// Hyperbolic Rogue -- cells // Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details /** \file cell.cpp * \brief General cells and maps * * Start with locations.cpp */ #include "hyper.h" namespace hr { #if HDR extern int default_levs(); struct hrmap { virtual heptagon *getOrigin() { return NULL; } virtual cell *gamestart() { return getOrigin()->c7; } virtual ~hrmap() { } virtual vector& allcells(); virtual void verify() { } virtual void on_dim_change() { } virtual void link_alt(const cellwalker& hs) { } virtual void generateAlts(heptagon *h, int levs = default_levs(), bool link_cdata = true); heptagon *may_create_step(heptagon *h, int direction) { if(h->move(direction)) return h->move(direction); return create_step(h, direction); } virtual heptagon *create_step(heptagon *h, int direction) { printf("create_step called unexpectedly\n"); exit(1); return NULL; } virtual struct transmatrix relative_matrix(heptagon *h2, heptagon *h1, const hyperpoint& hint) { printf("relative_matrix called unexpectedly\n"); return Id; } virtual struct transmatrix relative_matrix(cell *c2, cell *c1, const hyperpoint& hint) { return relative_matrix(c2->master, c1->master, hint); } virtual struct transmatrix adj(cell *c, int i) { return adj(c->master, i); } virtual struct transmatrix adj(heptagon *h, int i); struct transmatrix iadj(cell *c, int i) { cell *c1 = c->cmove(i); return adj(c1, c->c.spin(i)); } transmatrix iadj(heptagon *h, int d) { heptagon *h1 = h->cmove(d); return adj(h1, h->c.spin(d)); } virtual void draw_all(); virtual void draw_at(cell *at, const shiftmatrix& where); virtual void virtualRebase(heptagon*& base, transmatrix& at) { printf("virtualRebase called unexpectedly\n"); return; } static constexpr ld SPIN_NOT_AVAILABLE = 1e5; virtual ld spin_angle(cell *c, int d) { return SPIN_NOT_AVAILABLE; } virtual transmatrix spin_to(cell *c, int d, ld bonus=0); virtual transmatrix spin_from(cell *c, int d, ld bonus=0); virtual double spacedist(cell *c, int i) { return hdist0(tC0(adj(c, i))); } virtual bool strict_tree_rules() { return false; } virtual void find_cell_connection(cell *c, int d); virtual int shvid(cell *c) { return 0; } virtual int full_shvid(cell *c) { return shvid(c); } virtual hyperpoint get_corner(cell *c, int cid, ld cf=3) { return C0; } virtual transmatrix master_relative(cell *c, bool get_inverse = false) { return Id; } virtual int wall_offset(cell *c); virtual transmatrix ray_iadj(cell *c, int i) { if(WDIM == 2) { return to_other_side(get_corner(c, i), get_corner(c, (i+1))); } return currentmap->iadj(c, i); } virtual subcellshape& get_cellshape(cell *c) { if(cgi.heptshape) return *cgi.heptshape; throw hr_exception("get_cellshape called unexpectedly"); } /** \brief in 3D honeycombs, returns a cellwalker res at cw->move(j) such that the face pointed at by cw and res share an edge */ virtual cellwalker strafe(cellwalker cw, int j) { throw hr_exception("strafe called unexpectedly"); } /** \brief in 3D honeycombs, returns a vector v, where v[j] iff faces i and j are adjacent */ const vector& dirdist(cellwalker cw) { return get_cellshape(cw.at).dirdist[cw.spin]; } /** \brief the sequence of heptagon movement direction to get from c->master to c->move(i)->master; implemented only for reg3 */ virtual const vector& get_move_seq(cell *c, int i) { throw hr_exception("get_move_seq not implemented for this map class"); } }; /** hrmaps which are based on regular non-Euclidean 2D tilings, possibly quotient * Operators can be applied to these maps. * Liskov substitution warning: maps which produce both tiling like above and 3D tilings * (e.g. Euclidean and Crystal) also inherit from hrmap_standard **/ struct hrmap_standard : hrmap { void draw_at(cell *at, const shiftmatrix& where) override; transmatrix relative_matrix(heptagon *h2, heptagon *h1, const hyperpoint& hint) override; transmatrix relative_matrix(cell *c2, cell *c1, const hyperpoint& hint) override; heptagon *create_step(heptagon *h, int direction) override; transmatrix adj(cell *c, int d) override; transmatrix adj(heptagon *h, int d) override; ld spin_angle(cell *c, int d) override; double spacedist(cell *c, int i) override; void find_cell_connection(cell *c, int d) override; virtual int shvid(cell *c) override; virtual hyperpoint get_corner(cell *c, int cid, ld cf) override; virtual transmatrix master_relative(cell *c, bool get_inverse) override; }; void clearfrom(heptagon*); void verifycells(heptagon*); struct hrmap_hyperbolic : hrmap_standard { heptagon *origin; hrmap_hyperbolic(); hrmap_hyperbolic(heptagon *origin); heptagon *getOrigin() override { return origin; } ~hrmap_hyperbolic() { // verifycells(origin); // printf("Deleting hyperbolic map: %p\n", hr::voidp(this)); clearfrom(origin); } void verify() override { verifycells(origin); } void virtualRebase(heptagon*& base, transmatrix& at) override; }; #endif transmatrix hrmap::spin_to(cell *c, int d, ld bonus) { ld sa = spin_angle(c, d); if(sa != SPIN_NOT_AVAILABLE) { return spin(bonus + sa); } transmatrix T = rspintox(tC0(adj(c, d))); if(WDIM == 3) return T * cspin(2, 0, bonus); return T * spin(bonus); } transmatrix hrmap::spin_from(cell *c, int d, ld bonus) { ld sa = spin_angle(c, d); if(sa != SPIN_NOT_AVAILABLE) { return spin(bonus - sa); } transmatrix T = spintox(tC0(adj(c, d))); if(WDIM == 3) return T * cspin(2, 0, bonus); return T * spin(bonus); } transmatrix hrmap::adj(heptagon *h, int i) { return relative_matrix(h->cmove(i), h, C0); } vector& hrmap::allcells() { static vector default_allcells; if(bounded && !(cgflags & qHUGE_BOUNDED) && !(hybri && hybrid::csteps == 0)) { celllister cl(gamestart(), 1000000, 1000000, NULL); default_allcells = cl.lst; return default_allcells; } if(isize(dcal) <= 1) { extern cellwalker cwt; celllister cl(cwt.at, 1, 1000, NULL); default_allcells = cl.lst; return default_allcells; } return dcal; } EX int dirdiff(int dd, int t) { dd %= t; if(dd<0) dd += t; if(t-dd < dd) dd = t-dd; return dd; } EX int cellcount = 0; EX void destroy_cell(cell *c) { tailored_delete(c); cellcount--; } EX cell *newCell(int type, heptagon *master) { cell *c = tailored_alloc (type); c->type = type; c->master = master; initcell(c); hybrid::will_link(c); cellcount++; return c; } // -- hrmap --- EX hrmap *currentmap; EX vector allmaps; EX hrmap *newAltMap(heptagon *o) { #if MAXMDIM >= 4 if(reg3::in_rule()) return reg3::new_alt_map(o); #endif return new hrmap_hyperbolic(o); } // --- hyperbolic geometry --- EX heptagon* hyperbolic_origin() { int odegree = geometry == gBinaryTiling ? 6 : S7; heptagon *origin = init_heptagon(odegree); heptagon& h = *origin; h.s = hsOrigin; h.emeraldval = a46 ? 0 : 98; h.zebraval = 40; #if CAP_IRR if(IRREGULAR) irr::link_start(origin); else #endif h.c7 = newCell(odegree, origin); return origin; } hrmap_hyperbolic::hrmap_hyperbolic(heptagon *o) { origin = o; } hrmap_hyperbolic::hrmap_hyperbolic() { origin = hyperbolic_origin(); } void hrmap::find_cell_connection(cell *c, int d) { heptagon *h2 = createStep(c->master, d); c->c.connect(d, h2->c7,c->master->c.spin(d), c->master->c.mirror(d)); hybrid::link(); } void hrmap_standard::find_cell_connection(cell *c, int d) { #if CAP_IRR if(IRREGULAR) { irr::link_cell(c, d); } #endif #if CAP_GP else if(GOLDBERG) { gp::extend_map(c, d); if(!c->move(d)) { printf("extend failed to create for %p/%d\n", hr::voidp(c), d); exit(1); } hybrid::link(); } #endif else if(PURE) { hrmap::find_cell_connection(c, d); } else if(c == c->master->c7) { cell *n = newCell(S6, c->master); heptspin hs(c->master, d, false); int alt3 = c->type/2; int alt4 = alt3+1; for(int u=0; uc7->c.connect(hs.spin, n, u, hs.mirrored); if(hs.mirrored && (S7%2 == 0)) hs--; hs = hs + alt3 + wstep - alt4; } hybrid::link(); extern void verifycell(cell *c); verifycell(n); } else { cellwalker cw(c, d, false); cellwalker cw2 = cw - 1 + wstep - 1 + wstep - 1; c->c.connect(d, cw2); hybrid::link(); } } /** very similar to createMove in heptagon.cpp */ EX cell *createMov(cell *c, int d) { if(d<0 || d>= c->type) throw hr_exception("ERROR createmov\n"); if(c->move(d)) return c->move(d); currentmap->find_cell_connection(c, d); return c->move(d); } EX void eumerge(cell* c1, int s1, cell *c2, int s2, bool mirror) { if(!c2) return; c1->move(s1) = c2; c1->c.setspin(s1, s2, mirror); c2->move(s2) = c1; c2->c.setspin(s2, s1, mirror); } // map, cell*> euclidean; EX hookset hooks_newmap; /** create a map in the current geometry */ EX void initcells() { DEBB(DF_INIT, ("initcells")); hrmap* res = callhandlers((hrmap*)nullptr, hooks_newmap); if(res) currentmap = res; #if CAP_SOLV else if(asonov::in()) currentmap = asonov::new_map(); #endif else if(nonisotropic || hybri) currentmap = nisot::new_map(); else if(INVERSE) currentmap = gp::new_inverse(); else if(fake::in()) currentmap = fake::new_map(); #if CAP_CRYSTAL else if(cryst) currentmap = crystal::new_map(); #endif else if(arb::in()) currentmap = arb::new_map(); #if CAP_ARCM else if(arcm::in()) currentmap = arcm::new_map(); #endif else if(euc::in()) currentmap = euc::new_map(); #if CAP_BT else if(kite::in()) currentmap = kite::new_map(); #endif #if MAXMDIM >= 4 else if(WDIM == 3 && !bt::in()) currentmap = reg3::new_map(); #endif else if(sphere) currentmap = new_spherical_map(); else if(quotient) currentmap = quotientspace::new_map(); #if CAP_BT else if(bt::in()) currentmap = bt::new_map(); #endif else if(S3 >= OINF) currentmap = inforder::new_map(); else currentmap = new hrmap_hyperbolic; allmaps.push_back(currentmap); #if CAP_FIELD windmap::create(); #endif // origin->emeraldval = } EX void clearcell(cell *c) { if(!c) return; DEBB(DF_MEMORY, (format("c%d %p\n", c->type, hr::voidp(c)))); for(int t=0; ttype; t++) if(c->move(t)) { DEBB(DF_MEMORY, (format("mov %p [%p] S%d\n", hr::voidp(c->move(t)), hr::voidp(c->move(t)->move(c->c.spin(t))), c->c.spin(t)))); if(c->move(t)->move(c->c.spin(t)) != NULL && c->move(t)->move(c->c.spin(t)) != c) { DEBB(DF_MEMORY | DF_ERROR, (format("cell error: type = %d %d -> %d\n", c->type, t, c->c.spin(t)))); exit(1); } c->move(t)->move(c->c.spin(t)) = NULL; } DEBB(DF_MEMORY, (format("DEL %p\n", hr::voidp(c)))); destroy_cell(c); gp::delete_mapped(c); } EX heptagon deletion_marker; template void subcell(cell *c, const T& t) { if(GOLDBERG) { forCellEx(c2, c) if(c2->move(0) == c && c2 != c2->master->c7) { subcell(c2, t); } } else if(BITRUNCATED && !arcm::in() && !bt::in()) forCellEx(c2, c) t(c2); t(c); } EX void clearHexes(heptagon *at) { if(at->c7 && at->cdata) { delete at->cdata; at->cdata = NULL; } if(0); #if CAP_IRR else if(IRREGULAR) irr::clear_links(at); #endif else if(at->c7) subcell(at->c7, clearcell); } void unlink_cdata(heptagon *h) { if(h->alt && h->c7) { if(h->alt->cdata == (cdata*) h) h->alt->cdata = NULL; } } EX void clear_heptagon(heptagon *at) { clearHexes(at); tailored_delete(at); } EX void clearfrom(heptagon *at) { if(!at) return; queue q; unlink_cdata(at); q.push(at); at->alt = &deletion_marker; //int maxq = 0; while(!q.empty()) { at = q.front(); // if(q.size() > maxq) maxq = q.size(); q.pop(); DEBB(DF_MEMORY, ("from %p", at)); if(!at->c7) { heptagon *h = dynamic_cast ((cdata_or_heptagon*) at->cdata); if(h) { if(h->alt != at) { DEBB(DF_MEMORY | DF_ERROR, ("alt error :: h->alt = ", h->alt, " expected ", at)); } cell *c = h->c7; subcell(c, destroycellcontents); h->alt = NULL; at->cdata = NULL; } } int edges = at->degree(); if(bt::in() && WDIM == 2) edges = at->c7->type; for(int i=0; imove(i) && at->move(i) != at) { if(at->move(i)->alt != &deletion_marker) q.push(at->move(i)); unlink_cdata(at->move(i)); at->move(i)->alt = &deletion_marker; DEBB(DF_MEMORY, ("!mov ", at->move(i), " [", at->move(i)->move(at->c.spin(i)), "]")); if(at->move(i)->move(at->c.spin(i)) != NULL && at->move(i)->move(at->c.spin(i)) != at) { DEBB(DF_MEMORY | DF_ERROR, ("hept error")); exit(1); } at->move(i)->move(at->c.spin(i)) = NULL; at->move(i) = NULL; } clearHexes(at); tailored_delete(at); } //printf("maxq = %d\n", maxq); } EX void verifycell(cell *c) { int t = c->type; for(int i=0; imove(i); if(c2) { if(BITRUNCATED && c == c->master->c7) verifycell(c2); if(c2->move(c->c.spin(i)) && c2->move(c->c.spin(i)) != c) { printf("cell error %p:%d [%d] %p:%d [%d]\n", hr::voidp(c), i, c->type, hr::voidp(c2), c->c.spin(i), c2->type); exit(1); } } } } EX void verifycells(heptagon *at) { if(GOLDBERG || IRREGULAR || arcm::in()) return; for(int i=0; itype; i++) if(at->move(i) && at->move(i)->move(at->c.spin(i)) && at->move(i)->move(at->c.spin(i)) != at) { printf("hexmix error %p [%d s=%d] %p %p\n", hr::voidp(at), i, at->c.spin(i), hr::voidp(at->move(i)), hr::voidp(at->move(i)->move(at->c.spin(i)))); } if(!sphere && !quotient) for(int i=0; imove(i) && at->c.spin(i) == 0 && at->s != hsOrigin) verifycells(at->move(i)); verifycell(at->c7); } EX int compdist(int dx[]) { int mi = dx[0]; for(int u=0; u mi+2) return -1; // { printf("cycle error!\n"); exit(1); } for(int u=0; ugamestart()); if(nil && !quotient) return DISTANCE_UNKNOWN; if(euc::in()) return celldistance(currentmap->gamestart(), c); if(sphere || bt::in() || WDIM == 3 || cryst || sn::in() || kite::in() || bounded) return celldistance(currentmap->gamestart(), c); #if CAP_IRR if(IRREGULAR) return irr::celldist(c, false); #endif if(arcm::in() || ctof(c) || arb::in()) return c->master->distance; #if CAP_GP if(INVERSE) { cell *c1 = gp::get_mapped(c); return UIU(gp::compute_dist(c1, celldist)) / 2; /* TODO */ } if(GOLDBERG) return gp::compute_dist(c, celldist); #endif int dx[MAX_S3]; for(int u=0; umaster->distance; return compdist(dx); } #if HDR static const int ALTDIST_BOUNDARY = 99999; static const int ALTDIST_UNKNOWN = 99998; static const int ALTDIST_ERROR = 90000; #endif EX int celldistAlt(cell *c) { if(experimental) return 0; if(hybri) { if(in_s2xe()) return hybrid::get_where(c).second; auto w = hybrid::get_where(c); int d = c->master->alt && c->master->alt->alt ? c->master->alt->alt->fieldval : 0; d = sl2 ? 0 : abs(w.second - d); PIU ( d += celldistAlt(w.first) ); return d; } #if CAP_BT if(bt::in() || sn::in()) return c->master->distance + (specialland == laCamelot && !ls::single() ? 30 : 0); #endif if(nil) return c->master->zebraval + abs(c->master->emeraldval) + (specialland == laCamelot && !ls::single() ? 30 : 0);; #if CAP_CRYSTAL if(cryst) return crystal::dist_alt(c); #endif if(sphere || quotient) { return celldist(c) - 3; } #if MAXMDIM >= 4 if(euc::in()) return euc::dist_alt(c); if(hyperbolic && WDIM == 3 && !reg3::in_rule()) return reg3::altdist(c->master); #endif if(!c->master->alt) return 0; #if CAP_IRR if(IRREGULAR) return irr::celldist(c, true); #endif if(ctof(c)) return c->master->alt->distance; if(reg3::in()) return c->master->alt->distance; #if CAP_GP if(GOLDBERG) return gp::compute_dist(c, celldistAlt); if(INVERSE) { cell *c1 = gp::get_mapped(c); return UIU(gp::compute_dist(c1, celldistAlt)) / 2; /* TODO */ } #endif int dx[MAX_S3]; dx[0] = 0; for(int u=0; umaster->alt == NULL) return ALTDIST_UNKNOWN; for(int u=0; umaster->alt->distance; // return compdist(dx); -> not OK because of boundary conditions int mi = dx[0]; for(int i=1; i mi+2) return ALTDIST_BOUNDARY; // { printf("cycle error!\n"); exit(1); } for(int i=0; i= 4 if(WDIM == 3 && reg3::in_rule()) { for(int i=0; imove(i) && h->move(i)->distance < h->distance) return i; return -1; } #endif if(h->distance == 0) return -1; return 0; } /** direction upwards in the alt-tree */ EX int updir_alt(heptagon *h) { if(euclid || !h->alt) return -1; #if MAXMDIM >= 4 if(WDIM == 3 && reg3::in_rule()) { for(int i=0; imove(i) && h->move(i)->alt && h->move(i)->alt->distance < h->alt->distance) return i; return -1; } #endif for(int i=0; imove(i) && h->move(i)->alt == h->alt->move(0)) return i; return -1; } #if HDR static const int RPV_MODULO = 5; static const int RPV_RAND = 0; static const int RPV_ZEBRA = 1; static const int RPV_EMERALD = 2; static const int RPV_PALACE = 3; static const int RPV_CYCLE = 4; #endif // x mod 5 = pattern type // x mod (powers of 2) = pattern type specific // (x/5) mod 15 = picture for drawing floors // x mod 7 = chance of pattern-specific pic // whole = randomization EX bool randpattern(cell *c, int rval) { int i, sw=0; switch(rval%5) { case 0: if(rval&1) { return hrandpos() < rval; } else { int cd = getCdata(c, 0); return !((cd/(((rval/2)&15)+1))&1); } case 1: i = zebra40(c); if(i&1) { if(rval&4) sw^=1; i &= ~1; } if(i&2) { if(rval&8) sw^=1; i &= ~2; } i >>= 2; i--; i /= 3; if(rval & (16<>= 2; i--; if(rval & (16<>2)&3)+"/"+its((rval>>4)&15); case 2: return "E/"+its((rval>>2)&3)+"/"+its((rval>>4)&2047); case 3: return "P/"+its((rval>>2)&3)+"/"+its((rval>>4)&255); case 4: return "C/"+its(rval&3)+"/"+its((rval>>2)&65535); } return "?"; } EX int randpatternCode(cell *c, int rval) { switch(rval % RPV_MODULO) { case 1: return zebra40(c); case 2: return emeraldval(c); case 3: return fiftyval049(c) + (polara50(c)?50:0) + (polarb50(c)?1000:0); case 4: return towerval(c, celldist) * 6 + celldist(c) % 6; } return 0; } #if HDR #define RANDITER 31 #endif char rpm_memoize[3][256][RANDITER+1]; EX void clearMemoRPM() { for(int a=0; a<3; a++) for(int b=0; b<256; b++) for(int i=0; itype; i++) { if(randpatternMajority(createMov(c,i), ival, iterations-1)) z++; else z--; } if(z!=0) memo = (z>0); else memo = randpattern(c, rval); // printf("%p] rval = %X code = %d iterations = %d result = %d\n", c, rval, code, iterations, memo); return memo; } #define RVAL_MASK 0x10000000 #define DATA_MASK 0x20000000 cdata orig_cdata; EX bool geometry_supports_cdata() { if(hybri) return PIU(geometry_supports_cdata()); return among(geometry, gEuclid, gEuclidSquare, gNormal, gOctagon, g45, g46, g47, gBinaryTiling) || (arcm::in() && !sphere); } void affect(cdata& d, short rv, signed char signum) { if(rv&1) d.val[0]+=signum; else d.val[0]-=signum; if(rv&2) d.val[1]+=signum; else d.val[1]-=signum; if(rv&4) d.val[2]+=signum; else d.val[2]-=signum; if(rv&8) d.val[3]+=signum; else d.val[3]-=signum; int id = (rv>>4) & 63; if(id < 32) d.bits ^= (1 << id); } void setHeptagonRval(heptagon *h) { if(!(h->rval0 || h->rval1)) { h->rval0 = hrand(0x10000); h->rval1 = hrand(0x10000); } } EX bool dmeq(int a, int b) { return (a&3) == (b&3); } /* kept for compatibility: Racing etc. */ cdata *getHeptagonCdata_legacy(heptagon *h) { if(h->cdata) return h->cdata; if(sphere || quotient) h = currentmap->gamestart()->master; if(h == currentmap->getOrigin()) { h->cdata = new cdata(orig_cdata); for(int& v: h->cdata->val) v = 0; h->cdata->bits = reptilecheat ? (1 << 21) - 1 : 0; if(yendor::on && specialland == laVariant) h->cdata->bits |= (1 << 8) | (1 << 9) | (1 << 12); return h->cdata; } cdata mydata = *getHeptagonCdata_legacy(h->move(0)); for(int di=3; di<5; di++) { heptspin hs(h, di, false); int signum = +1; while(true) { heptspin hstab[15]; hstab[7] = hs; for(int i=8; i<12; i++) { hstab[i] = hstab[i-1]; hstab[i] += ((i&1) ? 4 : 3); hstab[i] += wstep; hstab[i] += ((i&1) ? 3 : 4); } for(int i=6; i>=3; i--) { hstab[i] = hstab[i+1]; hstab[i] += ((i&1) ? 3 : 4); hstab[i] += wstep; hstab[i] += ((i&1) ? 4 : 3); } if(hstab[3].at->distance < hstab[7].at->distance) { hs = hstab[3]; continue; } if(hstab[11].at->distance < hstab[7].at->distance) { hs = hstab[11]; continue; } int jj = 7; for(int k=3; k<12; k++) if(hstab[k].at->distance < hstab[jj].at->distance) jj = k; int ties = 0, tiespos = 0; for(int k=3; k<12; k++) if(hstab[k].at->distance == hstab[jj].at->distance) ties++, tiespos += (k-jj); // printf("ties=%d tiespos=%d jj=%d\n", ties, tiespos, jj); if(ties == 2) jj += tiespos/2; if(jj&1) signum = -1; hs = hstab[jj]; break; } hs = hs + 3 + wstep; setHeptagonRval(hs.at); affect(mydata, hs.spin ? hs.at->rval0 : hs.at->rval1, signum); } return h->cdata = new cdata(mydata); } cdata *getHeptagonCdata(heptagon *h) { if(hybri) return PIU ( getHeptagonCdata(h) ); if(geometry == gNormal && BITRUNCATED) return getHeptagonCdata_legacy(h); if(h->cdata) return h->cdata; if(sphere || quotient) h = currentmap->gamestart()->master; bool starting = h->s == hsOrigin; #if CAP_BT if(bt::in()) { if(bt::mapside(h) == 0) starting = true; for(int i=0; itype; i++) if(bt::mapside(h->cmove(i)) == 0) starting = true; } #endif if(starting) { h->cdata = new cdata(orig_cdata); for(int& v: h->cdata->val) v = 0; h->cdata->bits = reptilecheat ? (1 << 21) - 1 : 0; if(yendor::on && specialland == laVariant) h->cdata->bits |= (1 << 8) | (1 << 9) | (1 << 12); return h->cdata; } int dir = bt::in() ? 5 : 0; cdata mydata = *getHeptagonCdata(h->cmove(dir)); if(S3 >= OINF) { setHeptagonRval(h); affect(mydata, h->rval0, 1); } else if(S3 == 4) { heptspin hs(h, 0); while(dmeq((hs+1).cpeek()->dm4, (hs.at->dm4 - 1))) hs = hs + 1 + wstep + 1; while(dmeq((hs-1).cpeek()->dm4, (hs.at->dm4 - 1))) hs = hs - 1 + wstep - 1; setHeptagonRval(hs.at); affect(mydata, hs.at->rval0, 1); } else for(int di: {0,1}) { heptspin hs(h, dir, false); hs -= di; while(true) { heptspin hs2 = hs + wstep + 1 + wstep - 1; if(dmeq(hs2.at->dm4, hs.at->dm4 + 1)) break; hs = hs2; } while(true) { heptspin hs2 = hs + 1 + wstep - 1 + wstep; if(dmeq(hs2.at->dm4, hs.at->dm4 + 1)) break; hs = hs2; } setHeptagonRval(hs.at); affect(mydata, hs.spin == dir ? hs.at->rval0 : hs.at->rval1, 1); } return h->cdata = new cdata(mydata); } cdata *getEuclidCdata(gp::loc h) { int x = h.first, y = h.second; #if CAP_ARCM auto& data = arcm::in() ? arcm::get_cdata() : euc::get_cdata(); #else auto& data = euc::get_cdata(); #endif // hrmap_euclidean* euc = dynamic_cast (currentmap); if(data.count(h)) return &(data[h]); if(x == 0 && y == 0) { cdata xx; for(int i=0; i<4; i++) xx.val[i] = 0; xx.bits = 0; return &(data[h] = xx); } int ord = 1, bid = 0; while(!((x|y)&ord)) ord <<= 1, bid++; for(int k=0; k<3; k++) { int x1 = x + (k<2 ? ord : 0); int y1 = y - (k>0 ? ord : 0); if((x1&ord) || (y1&ord)) continue; int x2 = x - (k<2 ? ord : 0); int y2 = y + (k>0 ? ord : 0); cdata *d1 = getEuclidCdata({x1,y1}); cdata *d2 = getEuclidCdata({x2,y2}); cdata xx; double disp = pow(2, bid/2.) * 6; for(int i=0; i<4; i++) { double dv = (d1->val[i] + d2->val[i])/2 + (hrand(1000) - hrand(1000))/1000. * disp; xx.val[i] = floor(dv); if(hrand(1000) / 1000. < dv - floor(dv)) xx.val[i]++; } xx.bits = 0; for(int b=0; b<32; b++) { bool gbit = ((hrand(2)?d1:d2)->bits >> b) & 1; int flipchance = (1< 512) flipchance = 512; if(hrand(1024) < flipchance) gbit = !gbit; if(gbit) xx.bits |= (1<master].second; return {ld_to_int(T[0][LDIM]), ld_to_int((spin(60*degree) * T)[0][LDIM])}; } EX cdata *arcmCdata(cell *c) { auto &agm = arcm::archimedean_gmatrix; if(!agm.count(c->master) || !agm[c->master].first) { forCellEx(c1, c) if(agm.count(c->master) && agm[c->master].first) return arcmCdata(c1); static cdata dummy; return &dummy; } heptagon *h2 = agm[c->master].first; dynamicval g(geometry, gNormal); dynamicval cm(currentmap, arcm::current_altmap); return getHeptagonCdata(h2); } #endif EX int getCdata(cell *c, int j) { if(fake::in()) return FPIU(getCdata(c, j)); if(experimental) return 0; if(hybri) { c = hybrid::get_where(c).first; return PIU(getBits(c)); } else if(INVERSE) { cell *c1 = gp::get_mapped(c); return UIU(getCdata(c1, j)); } else if(euc::in()) return getEuclidCdata(euc2_coordinates(c))->val[j]; #if CAP_ARCM else if(arcm::in() && euclid) return getEuclidCdata(pseudocoords(c))->val[j]; else if(arcm::in() && hyperbolic) return arcmCdata(c)->val[j]*3; #endif else if(!geometry_supports_cdata()) return 0; else if(ctof(c)) return getHeptagonCdata(c->master)->val[j]*3; else { int jj = 0; auto ar = gp::get_masters(c); for(int k=0; k<3; k++) jj += getHeptagonCdata(ar[k])->val[j]; return jj; } } EX int getBits(cell *c) { if(fake::in()) return FPIU(getBits(c)); if(experimental) return 0; if(hybri) { c = hybrid::get_where(c).first; return PIU(getBits(c)); } else if(INVERSE) { cell *c1 = gp::get_mapped(c); return UIU(getBits(c1)); } else if(euc::in()) return getEuclidCdata(euc2_coordinates(c))->bits; #if CAP_ARCM else if(arcm::in() && euclid) return getEuclidCdata(pseudocoords(c))->bits; else if(arcm::in() && (hyperbolic || sl2)) return arcmCdata(c)->bits; #endif else if(!geometry_supports_cdata()) return 0; else if(c == c->master->c7) return getHeptagonCdata(c->master)->bits; else { auto ar = gp::get_masters(c); int b0 = getHeptagonCdata(ar[0])->bits; int b1 = getHeptagonCdata(ar[1])->bits; int b2 = getHeptagonCdata(ar[2])->bits; return (b0 & b1) | (b1 & b2) | (b2 & b0); } } EX cell *heptatdir(cell *c, int d) { if(d&1) { cell *c2 = createMov(c, d); int s = c->c.spin(d); s += 3; s %= 6; return createMov(c2, s); } else return createMov(c, d); } EX int heptdistance(heptagon *h1, heptagon *h2) { // very rough distance int d = 0; #if CAP_CRYSTAL if(cryst) return crystal::space_distance(h1->c7, h2->c7); #endif #if CAP_SOLV if(sn::in()) return sn::approx_distance(h1, h2); #endif while(true) { if(h1 == h2) return d; for(int i=0; imove(i) == h2) return d + 1; int d1 = h1->distance, d2 = h2->distance; if(d1 >= d2) d++, h1 = createStep(h1, bt::updir()); if(d2 > d1) d++, h2 = createStep(h2, bt::updir()); } } EX int heptdistance(cell *c1, cell *c2) { #if CAP_CRYSTAL if(cryst) return crystal::space_distance(c1, c2); #endif if(!hyperbolic || quotient || WDIM == 3) return celldistance(c1, c2); else return heptdistance(c1->master, c2->master); } map, int> saved_distances; EX set keep_distances_from; set dists_computed; int perma_distances; EX void compute_saved_distances(cell *c1, int max_range, int climit) { celllister cl(c1, max_range, climit, NULL); for(int i=0; i choices; for(auto& p: saved_distances) if(p.first.first == c && p.second == d) choices.push_back(p.first.second); println(hlog, "choices = ", isize(choices)); if(choices.empty()) return NULL; return choices[hrand(isize(choices))]; } EX int bounded_celldistance(cell *c1, cell *c2) { int limit = 14400; #if CAP_SOLV if(geometry == gArnoldCat) { c2 = asonov::get_at(asonov::get_coord(c2->master) - asonov::get_coord(c1->master))->c7; c1 = currentmap->gamestart(); limit = 100000000; } #endif if(saved_distances.count(make_pair(c1,c2))) return saved_distances[make_pair(c1,c2)]; celllister cl(c1, 100, limit, NULL); for(int i=0; i perma_distances + 1000000) erase_saved_distances(); compute_saved_distances(c1, 64, 1000); dists_computed.insert(c1); if(saved_distances.count(make_pair(c1,c2))) return saved_distances[make_pair(c1,c2)]; return DISTANCE_UNKNOWN; } EX int celldistance(cell *c1, cell *c2) { if(fake::in()) return FPIU(celldistance(c1, c2)); if(hybri) return hybrid::celldistance(c1, c2); #if CAP_FIELD if(geometry == gFieldQuotient && (PURE || BITRUNCATED)) { int d = fieldpattern::field_celldistance(c1, c2); if(d != DISTANCE_UNKNOWN) return d; } #endif if(bounded) return bounded_celldistance(c1, c2); #if CAP_CRYSTAL if(cryst) return crystal::precise_distance(c1, c2); #endif if(euc::in() && WDIM == 2) { return euc::cyldist(euc2_coordinates(c1), euc2_coordinates(c2)); } if(arcm::in() || quotient || sn::in() || (kite::in() && euclid) || experimental || sl2 || nil || arb::in()) return clueless_celldistance(c1, c2); if(S3 >= OINF) return inforder::celldistance(c1, c2); #if CAP_BT && MAXMDIM >= 4 if(bt::in() && WDIM == 3) return bt::celldistance3(c1, c2); #endif #if MAXMDIM >= 4 if(euc::in()) return euc::celldistance(c1, c2); if(hyperbolic && WDIM == 3) return reg3::celldistance(c1, c2); #endif if(INVERSE) { c1 = gp::get_mapped(c1); c2 = gp::get_mapped(c2); return UIU(celldistance(c1, c2)) / 2; /* TODO */ } return hyperbolic_celldistance(c1, c2); } EX vector build_shortest_path(cell *c1, cell *c2) { #if CAP_CRYSTAL if(cryst) return crystal::build_shortest_path(c1, c2); #endif vector p; if(euclid) { p.push_back(c1); hyperpoint h = tC0(calc_relative_matrix(c2, c1, C0)); cell *x = c1; transmatrix T1 = rspintox(h); int d = celldistance(c1, c2); int steps = d * 10; ld step = hdist0(h) / steps; for(int i=0; i< steps; i++) { T1 = T1 * xpush(step); virtualRebase(x, T1); println(hlog, "x = ", x, "p length = ", isize(p), " dist = ", hdist0(tC0(T1)), " dist from end = ", hdist(tC0(T1), tC0(calc_relative_matrix(c2, x, C0)))); while(x != p.back()) { forCellCM(c, p.back()) if(celldistance(x, c) < celldistance(x, p.back())) { p.push_back(c); break; } } } if(isize(p) != d + 1) println(hlog, "warning: path size ", isize(p), " should be ", d+1); } else if(c2 == currentmap->gamestart()) { while(c1 != c2) { p.push_back(c1); forCellCM(c, c1) if(celldist(c) < celldist(c1)) { c1 = c; goto next1; } throw hr_shortest_path_exception(); next1: ; } p.push_back(c1); } else if(c1 == currentmap->gamestart()) { p = build_shortest_path(c2, c1); reverse(p.begin(), p.end()); } else { while(c1 != c2) { p.push_back(c1); forCellCM(c, c1) if(celldistance(c, c2) < celldistance(c1, c2)) { c1 = c; goto next; } throw hr_shortest_path_exception(); next: ; } p.push_back(c1); } return p; } EX void clearCellMemory() { for(int i=0; itype; i++) if(c1->move(i) == c2) return true; return false; } EX bool isNeighborCM(cell *c1, cell *c2) { for(int i=0; itype; i++) if(createMov(c1, i) == c2) return true; return false; } EX int neighborId(cell *ofWhat, cell *whichOne) { for(int i=0; itype; i++) if(ofWhat->move(i) == whichOne) return i; return -1; } EX int mine_adjacency_rule = 0; EX map> adj_memo; EX bool geometry_has_alt_mine_rule() { if(S3 >= OINF) return false; if(WDIM == 2) return valence() > 3; if(WDIM == 3) return !among(geometry, gHoroHex, gCell5, gBitrunc3, gCell8, gECell8, gCell120, gECell120); return true; } EX vector adj_minefield_cells(cell *c) { vector res; if(mine_adjacency_rule == 0 || !geometry_has_alt_mine_rule()) forCellCM(c2, c) res.push_back(c2); else if(WDIM == 2) { cellwalker cw(c, 0); cw += wstep; cw++; cellwalker cw1 = cw; do { res.push_back(cw.at); cw += wstep; cw++; if(cw.cpeek() == c) cw++; } while(cw != cw1); } else if(adj_memo.count(c)) return adj_memo[c]; else { auto& ss = currentmap->get_cellshape(c); const vector& vertices = ss.vertices_only_local; manual_celllister cl; cl.add(c); vector M = {Id}; for(int i=0; iget_cellshape(c1); auto& vertices1 = ss1.vertices_only_local; for(hyperpoint h: vertices) for(hyperpoint h2: vertices1) if(hdist(h, T * h2) < 1e-6) shares = true; if(shares) res.push_back(c1); } if(shares || c == c1) forCellIdEx(c2, i, c1) { if(cl.listed(c2)) continue; cl.add(c2); M.push_back(T * currentmap->adj(c1, i)); } } // println(hlog, "adjacent to ", c, " = ", isize(res), " of ", isize(M)); adj_memo[c] = res; } return res; } EX vector reverse_directions(cell *c, int dir) { if(PURE && !(kite::in() && WDIM == 2)) return reverse_directions(c->master, dir); int d = c->degree(); if(d & 1) return { gmod(dir + c->type/2, c->type), gmod(dir + (c->type+1)/2, c->type) }; else return { gmod(dir + c->type/2, c->type) }; } EX vector reverse_directions(heptagon *c, int dir) { int d = c->degree(); switch(geometry) { case gBinary3: if(dir < 4) return {8}; else if(dir >= 8) return {0, 1, 2, 3}; else return {dir ^ 1}; case gHoroTris: if(dir < 4) return {7}; else if(dir == 4) return {5, 6}; else if(dir == 5) return {6, 4}; else if(dir == 6) return {4, 5}; else return {0, 1, 2, 3}; case gHoroRec: if(dir < 2) return {6}; else if(dir == 6) return {0, 1}; else return {dir^1}; case gKiteDart3: { if(dir < 4) return {dir ^ 2}; if(dir >= 6) return {4, 5}; vector res; for(int i=6; itype; i++) res.push_back(i); return res; } case gHoroHex: { if(dir < 6) return {12, 13}; if(dir >= 12) return {0, 1, 2, 3, 4, 5}; const int dt[] = {0,0,0,0,0,0,10,11,9,8,6,7,0,0}; return {dt[dir]}; } default: if(d & 1) return { gmod(dir + c->type/2, c->type), gmod(dir + (c->type+1)/2, c->type) }; else return { gmod(dir + c->type/2, c->type) }; } } EX bool standard_tiling() { return !arcm::in() && !kite::in() && !bt::in() && !arb::in() && !nonisotropic && !hybri; } EX int valence() { if(BITRUNCATED || IRREGULAR) return 3; if(INVERSE) return WARPED ? 4 : max(S3, S7); #if CAP_ARCM if(arcm::in()) return arcm::valence(); #endif return S3; } /** portalspaces are not defined outside of a boundary */ EX bool is_boundary(cell *c) { return (cgflags & qPORTALSPACE) && isWall(c->wall); } EX cell out_of_bounds; }