc_camera) { ld v = vid.alpha * tan_auto(camera); if(hyperbolic && (v<1e-6-12 || v>1-1e-12)) invalid = "cannot adjust depth", depth = camera; else depth = atan_auto(v); } else { ld v = tan_auto(depth) / vid.alpha; if(hyperbolic && (v<1e-12-1 || v>1-1e-12)) invalid = "cannot adjust camera", camera = depth; else camera = atan_auto(v); } if(fabs(vid.alpha) < 1e-6) invalid = "does not work with perfect Klein"; if(invalid != "") { INFDEEP = .7; BOTTOM = .8; HELLSPIKE = .85; LAKE = .9; WALL = 1.25; SLEV[0] = 1; SLEV[1] = 1.08; SLEV[2] = 1.16; SLEV[3] = 1.24; FLATEYE = 1.03; LEG1 = 1.025; LEG = 1.05; LEG3 = 1.075; GROIN = 1.09; GROIN1 = 1.105; GHOST = 1.1; BODY = 1.15; NECK1 = 1.16; NECK = 1.17; NECK3 = 1.18; HEAD = 1.19; ABODY = 1.08; AHEAD = 1.12; BIRD = 1.20; } else { INFDEEP = (euclid || sphere) ? 0.01 : lev_to_projection(0) * tanh(camera); ld wh = actual_wall_height(); WALL = lev_to_factor(wh); human_height = human_wall_ratio * wh; LEG1 = lev_to_factor(human_height * .1); LEG = lev_to_factor(human_height * .2); LEG3 = lev_to_factor(human_height * .3); GROIN = lev_to_factor(human_height * .4); GROIN1= lev_to_factor(human_height * .5); BODY = lev_to_factor(human_height * .6); NECK1 = lev_to_factor(human_height * .7); NECK = lev_to_factor(human_height * .8); NECK3 = lev_to_factor(human_height * .9); HEAD = lev_to_factor(human_height); ABODY = lev_to_factor(human_height * .4); AHEAD = lev_to_factor(human_height * .6); BIRD = lev_to_factor((human_wall_ratio+1)/2 * wh * .8); GHOST = lev_to_factor(human_height * .5); FLATEYE = lev_to_factor(human_height * .15); slev = rock_wall_ratio * wh / 3; for(int s=0; s<=3; s++) SLEV[s] = lev_to_factor(rock_wall_ratio * wh * s/3); LAKE = lev_to_factor(-lake_top); HELLSPIKE = lev_to_factor(-(lake_top+lake_bottom)/2); BOTTOM = lev_to_factor(-lake_bottom); } } } void initgeo() { // printf("%Lf\n", (ld) hdist0(xpush(-1)*ypush(0.01)*xpush(1)*C0)); precalc(); } }