// test the conjecture comparing triangulation distances and hyperbolic distances namespace dhrg { ld stats[32][3], wstats[32][3]; hyperpoint celltopoint(cell *c) { return tC0(calc_relative_matrix(c, croot(), C0)); } void do_analyze_grid(int maxv) { cell *root = croot(); celllister cl(root, 32, maxv, NULL); // if this works too slow, use a smaller number // (you can also use a larger number if you have time of course) // int rot = 0; vector<ld> distances[128]; for(cell *c: cl.lst) { hyperpoint h = celltopoint(c); ld dd = hdist0(h); int d = celldist(c); stats[d][0] ++; stats[d][1] += dd; stats[d][2] += dd*dd; distances[d].push_back(dd); if(d>0) { ld alpha[2]; int qalpha = 0; forCellCM(c2, c) if(celldist(c2) == d) { hyperpoint h1 = celltopoint(c2); alpha[qalpha++] = atan2(h1[0], h1[1]); } if(qalpha != 2) printf("Error: qalpha = %d\n", qalpha); ld df = raddif(alpha[0], alpha[1]); df /= 720._deg; wstats[d][0] += df; if(d==2) printf("df == %" PLDF " dd = %" PLDF "\n", df, dd); wstats[d][1] += df*dd; wstats[d][2] += df*dd*dd; } } println(hlog, "log(gamma) = ", log(cgi.expansion->get_growth())); ld lE, dif, lwE; for(int d=0; d<32; d++) if(stats[d][0]) { int q = stats[d][0]; if(q != cgi.expansion->get_descendants(d).approx_int()) continue; ld E = stats[d][1] / q; ld E2 = stats[d][2] / q; ld Vr = E2 - E * E; if(Vr < 0) Vr = 0; dif = E- lE; lE = E; ld Vd = d > 1 ? Vr/(d-1) : 0; ld wE = wstats[d][1]; ld wE2 = wstats[d][2]; ld wVr = wE2 - wE * wE; print(hlog, hr::format("d=%2d: q = %8d E = %12.8" PLDF " dif = %12.8" PLDF " Vr = %12.8" PLDF " Vr/(d-1)=%12.8" PLDF, d, q, E, dif, Vr, Vd)); if(0) print(hlog, hr::format(" | <%" PLDF "> ex = %12.8" PLDF " d.ex = %12.8" PLDF " Vr = %12.8" PLDF, wstats[d][0], wE, wE - lwE, wVr)); ld Sigma = sqrt(Vr); sort(distances[d].begin(), distances[d].end()); if(Sigma) for(int u=1; u<8; u++) print(hlog, hr::format(" %8.5" PLDF, (distances[d][u * isize(distances[d]) / 8] - E) / Sigma)); println(hlog); lwE = wE; } } }