// Hyperbolic Rogue -- hyperbolic graphics // Copyright (C) 2011-2018 Zeno Rogue, see 'hyper.cpp' for details namespace hr { ld ghx, ghy, ghgx, ghgy; hyperpoint ghpm = C0; void ghcheck(hyperpoint &ret, const hyperpoint &H) { if(hypot(ret[0]-ghx, ret[1]-ghy) < hypot(ghgx-ghx, ghgy-ghy)) { ghpm = H; ghgx = ret[0]; ghgy = ret[1]; } } void camrotate(ld& hx, ld& hy) { ld cam = vid.camera_angle * degree; GLfloat cc = cos(cam); GLfloat ss = sin(cam); ld ux = hx, uy = hy * cc + ss, uz = cc - ss * hy; hx = ux / uz, hy = uy / uz; } hyperpoint perspective_to_space(hyperpoint h, ld alpha = vid.alpha, eGeometryClass geo = ginf[geometry].cclass); bool non_spatial_model() { if(among(pmodel, mdRotatedHyperboles, mdJoukowsky, mdJoukowskyInverted, mdPolygonal, mdPolynomial)) return true; if(pmodel == mdSpiral && euclid) return true; return vid.consider_shader_projection && shaderside_projection && pmodel; } hyperpoint perspective_to_space(hyperpoint h, ld alpha, eGeometryClass gc) { ld hx = h[0], hy = h[1]; if(gc == gcEuclid) return hpxy(hx * (1 + alpha), hy * (1 + alpha)); ld hr = hx*hx+hy*hy; if(hr > .9999 && gc == gcHyperbolic) return Hypc; ld A, B, C; ld curv = gc == gcSphere ? 1 : -1; A = 1+curv*hr; B = 2*hr*vid.alpha*-curv; C = 1 - curv*hr*vid.alpha*vid.alpha; B /= A; C /= A; ld rootsign = 1; if(gc == gcSphere && vid.alpha > 1) rootsign = -1; ld hz = B / 2 + rootsign * sqrt(C + B*B/4); hyperpoint H; H[0] = hx * (hz+vid.alpha); H[1] = hy * (hz+vid.alpha); H[DIM] = hz; return H; } hyperpoint space_to_perspective(hyperpoint z, ld alpha = vid.alpha); hyperpoint space_to_perspective(hyperpoint z, ld alpha) { ld s = 1 / (alpha + z[DIM]); z[0] *= s; z[1] *= s; if(DIM == 3) { z[2] *= s; z[3] = 0; } else z[2] = 0; return z; } hyperpoint gethyper(ld x, ld y) { ld hx = (x - current_display->xcenter) / current_display->radius; ld hy = (y - current_display->ycenter) / current_display->radius / vid.stretch; if(pmodel) { ghx = hx, ghy = hy; return ghpm; } if(vid.camera_angle) camrotate(hx, hy); return perspective_to_space(hpxyz(hx, hy, 0)); } void ballmodel(hyperpoint& ret, double alpha, double d, double zl) { hyperpoint H = ypush(geom3::camera) * xpush(d) * ypush(zl) * C0; ld tzh = vid.ballproj + H[DIM]; ld ax = H[0] / tzh; ld ay = H[1] / tzh; ld ca = cos(alpha), sa = sin(alpha); ret[0] = ax * ca; ret[1] = ay; ret[2] = ax * sa; conformal::apply_ball(ret[2], ret[1]); } void apply_depth(hyperpoint &f, ld z) { if(vid.usingGL) f[2] = z; else { z = z * current_display->radius; ld mul = current_display->scrdist / (current_display->scrdist + z); f[0] = f[0] * mul; f[1] = f[1] * mul; f[2] = vid.xres * current_display->eyewidth() / 2 / current_display->radius + vid.ipd * mul / 2; } } bool hypot_zlev(ld zlev, ld& d, ld& df, ld& zf) { if(zlev == 1) { df = 1; zf = 0; return false; } else { // (0,0,1) -> (0, sin z, cos z) -> (sin d cos z, sin z, cos d cos z) ld z = geom3::factor_to_lev(zlev); ld tz = sin_auto(z); ld td = sin_auto(abs(d)) * cos_auto(z); ld h = hypot(td, tz); zf = tz / h, df = td / h; if(d > 0) d = hypot_auto(d, z); else d = -hypot_auto(d, z); return true; } } int twopoint_sphere_flips; bool twopoint_do_flips; ld find_zlev(hyperpoint& H) { if(spatial_graphics) { ld zlev = zlevel(H); using namespace hyperpoint_vec; if(zlev > 1-1e-6 && zlev < 1+1e-6) return 1; H /= zlev; return zlev; } return 1; } ld get_tz(hyperpoint H) { ld tz = euclid ? (1+vid.alpha) : vid.alpha+H[DIM]; if(tz < BEHIND_LIMIT && tz > -BEHIND_LIMIT) tz = BEHIND_LIMIT; return tz; } ld atan2(hyperpoint h) { return atan2(h[1], h[0]); } pair move_z_to_y(hyperpoint& H) { if(DIM == 2) return make_pair(0, 0); ld R = hypot(H[1], H[2]); pair res = { H[1] / R, H[2] / R }; H[1] = R; H[2] = 0; return res; } void move_y_to_z(hyperpoint& H, pair coef) { if(DIM == 3) { H[2] = H[1] * coef.second; H[1] = H[1] * coef.first; H[3] = 1; } } template void makeband(hyperpoint H, hyperpoint& ret, const T& f) { ld zlev = find_zlev(H); conformal::apply_orientation(H[0], H[1]); auto r = move_z_to_y(H); ld x, y, yf, zf=0; y = asin_auto(H[1]); x = asin_auto_clamp(H[0] / cos_auto(y)) + band_shift; if(sphere) { if(H[DIM] < 0 && x > 0) x = M_PI - x; else if(H[DIM] < 0 && x <= 0) x = -M_PI - x; } hypot_zlev(zlev, y, yf, zf); f(x, y); ld yzf = y * zf; y *= yf; ret = hpxyz(x / M_PI, y / M_PI, 0); move_y_to_z(ret, r); conformal::apply_orientation(ret[1], ret[0]); if(zlev != 1 && current_display->stereo_active()) apply_depth(ret, yzf / M_PI); return; } void band_conformal(ld& x, ld& y) { switch(cgclass) { case gcSphere: y = atanh(sin(y)); x *= 2; y *= 2; break; case gcHyperbolic: y = 2 * atan(tanh(y/2)); x *= 2; y *= 2; break; case gcEuclid: // y = y; y *= 2; x *= 2; break; } } void make_twopoint(ld& x, ld& y) { auto p = vid.twopoint_param; ld dleft = hypot_auto(x-p, y); ld dright = hypot_auto(x+p, y); if(sphere) { int tss = twopoint_sphere_flips; if(tss&1) { tss--; dleft = 2*M_PI - 2*p - dleft; dright = 2*M_PI - 2*p - dright; swap(dleft, dright); y = -y; } while(tss) { tss -= 2; dleft = 2*M_PI - 4*p + dleft; dright = 2*M_PI - 4*p + dright; } } x = (dright*dright-dleft*dleft) / 4 / p; y = (y>0?1:-1) * sqrt(dleft * dleft - (x-p)*(x-p) + 1e-9); } hyperpoint mobius(hyperpoint h, ld angle, ld scale = 1) { using namespace hyperpoint_vec; h = perspective_to_space(h * scale, 1, gcSphere); h = rotmatrix(angle * degree, 1, 2) * h; return space_to_perspective(h, 1) / scale; } void applymodel(hyperpoint H, hyperpoint& ret) { using namespace hyperpoint_vec; hyperpoint H_orig = H; switch(pmodel) { case mdPerspective: { ld ratio = vid.xres / current_display->tanfov / current_display->radius / 2; ret[0] = H[0]/H[2] * ratio; ret[1] = H[1]/H[2] * ratio; ret[2] = 1; return; } case mdUnchanged: ret = H / current_display->radius; return; case mdBall: { ld zlev = find_zlev(H); ld zl = geom3::depth-geom3::factor_to_lev(zlev); ballmodel(ret, atan2(H), hdist0(H), zl); break; } case mdDisk: { ld tz = get_tz(H); if(!vid.camera_angle) { ret[0] = H[0] / tz; ret[1] = H[1] / tz; if(DIM == 3) ret[2] = H[2] / tz; else ret[2] = vid.xres * current_display->eyewidth() / 2 / current_display->radius - vid.ipd / tz / 2; if(MAXMDIM == 4) ret[3] = 1; } else { ld tx = H[0]; ld ty = H[1]; ld cam = vid.camera_angle * degree; GLfloat cc = cos(cam); GLfloat ss = sin(cam); ld ux = tx, uy = ty * cc - ss * tz, uz = tz * cc + ss * ty; ret[0] = ux / uz; ret[1] = uy / uz; ret[2] = vid.xres * current_display->eyewidth() / 2 / current_display->radius - vid.ipd / uz / 2; } return; } case mdHalfplane: { // Poincare to half-plane ld zlev = find_zlev(H); H = space_to_perspective(H); conformal::apply_orientation(H[0], H[1]); H[1] += 1; double rad = sqhypot_d(DIM, H); H /= -rad; H[1] += .5; conformal::apply_orientation(H[0], H[1]); H *= conformal::halfplane_scale; ret[0] = -conformal::osin - H[0]; if(zlev != 1) { if(abs(conformal::ocos) > 1e-5) H[1] = H[1] * pow(zlev, conformal::ocos); if(abs(conformal::ocos) > 1e-5 && conformal::osin) H[1] += H[0] * conformal::osin * (pow(zlev, conformal::ocos) - 1) / conformal::ocos; else if(conformal::osin) H[1] += H[0] * conformal::osin * log(zlev); } ret[1] = conformal::ocos + H[1]; ret[2] = DIM == 3 ? H[2] : 0; if(MAXMDIM == 4) ret[3] = 1; if(zlev != 1 && current_display->stereo_active()) apply_depth(ret, -H[1] * geom3::factor_to_lev(zlev)); break; } case mdHemisphere: { switch(cgclass) { case gcHyperbolic: { ld zl = zlevel(H); ret = H / H[2]; ret[2] = sqrt(1 - sqhypot_d(2, ret)); ret = ret * (1 + (zl - 1) * ret[2]); break; } case gcEuclid: { // stereographic projection to a sphere auto hd = hdist0(H) / vid.euclid_to_sphere; if(hd == 0) ret = hpxyz(0, 0, -1); else { ld x = 2 * hd / (1 + hd * hd); ld y = x / hd; ret = H * x / hd / vid.euclid_to_sphere; ret[2] = (1 - y); ret = ret * (1 + (H[2]-1) * y / vid.euclid_to_sphere); } break; } case gcSphere: { ret = H; break; } } swap(ret[1], ret[2]); conformal::apply_ball(ret[2], ret[1]); break; } case mdHyperboloidFlat: case mdHyperboloid: { if(pmodel == mdHyperboloid) { ld& topz = conformal::top_z; if(H[2] > topz) { ld scale = sqrt(topz*topz-1) / hypot_d(2, H); H *= scale; H[2] = topz; } } else { H = space_to_perspective(H, vid.alpha); H[2] = 1 - vid.alpha; } ret[0] = H[0] / 3; ret[1] = (1 - H[2]) / 3; ret[2] = H[1] / 3; conformal::apply_ball(ret[2], ret[1]); break; } case mdFisheye: { ld zlev = find_zlev(H); H = space_to_perspective(H); H[DIM] = zlev; ret = H / sqrt(1 + sqhypot_d(DIM+1, H)); break; } case mdJoukowsky: case mdJoukowskyInverted: { conformal::apply_orientation(H[0], H[1]); // with equal speed skiprope: conformal::apply_orientation(H[1], H[0]); if(vid.skiprope) { static ld last_skiprope = 0; static transmatrix lastmatrix; if(vid.skiprope != last_skiprope) { ret = mobius(C0, -vid.skiprope, 2); const cld c1(1, 0); const cld c2(2, 0); const cld c4(4, 0); cld w(ret[0], ret[1]); cld z = sqrt(c4*w*w-c1) + c2*w; if(abs(z) > 1) z = c1 / z; hyperpoint zr = hpxyz(real(z), imag(z), 0); hyperpoint inhyp = perspective_to_space(zr, 1, gcHyperbolic); last_skiprope = vid.skiprope; lastmatrix = rgpushxto0(inhyp); } H = lastmatrix * H; } H = space_to_perspective(H); auto yz = move_z_to_y(H); ld r = hypot_d(2, H); ld c = H[0] / r; ld s = H[1] / r; ld& mt = conformal::model_transition; ld a = 1 - .5 * mt, b = .5 * mt; swap(a, b); ret[0] = (a * r + b/r) * c / 2; ret[1] = (a * r - b/r) * s / 2; ret[2] = 0; if(vid.skiprope) ret = mobius(ret, vid.skiprope, 2); if(pmodel == mdJoukowskyInverted) { ld r2 = sqhypot_d(2, ret); ret[0] = ret[0] / r2; ret[1] = -ret[1] / r2; move_y_to_z(ret, yz); conformal::apply_orientation(ret[1], ret[0]); /* ret[0] += 1; ld alpha = atan2(ret[1], ret[0]); ld mod = hypot(ret[0], ret[1]); // ret[0] = cos(alpha/2) * sqrt(mod); // ret[1] = sin(alpha/2) * sqrt(mod); ret[0] = alpha; ret[1] = log(mod); */ } else { move_y_to_z(ret, yz); conformal::apply_orientation(ret[0], ret[1]); } break; } case mdPolygonal: case mdPolynomial: { H = space_to_perspective(H); conformal::apply_orientation(H[0], H[1]); pair p = polygonal::compute(H[0], H[1]); conformal::apply_orientation(p.second, p.first); ret[0] = p.first; ret[1] = p.second; ret[2] = 0; break; } case mdBand: if(conformal::model_transition != 1) { ld& mt = conformal::model_transition; H = space_to_perspective(H); conformal::apply_orientation(H[0], H[1]); H[0] += 1; double rad = H[0]*H[0] + H[1]*H[1]; H[1] /= rad; H[0] /= rad; H[0] -= .5; ld phi = atan2(H); ld r = hypot_d(2, H); r = pow(r, 1 - mt); phi *= (1 - mt); ret[0] = r * cos(phi); ret[1] = r * sin(phi); ret[2] = 0; ret[0] -= pow(0.5, 1-mt); ret[0] /= -(1-mt) * M_PI / 2; ret[1] /= (1-mt) * M_PI / 2; conformal::apply_orientation(ret[1], ret[0]); } else makeband(H, ret, band_conformal); break; case mdTwoPoint: makeband(H, ret, make_twopoint); break; case mdBandEquiarea: makeband(H, ret, [] (ld& x, ld& y) { y = sin_auto(y); }); break; case mdBandEquidistant: makeband(H, ret, [] (ld& x, ld& y) { }); break; case mdSinusoidal: makeband(H, ret, [] (ld& x, ld& y) { x *= cos_auto(y); }); break; case mdEquidistant: case mdEquiarea: { ld zlev = find_zlev(H); ld rad = hypot_d(DIM, H); if(rad == 0) rad = 1; ld d = hdist0(H); ld df, zf; hypot_zlev(zlev, d, df, zf); // 4 pi / 2pi = M_PI if(pmodel == mdEquiarea && sphere) d = sqrt(2*(1 - cos(d))) * M_PI / 2; else if(pmodel == mdEquiarea && hyperbolic) d = sqrt(2*(cosh(d) - 1)) / 1.5; ret = H * (d * df / rad / M_PI); if(DIM == 2) ret[2] = 0; if(MAXMDIM == 4) ret[3] = 1; if(zlev != 1 && current_display->stereo_active()) apply_depth(ret, d * zf / M_PI); break; } case mdRotatedHyperboles: { // ld zlev = <- not implemented find_zlev(H); // + geom3::depth; conformal::apply_orientation(H[0], H[1]); ld y = asin_auto(H[1]); ld x = asin_auto_clamp(H[0] / cos_auto(y)); // ld z = zlev == 1 ? 0 : geom3::factor_to_lev(zlev); ld factor = geom3::lev_to_factor(y + geom3::depth); ret[0] = sinh(x) * factor; ret[1] = cosh(x) * factor; ret[2] = 0; if(conformal::use_atan) { ret[0] = atan(ret[0]); ret[1] = atan(ret[1]); } break; } case mdFormula: { dynamicval m(pmodel, conformal::basic_model); applymodel(H, ret); exp_parser ep; ep.extra_params["z"] = cld(ret[0], ret[1]); ep.extra_params["cx"] = ret[0]; ep.extra_params["cy"] = ret[1]; ep.extra_params["cz"] = ret[2]; ep.extra_params["ux"] = H[0]; ep.extra_params["uy"] = H[1]; ep.extra_params["uz"] = H[2]; ep.s = conformal::formula; cld res = ep.parse(); ret[0] = real(res); ret[1] = imag(res); ret[2] = 0; break; } case mdSpiral: { cld z; if(hyperbolic) makeband(H, ret, band_conformal); else ret = H; z = cld(ret[0], ret[1]) * conformal::spiral_multiplier; if(conformal::spiral_cone < 360) { ld alpha = imag(z) * 360 / conformal::spiral_cone; ld r = real(z); r = exp(r); ret[0] = -sin(alpha) * r; ret[1] = cos(alpha) * r; ret[2] = (r-1) * sqrt( pow(360/conformal::spiral_cone, 2) - 1); conformal::apply_ball(ret[2], ret[1]); } else { z = exp(z); ret[0] = real(z); ret[1] = imag(z); if(vid.skiprope) ret = mobius(ret, vid.skiprope, 1); } } case mdGUARD: break; } ghcheck(ret,H_orig); } // game-related graphics transmatrix sphereflip; // on the sphere, flip bool playerfound; // has player been found in the last drawing? double q3 = sqrt(double(3)); bool outofmap(hyperpoint h) { if(euclid) return h[2] < .5; // false; // h[0] * h[0] + h[1] * h[1] > 15 * eurad; else if(sphere) return h[2] < .1 && h[2] > -.1 && h[1] > -.1 && h[1] < .1 && h[0] > -.1 && h[0] < .1; else return h[2] < .5; } hyperpoint mirrorif(const hyperpoint& V, bool b) { if(b) return Mirror*V; else return V; } transmatrix mirrorif(const transmatrix& V, bool b) { if(b) return V*Mirror; else return V; } // -1 if away, 0 if not away int away(const transmatrix& V2) { return (intval(C0, V2 * xpush0(.1)) > intval(C0, tC0(V2))) ? -1 : 0; } /* double zgrad(double f1, double f2, int nom, int den) { using namespace geom3; ld fo1 = factor_to_lev(f1); ld fo2 = factor_to_lev(f2); return lev_to_factor(fo1 + (fo2-fo1) * nom / den); } */ double zgrad0(double l1, double l2, int nom, int den) { using namespace geom3; return lev_to_factor(l1 + (l2-l1) * nom / den); } bool behindsphere(const hyperpoint& h) { if(!sphere) return false; if(mdBandAny()) return false; if(vid.alpha > 1) { if(h[2] > -1/vid.alpha) return true; } if(vid.alpha <= 1) { if(h[2] < .2-vid.alpha) return true; } return false; } ld to01(ld a0, ld a1, ld x) { if(x < a0) return 0; if(x > a1) return 1; return (x-a0) / (a1-a0); } ld spherity(const hyperpoint& h) { if(!sphere) return 1; if(vid.alpha > 1) { return to01(1/vid.alpha, 1, -h[2]); } if(vid.alpha <= 1) { return to01(-1.5, 1, h[2]); } return 1; } bool behindsphere(const transmatrix& V) { return behindsphere(tC0(V)); } ld spherity(const transmatrix& V) { return spherity(tC0(V)); } bool confusingGeometry() { return quotient; } ld master_to_c7_angle() { #if CAP_GP auto alpha = gp::alpha; #else auto alpha = 0; #endif return (!BITRUNCATED && !binarytiling && !archimedean) ? M_PI + alpha : 0; } transmatrix actualV(const heptspin& hs, const transmatrix& V) { if(DIM == 3) return V; #if CAP_IRR if(IRREGULAR) return V * spin(M_PI + 2 * M_PI / S7 * (hs.spin + irr::periodmap[hs.at].base.spin)); #endif #if CAP_ARCM if(archimedean) return V * spin(-arcm::current.triangles[arcm::id_of(hs.at)][hs.spin].first); #endif #if CAP_BT if(binarytiling) return V; #endif return (hs.spin || !BITRUNCATED) ? V * spin(hs.spin*2*M_PI/S7 + master_to_c7_angle()) : V; } transmatrix applyspin(const heptspin& hs, const transmatrix& V) { #if CAP_BT if(binarytiling) return V; #endif #if CAP_ARCM if(archimedean) return V * spin(arcm::current.triangles[arcm::id_of(hs.at)][hs.spin].first); #endif return hs.spin ? V * spin(hs.spin*2*M_PI/S7) : V; } bool invis_point(const hyperpoint h) { if(DIM == 2 || sphere) return false; return h[2] < 0; } bool invalid_point(const hyperpoint h) { return std::isnan(h[2]) || h[2] > 1e8 || std::isinf(h[2]); } bool invalid_point(const transmatrix T) { return std::isnan(T[2][2]) || T[2][2] > 1e8 || std::isinf(T[2][2]); } bool in_smart_range(const transmatrix& T) { if(invalid_point(T)) return false; hyperpoint h1, h2, h3; applymodel(tC0(T), h1); if(std::isnan(h1[0]) || std::isnan(h1[1])) return false; if(std::isinf(h1[0]) || std::isinf(h1[1])) return false; ld x = current_display->xcenter + current_display->radius * h1[0]; ld y = current_display->ycenter + current_display->radius * h1[1] * vid.stretch; if(x > current_display->xtop + current_display->xsize * 2)return false; if(x < current_display->xtop - current_display->xsize * 1) return false; if(y > current_display->ytop + current_display->ysize * 2)return false; if(y < current_display->ytop - current_display->ysize * 1) return false; ld epsilon = 0.01; applymodel(T * xpush0(epsilon), h2); ld x1 = current_display->radius * abs(h2[0] - h1[0]) / epsilon; ld y1 = current_display->radius * abs(h2[1] - h1[1]) * vid.stretch / epsilon; applymodel(T * ypush(epsilon) * C0, h3); ld x2 = current_display->radius * abs(h3[0] - h1[0]) / epsilon; ld y2 = current_display->radius * abs(h3[1] - h1[1]) * vid.stretch / epsilon; ld scale = sqrt(hypot(x1, y1) * hypot(x2, y2)) * scalefactor * hcrossf7; return scale > vid.smart_range_detail && x - 2 * max(x1, x2) < current_display->xtop + current_display->xsize && x + 2 * max(x1, x2) > current_display->xtop && y - 2 * max(y1, y2) < current_display->ytop + current_display->ysize && y + 2 * max(y1, y2) > current_display->ytop; } #if CAP_GP namespace gp { /* void drawrec(cell *c, const transmatrix& V) { if(dodrawcell(c)) drawcell(c, V, 0, false); for(int i=0; itype; i++) { cell *c2 = c->move(i); if(!c2) continue; if(c2->move(0) != c) continue; if(c2 == c2->master->c7) continue; transmatrix V1 = V * ddspin(c, i) * xpush(crossf) * iddspin(c2, 0) * spin(M_PI); drawrec(c2, V1); } } */ gp::local_info draw_li; bool drawrec(cell *c, const transmatrix& V, gp::loc at, int dir, int maindir) { bool res = false; transmatrix V1 = V * Tf[draw_li.last_dir][at.first&31][at.second&31][fixg6(dir)]; if(do_draw(c, V1)) { /* auto li = get_local_info(c); if(fix6(dir) != fix6(li.total_dir)) printf("totaldir %d/%d\n", dir, li.total_dir); if(at != li.relative) printf("at %s/%s\n", disp(at), disp(li.relative)); if(maindir != li.last_dir) printf("ld %d/%d\n", maindir, li.last_dir); */ draw_li.relative = at; draw_li.total_dir = fixg6(dir); drawcell(c, V1, 0, false); res = true; } for(int i=0; itype; i++) { cell *c2 = c->move(i); if(!c2) continue; if(c2->move(0) != c) continue; if(c2 == c2->master->c7) continue; res |= drawrec(c2, V, at + eudir(dir+i), dir + i + SG3, maindir); } return res; } bool drawrec(cell *c, const transmatrix& V) { draw_li.relative = loc(0,0); draw_li.total_dir = 0; draw_li.last_dir = -1; bool res = false; if(do_draw(c, V)) drawcell(c, V, 0, false), res = true; for(int i=0; itype; i++) { cell *c2 = c->move(i); if(!c2) continue; if(c2->move(0) != c) continue; if(c2 == c2->master->c7) continue; draw_li.last_dir = i; res |= drawrec(c2, V, gp::loc(1,0), SG3, i); } return res; } } #endif vector > drawn_cells; void hrmap_standard::draw() { drawn_cells.clear(); drawn_cells.emplace_back(viewctr, hsOrigin, cview(), band_shift); for(int i=0; i(2 * drawn_cells.size(), 128)); const auto& dc = drawn_cells[i]; auto& hs = get<0>(dc); auto& s = get<1>(dc); auto& V = get<2>(dc); dynamicval bs(band_shift, get<3>(dc)); cell *c = hs.at->c7; transmatrix V10; const transmatrix& V1 = hs.mirrored ? (V10 = V * Mirror) : V; bool draw = false; if(0) ; #if CAP_GP else if(GOLDBERG) { draw = gp::drawrec(c, actualV(hs, V1)); } #endif #if CAP_IRR else if(IRREGULAR) { auto& hi = irr::periodmap[hs.at]; transmatrix V0 = actualV(hs, V1); auto& vc = irr::cells_of_heptagon[hi.base.at]; for(int i=0; ic.fix(hs.spin + d); // createMov(c, ds); if(c->move(ds) && c->c.spin(ds) == 0) { transmatrix V2 = V1 * hexmove[d]; if(do_draw(c->move(ds), V2)) draw = true, drawcell(c->move(ds), V2, 0, hs.mirrored ^ c->c.mirror(ds)); } } } if(draw) for(int d=0; d= 16384 * eurad) Mat[0][2] -= 32768 * eurad; while(Mat[1][2] <= -16384 * v * eurad) Mat[1][2] += 32768 * v * eurad; while(Mat[1][2] >= 16384 * v * eurad) Mat[1][2] -= 32768 * v * eurad; return Mat; } transmatrix eumove(int vec) { int x, y; tie(x,y) = vec_to_pair(vec); return eumove(x, y); } transmatrix eumovedir(int d) { if(a4) { d = d & 3; switch(d) { case 0: return eumove(1,0); case 1: return eumove(0,1); case 2: return eumove(-1,0); case 3: return eumove(0,-1); } } else { d = fix6(d); switch(d) { case 0: return eumove(1,0); case 1: return eumove(0,1); case 2: return eumove(-1,1); case 3: return eumove(-1,0); case 4: return eumove(0,-1); case 5: return eumove(1,-1); } } return eumove(0,0); } void spinEdge(ld aspd) { if(playerfound && vid.fixed_facing) { hyperpoint H = gpushxto0(playerV * C0) * playerV * xpush0(5); downspin = atan2(H[1], H[0]); downspin += vid.fixed_facing_dir * degree; if(flipplayer) downspin += M_PI; while(downspin < -M_PI) downspin += 2*M_PI; while(downspin > +M_PI) downspin -= 2*M_PI; aspd = (1 + 2 * abs(downspin)) * aspd; } if(downspin > aspd) downspin = aspd; if(downspin < -aspd) downspin = -aspd; View = spin(downspin) * View; } void centerpc(ld aspd) { if(subscreens::split([=] () {centerpc(aspd);})) return; #if CAP_CRYSTAL if(geometry == gCrystal) crystal::centerrug(aspd); #endif if(shmup::on && DIM == 3 && vid.sspeed > -5) { int id = subscreens::in ? subscreens::current_player : 0; transmatrix at = ggmatrix(shmup::pc[id]->base) * shmup::pc[id]->at * cpush(2, -vid.yshift); View = inverse(at) * View; #if CAP_RACING if(racing::on) racing::set_view(); #endif return; } #if CAP_RACING if(racing::on && !racing::standard_centering) { racing::set_view(); return; } #endif if(ors::mode == 2 && vid.sspeed < 5) return; if(vid.sspeed >= 4.99) aspd = 1000; DEBB(DF_GRAPH, (debugfile,"center pc\n")); ors::unrotate(cwtV); ors::unrotate(View); hyperpoint H = tC0(cwtV); if(DIM == 2) H = ypush(-vid.yshift) * sphereflip * H; if(DIM == 3 && !shmup::on && vid.yshift) H = cpush(2, -vid.yshift) * H; ld R = zero_d(DIM, H) ? 0 : hdist0(H); if(R < 1e-9) { // either already centered or direction unknown /* if(playerfoundL && playerfoundR) { } */ spinEdge(aspd); fixmatrix(View); ors::rerotate(cwtV); ors::rerotate(View); return; } if(euclid) { // Euclidean aspd *= (2+3*R*R); if(aspd > R) aspd = R; for(int i=0; ic7->type; i++) { int i1 = i * DUALMUL; heptagon *h2 = createStep(viewctr.at, i1); transmatrix T = currentmap->relative_matrix(h2, viewctr.at); hyperpoint H = View * tC0(T); ld quality = hdist0(H); if(quality < best) best = quality, turn = i1, TB = T; } if(turn >= 0) { View = View * TB; fixmatrix(View); viewctr.at = createStep(viewctr.at, turn); } } #endif else { for(int i=-1; i= 0) { View = View * TB; fixmatrix(View); viewctr = viewctr + turn + wstep; } } } void addball(ld a, ld b, ld c) { hyperpoint h; ballmodel(h, a, b, c); for(int i=0; i<3; i++) h[i] *= current_display->radius; curvepoint(h); } void ballgeometry() { queuereset(vid.usingGL ? mdDisk : mdUnchanged, PPR::CIRCLE); for(int i=0; i<60; i++) addball(i * M_PI/30, 10, 0); for(double d=10; d>=-10; d-=.2) addball(0, d, 0); for(double d=-10; d<=10; d+=.2) addball(0, d, geom3::depth); addball(0, 0, -geom3::camera); addball(0, 0, geom3::depth); addball(0, 0, -geom3::camera); addball(0, -10, 0); addball(0, 0, -geom3::camera); queuecurve(darkena(0xFF, 0, 0x80), 0, PPR::CIRCLE); queuereset(pmodel, PPR::CIRCLE); } void resetview() { DEBB(DF_GRAPH, (debugfile,"reset view\n")); View = Id; // EUCLIDEAN if(!masterless) viewctr.at = cwt.at->master, viewctr.spin = cwt.spin; else centerover = cwt; cwtV = Id; // SDL_LockSurface(s); // SDL_UnlockSurface(s); } void panning(hyperpoint hf, hyperpoint ht) { View = rgpushxto0(hf) * rgpushxto0(gpushxto0(hf) * ht) * gpushxto0(hf) * View; playermoved = false; } int cells_drawn; void fullcenter() { if(playerfound && false) centerpc(INF); else { bfs(); resetview(); drawthemap(); centerpc(INF); centerover = cwt.at; } playermoved = true; } transmatrix screenpos(ld x, ld y) { transmatrix V = Id; V[0][2] += (x - current_display->xcenter) / current_display->radius * (1+vid.alpha); V[1][2] += (y - current_display->ycenter) / current_display->radius * (1+vid.alpha); return V; } transmatrix atscreenpos(ld x, ld y, ld size) { transmatrix V = Id; V[0][2] += (x - current_display->xcenter); V[1][2] += (y - current_display->ycenter); V[0][0] = size * 2 * hcrossf / crossf; V[1][1] = size * 2 * hcrossf / crossf; V[2][2] = current_display->scrdist; return V; } void circle_around_center(ld radius, color_t linecol, color_t fillcol, PPR prio) { #if CAP_QUEUE if(among(pmodel, mdDisk, mdEquiarea, mdEquidistant, mdFisheye) && !(pmodel == mdDisk && hyperbolic && vid.alpha <= -1) && vid.camera_angle == 0) { hyperpoint ret; applymodel(xpush0(radius), ret); ld r = hypot_d(2, ret); queuecircle(current_display->xcenter, current_display->ycenter, r * current_display->radius, linecol, prio, fillcol); return; } #endif #if CAP_QUEUE for(int i=0; i<=360; i++) curvepoint(xspinpush0(i * degree, 10)); auto& c = queuecurve(linecol, fillcol, prio); if(pmodel == mdDisk && hyperbolic && vid.alpha <= -1) c.flags |= POLY_FORCE_INVERTED; if(pmodel == mdJoukowsky) c.flags |= POLY_FORCE_INVERTED; c.flags |= POLY_ALWAYS_IN; #endif } color_t periodcolor = 0x00FF0080; color_t ringcolor = darkena(0xFF, 0, 0xFF); color_t modelcolor = 0; #if CAP_QUEUE void draw_model_elements() { switch(pmodel) { case mdRotatedHyperboles: { queuechr(current_display->xcenter, current_display->ycenter + current_display->radius * vid.alpha, 0, vid.fsize, 'X', ringcolor, 1, 8); return; } case mdTwoPoint: { ld a = -conformal::model_orientation * degree; queuechr(xspinpush0(a, +vid.twopoint_param), vid.xres / 100, 'X', ringcolor >> 8); queuechr(xspinpush0(a, -vid.twopoint_param), vid.xres / 100, 'X', ringcolor >> 8); return; } case mdBall: { queuecircle(current_display->xcenter, current_display->ycenter, current_display->radius, ringcolor, PPR::OUTCIRCLE, modelcolor); ballgeometry(); return; } case mdHyperboloid: { if(hyperbolic) { #if CAP_QUEUE curvepoint(point3(0,0,1)); curvepoint(point3(0,0,-vid.alpha)); queuecurve(ringcolor, 0, PPR::CIRCLE); ld& tz = conformal::top_z; ld z = acosh(tz); hyperpoint a = xpush0(z); ld cb = conformal::cos_ball; ld sb = conformal::sin_ball; a[1] = sb * a[2] / -cb; a[0] = sqrt(-1 + a[2] * a[2] - a[1] * a[1]); curvepoint(point3(0,0,-vid.alpha)); curvepoint(a); curvepoint(point3(0,0,0)); a[0] = -a[0]; curvepoint(a); curvepoint(point3(0,0,-vid.alpha)); queuecurve(ringcolor, 0, PPR::CIRCLE); curvepoint(point3(-1,0,0)); curvepoint(point3(1,0,0)); queuecurve(ringcolor, 0, PPR::CIRCLE); a[1] = sb * tz / -cb; a[0] = sqrt(tz * tz - a[1] * a[1]); a[2] = tz - vid.alpha; curvepoint(a); curvepoint(point3(0,0,-vid.alpha)); a[0] = -a[0]; curvepoint(a); queuecurve(ringcolor, 0, PPR::CIRCLE); #endif } return; } default: break; } } void queuestraight(hyperpoint X, int style, color_t lc, color_t fc, PPR p) { using namespace hyperpoint_vec; hyperpoint H; applymodel(X, H); H *= current_display->radius; ld mul = hypot(vid.xres, vid.yres) / hypot_d(2, H); ld m = style == 1 ? -mul : -1; queuereset(mdUnchanged, p); curvepoint(H + spin(M_PI/2) * H * mul); curvepoint(H - spin(M_PI/2) * H * mul); curvepoint(m * H - spin(M_PI/2) * H * mul); curvepoint(m * H + spin(M_PI/2) * H * mul); curvepoint(H + spin(M_PI/2) * H * mul); queuecurve(lc, fc, p).flags |= POLY_ALWAYS_IN; queuereset(pmodel, p); /* for(int i=0; i<1; i++) { hyperpoint h = spin(i * 45 * degree) * X; hyperpoint res; applymodel(h, res); if(hypot2(res) < 1000 && !std::isnan(res[0]) && !std::isnan(res[1])) queuechr(h, 16, 'X', 0xFF0000 + i * 0x20); } */ } void draw_boundary(int w) { if(w == 1) return; color_t lc = ringcolor; color_t fc = modelcolor; PPR p = PPR::OUTCIRCLE; if(haveaura()) lc = 0; if(lc == 0 && fc == 0) return; if(pmodel == mdRotatedHyperboles) return; ld fakeinf = sphere ? M_PI-1e-5 : hyperbolic ? 10 : exp(10); #if CAP_SVG dynamicval dw(vid.linewidth, vid.linewidth * (svg::in ? svg::divby : 1)); #endif if(elliptic && !among(pmodel, mdBand, mdBandEquidistant, mdBandEquiarea, mdSinusoidal)) circle_around_center(M_PI/2, periodcolor, 0, PPR::CIRCLE); switch(pmodel) { case mdTwoPoint: { if(twopoint_do_flips || current_display->stereo_active() || !sphere) return; queuereset(vid.usingGL ? mdDisk : mdUnchanged, p); for(int b=-1; b<=1; b+=2) for(ld a=-90; a<=90+1e-6; a+=pow(.5, vid.linequality)) { using namespace hyperpoint_vec; ld x = sin(a * vid.twopoint_param * b / 90); ld y = 0; ld z = -sqrt(1 - x*x); conformal::apply_orientation(y, x); hyperpoint h1; applymodel(hpxyz(x,y,z), h1); conformal::apply_orientation(h1[0], h1[1]); h1[1] = abs(h1[1]) * b; conformal::apply_orientation(h1[1], h1[0]); curvepoint(h1); } queuecurve(lc, fc, p); queuereset(pmodel, p); return; } case mdBand: case mdBandEquidistant: case mdBandEquiarea: case mdSinusoidal: { if(pmodel == mdBand && conformal::model_transition != 1) return; bool bndband = ((pmodel == mdBand) ? hyperbolic : sphere); transmatrix T = spin(-conformal::model_orientation * degree); ld right = M_PI/2 - 1e-5; if(bndband) queuestraight(T * ypush0(hyperbolic ? 10 : right), 2, lc, fc, p); ld xperiod = elliptic ? fakeinf/2 : fakeinf; if(sphere && !bndband) { queuestraight(T * xpush0(xperiod), 2, periodcolor, 0, PPR::CIRCLE); } if(sphere && bndband) { ld adegree = degree-1e-6; for(ld a=-90; a<90+1e-6; a+=pow(.5, vid.linequality)) { curvepoint(T * xpush(xperiod) * ypush0(a * adegree)); } for(ld a=-90; a<90+1e-6; a+=pow(.5, vid.linequality)) { curvepoint(T * xpush(-xperiod) * ypush0(-a * adegree)); } curvepoint(T * xpush(xperiod) * ypush0(-90 * adegree)); queuecurve(periodcolor, 0, PPR::CIRCLE); } return; } case mdHalfplane: if(hyperbolic) { queuestraight(xspinpush0(-conformal::model_orientation * degree - M_PI/2, fakeinf), 1, lc, fc, p); return; } break; case mdHemisphere: { if(hyperbolic) { queuereset(mdUnchanged, p); for(int i=0; i<=360; i++) { ld s = sin(i * degree); curvepoint(point3(current_display->radius * cos(i * degree), current_display->radius * s * (conformal::cos_ball * s >= 0 - 1e-6 ? 1 : abs(conformal::sin_ball)), 0)); } queuecurve(lc, fc, p); queuereset(pmodel, p); p = PPR::CIRCLE; fc = 0; queuereset(mdUnchanged, p); for(int i=0; i<=360; i++) { ld s = sin(i * degree); curvepoint(point3(current_display->radius * cos(i * degree), current_display->radius * s * conformal::sin_ball, 0)); } queuecurve(lc, fc, p); queuereset(pmodel, p); } if(euclid || sphere) { queuereset(mdUnchanged, p); for(int i=0; i<=360; i++) { curvepoint(point3(current_display->radius * cos(i * degree), current_display->radius * sin(i * degree), 0)); } queuecurve(lc, fc, p); queuereset(pmodel, p); } return; } case mdHyperboloid: { if(hyperbolic) { ld& tz = conformal::top_z; ld mz = acosh(tz); ld cb = conformal::cos_ball; ld sb = conformal::sin_ball; if(abs(sb) <= abs(cb) + 1e-5) { ld step = .01 / (1 << vid.linequality); hyperpoint a; for(ld t=-1; t<=1; t += step) { a = xpush0(t * mz); if(t != 0) { a[1] = sb * a[2] / -cb; ld v = -1 + a[2] * a[2] - a[1] * a[1]; if(v < 0) continue; a[0] = sqrt(v); if(t < 0) a[0] = -a[0]; } curvepoint(a); } if((sb > 0) ^ (cb < 0)) { ld alpha = M_PI - atan2(a[0], -a[1]); for(ld t=-1; t<=1; t += step) curvepoint(xspinpush0(-M_PI/2 - t * alpha, mz)); } else { ld alpha = - atan2(a[0], -a[1]); for(ld t=-1; t<=1; t += step) curvepoint(xspinpush0(+M_PI/2 - t * alpha, mz)); } queuecurve(lc, fc, p); fc = 0; p = PPR::CIRCLE; } for(ld t=0; t<=360; t ++) curvepoint(xspinpush0(t * degree, mz)); queuecurve(lc, fc, p); } return; } case mdSpiral: { using namespace hyperpoint_vec; if(euclid) return; // if(p == PPR::CIRCLE) p = PPR::OUTCIRCLE; auto& sm = conformal::spiral_multiplier; ld u = hypot(1, imag(sm) / real(sm)); if(real(sm)) { queuereset(mdUnchanged, p); for(ld a=-10; a<=10; a+=0.01 / (1 << vid.linequality) / u) { cld z = exp(cld(a, a * imag(sm) / real(sm) + M_PI)); hyperpoint ret = point2(real(z), imag(z)); ret = mobius(ret, vid.skiprope, 1); ret *= current_display->radius; curvepoint(ret); } queuecurve(ringcolor, 0, p).flags |= POLY_ALWAYS_IN; queuereset(pmodel, p); } return; } default: break; } if(sphere && pmodel == mdDisk && vid.alpha > 1) { double rad = current_display->radius / sqrt(vid.alpha*vid.alpha - 1); queuecircle(current_display->xcenter, current_display->ycenter, rad, lc, p, fc); return; } if(sphere && !among(pmodel, mdEquidistant, mdEquiarea)) return; circle_around_center(fakeinf, lc, fc, p); } #endif ld band_shift = 0; void fix_the_band(transmatrix& T) { if((models[pmodel].flags & mf::quasiband) && T[2][2] > 1e6) { hyperpoint H = tC0(T); find_zlev(H); conformal::apply_orientation(H[0], H[1]); ld y = asin_auto(H[1]); ld x = asin_auto_clamp(H[0] / cos_auto(y)); band_shift += x; // printf("fixing with shift = %lf\n", x); T = xpush(-x) * T; fixmatrix(T); // todo orientation } } namespace dq { queue> drawqueue; set visited; void enqueue(heptagon *h, const transmatrix& T) { if(!h || visited.count(h)) { return; } visited.insert(h); drawqueue.emplace(h, T, band_shift); } set visited_by_matrix; void enqueue_by_matrix(heptagon *h, const transmatrix& T) { if(!h) return; int b = reg3::bucketer(tC0(T)); if(visited_by_matrix.count(b)) { return; } visited_by_matrix.insert(b); drawqueue.emplace(h, T, band_shift); } } bool do_draw(cell *c) { // do not display out of range cells, unless on torus if(c->pathdist == PINFD && geometry != gTorus && vid.use_smart_range == 0) return false; // do not display not fully generated cells, unless changing range allowed if(c->mpdist > 7 && !allowChangeRange()) return false; // in the Yendor Challenge, scrolling back is forbidden if(c->cpdist > 7 && yendor::on && !cheater && !autocheat) return false; return true; } ld extra_generation_distance = 99; bool do_draw(cell *c, const transmatrix& T) { if(DIM == 3) { if(cells_drawn > vid.cells_drawn_limit) return false; ld dist = hdist0(tC0(T)); if(dist > sightranges[geometry]) return false; if(dist <= extra_generation_distance) setdist(c, 7, c); return true; } if(just_gmatrix && sphere) return true; if(!do_draw(c)) return false; if(euclid && pmodel == mdSpiral) { hyperpoint h = tC0(T); cld z(h[0], h[1]); z = z * conformal::spiral_multiplier; ld iz = imag(z) + 1.14279e-2; // make it never fall exactly on PI if(iz < -M_PI || iz >= M_PI) return false; } if(hyperbolic && pmodel == mdSpiral && conformal::ring_not_spiral) { cld z; hyperpoint H = tC0(T); hyperpoint ret; makeband(H, ret, band_conformal); z = cld(ret[0], ret[1]) * conformal::spiral_multiplier; if(imag(z) < -conformal::spiral_cone_rad/2-1e-5 || imag(z) >= conformal::spiral_cone_rad/2-1e-5) return false; } if(cells_drawn > vid.cells_drawn_limit) return false; bool usr = vid.use_smart_range || quotient || euwrap; if(usr && cells_drawn >= 50 && !in_smart_range(T)) return false; if(vid.use_smart_range == 2) setdist(c, 7, c); return true; } int cone_side(const hyperpoint H) { hyperpoint ret; if(hyperbolic) makeband(H, ret, band_conformal); else ret = H; cld z = cld(ret[0], ret[1]) * conformal::spiral_multiplier; auto zth = [&] (cld z) { ld alpha = imag(z) * 360 / conformal::spiral_cone; ld r = real(z); r = exp(r); hyperpoint ret; ret[0] = -sin(alpha) * r; ret[1] = cos(alpha) * r; ret[2] = (r-1) * sqrt( pow(360/conformal::spiral_cone, 2) - 1); conformal::apply_ball(ret[2], ret[1]); return ret; }; hyperpoint ret0 = zth(z); hyperpoint ret1 = zth(z + cld(1e-3, 0)); hyperpoint ret2 = zth(z + cld(0, 1e-3)); return (ret1[1] - ret0[1]) * (ret2[0] - ret0[0]) < (ret2[1] - ret0[1]) * (ret1[0] - ret0[0]) ? 1 : -1; } }