// Hyperbolic Rogue -- raycaster // Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details /** \file raycaster.cpp * \brief A raycaster to draw walls. */ #include "hyper.h" namespace hr { /** \brief raycaster */ EX namespace ray { #if CAP_RAY /** texture IDs */ GLuint txConnections = 0, txWallcolor = 0, txTextureMap = 0, txVolumetric = 0; EX bool in_use; EX bool comparison_mode; /** 0 - never use, 2 - always use, 1 = smart selection */ EX int want_use = 1; EX ld exp_start = 1, exp_decay_exp = 4, exp_decay_poly = 10; const int gms_limit = 110; EX ld maxstep_sol = .05; EX ld maxstep_nil = .1; EX ld minstep = .001; EX ld reflect_val = 0; static const int NO_LIMIT = 999999; EX ld hard_limit = NO_LIMIT; EX int max_iter_sol = 600, max_iter_iso = 60; EX int max_cells = 2048; EX bool rays_generate = true; EX ld& exp_decay_current() { if(fake::in()) return *FPIU(&exp_decay_current()); return (sn::in() || hyperbolic || sl2) ? exp_decay_exp : exp_decay_poly; } EX int& max_iter_current() { if(nonisotropic || stretch::in()) return max_iter_sol; else return max_iter_iso; } ld& maxstep_current() { if(sn::in() || stretch::in()) return maxstep_sol; else return maxstep_nil; } #define IN_ODS 0 eGeometry last_geometry; /** is the raycaster available? */ EX bool available() { if(noGUI) return false; if(!vid.usingGL) return false; if(GDIM == 2) return false; if(WDIM == 2 && (kite::in() || bt::in())) return false; if(hyperbolic && pmodel == mdPerspective && !kite::in()) return true; if(sphere && pmodel == mdPerspective && !rotspace) return true; if(nil && S7 == 8) return false; if((sn::in() || nil || sl2) && pmodel == mdGeodesic) return true; if(euclid && pmodel == mdPerspective && !bt::in()) return true; if(prod) return true; if(pmodel == mdPerspective && stretch::in()) return true; return false; } /** do we want to use the raycaster? */ EX bool requested() { if(cgflags & qRAYONLY) return true; if(stretch::in() && sphere) return true; if(!want_use) return false; #if CAP_TEXTURE if(texture::config.tstate == texture::tsActive) return false; #endif if(!available()) return false; if(want_use == 2) return true; if(rotspace) return false; // not very good return racing::on || quotient || fake::in(); } #if HDR struct raycaster : glhr::GLprogram { GLint uStart, uStartid, uM, uLength, uFovX, uFovY, uIPD, uShift; GLint uWallstart, uWallX, uWallY; GLint tConnections, tWallcolor, tTextureMap, tVolumetric; GLint uBinaryWidth, uPLevel, uLP, uStraighten, uReflectX, uReflectY; GLint uLinearSightRange, uExpStart, uExpDecay; GLint uBLevel; GLint uPosX, uPosY; GLint uWallOffset, uSides; raycaster(string vsh, string fsh); }; #endif raycaster::raycaster(string vsh, string fsh) : GLprogram(vsh, fsh) { println(hlog, "assigning"); uStart = glGetUniformLocation(_program, "uStart"); uStartid = glGetUniformLocation(_program, "uStartid"); uM = glGetUniformLocation(_program, "uM"); uLength = glGetUniformLocation(_program, "uLength"); uFovX = glGetUniformLocation(_program, "uFovX"); uFovY = glGetUniformLocation(_program, "uFovY"); uShift = glGetUniformLocation(_program, "uShift"); uIPD = glGetUniformLocation(_program, "uIPD"); uWallstart = glGetUniformLocation(_program, "uWallstart"); uWallX = glGetUniformLocation(_program, "uWallX"); uWallY = glGetUniformLocation(_program, "uWallY"); uBinaryWidth = glGetUniformLocation(_program, "uBinaryWidth"); uStraighten = glGetUniformLocation(_program, "uStraighten"); uPLevel = glGetUniformLocation(_program, "uPLevel"); uLP = glGetUniformLocation(_program, "uLP"); uReflectX = glGetUniformLocation(_program, "uReflectX"); uReflectY = glGetUniformLocation(_program, "uReflectY"); uLinearSightRange = glGetUniformLocation(_program, "uLinearSightRange"); uExpDecay = glGetUniformLocation(_program, "uExpDecay"); uExpStart = glGetUniformLocation(_program, "uExpStart"); uBLevel = glGetUniformLocation(_program, "uBLevel"); tConnections = glGetUniformLocation(_program, "tConnections"); tWallcolor = glGetUniformLocation(_program, "tWallcolor"); tTextureMap = glGetUniformLocation(_program, "tTextureMap"); tVolumetric = glGetUniformLocation(_program, "tVolumetric"); uWallOffset = glGetUniformLocation(_program, "uWallOffset"); uSides = glGetUniformLocation(_program, "uSides"); uPosX = glGetUniformLocation(_program, "uPosX"); uPosY = glGetUniformLocation(_program, "uPosY"); } shared_ptr our_raycaster; EX void reset_raycaster() { our_raycaster = nullptr; } int deg, irays; #ifdef GLES_ONLY void add(string& tgt, string type, string name, int min_index, int max_index) { if(min_index + 1 == max_index) tgt += "{ return " + name + "[" + its(min_index) + "]; }"; else { int mid = (min_index + max_index) / 2; tgt += "{ if(i<" + its(mid) + ") "; add(tgt, type, name, min_index, mid); tgt += " else "; add(tgt, type, name, mid, max_index); tgt += " }"; } } string build_getter(string type, string name, int index) { string s = type + " get_" + name + "(int i) \n"; add(s, type, name, 0, index); return s + "\n"; } #define GET(array, index) "get_" array "(" index ")" #else #define GET(array, index) array "[" index "]" #endif EX hookset hooks_rayshader; EX hookset)> hooks_rayset; void enable_raycaster() { using glhr::to_glsl; if(geometry != last_geometry) { reset_raycaster(); } wall_offset(centerover); /* so raywall is not empty and deg is not zero */ deg = 0; auto samples = hybrid::gen_sample_list(); for(int i=0; i= e) break;\n" "mediump vec2 v = vec2(dot(" GET("uWallX", "i") ", pos), dot(" GET("uWallY", "i") ", pos));\n" "if(v.x >= 0. && v.y >= 0. && v.x + v.y <= 1.) return vec2(v.x+v.y, v.x-v.y);\n" "}\n" "return vec2(1, 1);\n" "}\n"; bool stepbased = nonisotropic || stretch::in(); string fmain = "void main() {\n"; if(use_reflect) fmain += " bool depthtoset = true;\n"; if(IN_ODS) fmain += " mediump float lambda = at[0];\n" // -PI to PI " mediump float phi;\n" " mediump float eye;\n" " if(at.y < 0.) { phi = at.y + PI/2.; eye = uIPD / 2.; }\n" // right " else { phi = at.y - PI/2.; eye = -uIPD / 2.; }\n" " mediump mat4 vw = uStart * xzspin(-lambda) * xpush(eye) * yzspin(phi);\n" " mediump vec4 at0 = vec4(0., 0., 1., 0.);\n"; else fmain += " mediump mat4 vw = uStart;\n" " mediump vec4 at0 = at;\n" " gl_FragColor = vec4(0,0,0,1);\n" " mediump float left = 1.;\n" " at0.y = -at.y;\n" " at0.w = 0.;\n" " at0.xyz = at0.xyz / length(at0.xyz);\n"; if(hyperbolic) fsh += " mediump float len(mediump vec4 x) { return x[3]; }\n"; else if(sphere && rotspace) fsh += " mediump float len(mediump vec4 x) { return 1.+x.x*x.x+x.y*x.y-x.z*x.z-x.w*x.w; }\n"; else if(sl2) fsh += " mediump float len(mediump vec4 x) { return 1.+x.x*x.x+x.y*x.y; }\n"; else if(sphere) fsh += " mediump float len(mediump vec4 x) { return 1.-x[3]; }\n"; else fsh += " mediump float len(mediump vec4 x) { return length(x.xyz); }\n"; if(stepbased) fmain += " const mediump float maxstep = " + fts(maxstep_current()) + ";\n" " const mediump float minstep = " + fts(minstep) + ";\n" " mediump float next = maxstep;\n"; if(prod) { string sgn=in_h2xe() ? "-" : "+"; fmain += " mediump vec4 position = vw * vec4(0., 0., 1., 0.);\n" " mediump vec4 at1 = uLP * at0;\n"; if(in_e2xe()) fmain += " mediump float zpos = log(position.z);\n"; else fmain += " mediump float zpos = log(position.z*position.z"+sgn+"position.x*position.x"+sgn+"position.y*position.y)/2.;\n"; fmain += " position *= exp(-zpos);\n" " mediump float zspeed = at1.z;\n" " mediump float xspeed = length(at1.xy);\n" " mediump vec4 tangent = vw * exp(-zpos) * vec4(at1.xy, 0, 0) / xspeed;\n"; } else fmain += " mediump vec4 position = vw * vec4(0., 0., 0., 1.);\n" " mediump vec4 tangent = vw * at0;\n"; if(stretch::in()) { fmain += "tangent = s_itranslate(position) * tangent;\n" "tangent[2] /= " + to_glsl(stretch::not_squared()) + ";\n" "tangent = s_translate(position) * tangent;\n"; ; } if(bi) fmain += " walloffset = uWallOffset; sides = uSides;\n"; fmain += " mediump float go = 0.;\n" " mediump vec2 cid = uStartid;\n" " for(int iter=0; iter<" + its(max_iter_current()) + "; iter++) {\n"; fmain += " mediump float dist = 100.;\n"; fmain += " int which = -1;\n"; if(in_e2xe()) fmain += "tangent.w = position.w = 0.;\n"; if(IN_ODS) fmain += " if(go == 0.) {\n" " mediump float best = len(position);\n" " for(int i=0; i 1. || v < -1.) continue;\n" " mediump float d = atanh(v);\n" " mediump vec4 next_tangent = position * sinh(d) + tangent * cosh(d);\n" " if(next_tangent[2] < (uM[woi] * next_tangent)[2]) continue;\n" " d /= xspeed;\n"; else if(in_s2xe()) fmain += " mediump float v = ((position - uM[woi] * position)[2] / (uM[woi] * tangent - tangent)[2]);\n" " mediump float d = atan(v);\n" " mediump vec4 next_tangent = tangent * cos(d) - position * sin(d);\n" " if(next_tangent[2] > (uM[woi] * next_tangent)[2]) continue;\n" " d /= xspeed;\n"; else if(in_e2xe()) fmain += " mediump float deno = dot(position, tangent) - dot(uM[woi]*position, uM[woi]*tangent);\n" " if(deno < 1e-6 && deno > -1e-6) continue;\n" " mediump float d = (dot(uM[woi]*position, uM[woi]*position) - dot(position, position)) / 2. / deno;\n" " if(d < 0.) continue;\n" " mediump vec4 next_position = position + d * tangent;\n" " if(dot(next_position, tangent) < dot(uM[woi]*next_position, uM[woi]*tangent)) continue;\n" " d /= xspeed;\n"; else if(hyperbolic) fmain += " mediump float v = ((position - uM[woi] * position)[3] / (uM[woi] * tangent - tangent)[3]);\n" " if(v > 1. || v < -1.) continue;\n" " mediump float d = atanh(v);\n" " mediump vec4 next_tangent = position * sinh(d) + tangent * cosh(d);\n" " if(next_tangent[3] < (uM[woi] * next_tangent)[3]) continue;\n"; else if(sphere) fmain += " mediump float v = ((position - uM[woi] * position)[3] / (uM[woi] * tangent - tangent)[3]);\n" " mediump float d = atan(v);\n" " mediump vec4 next_tangent = -position * sin(d) + tangent * cos(d);\n" " if(next_tangent[3] > (uM[woi] * next_tangent)[3]) continue;\n"; else fmain += " mediump float deno = dot(position, tangent) - dot(uM[woi]*position, uM[woi]*tangent);\n" " if(deno < 1e-6 && deno > -1e-6) continue;\n" " mediump float d = (dot(uM[woi]*position, uM[woi]*position) - dot(position, position)) / 2. / deno;\n" " if(d < 0.) continue;\n" " mediump vec4 next_position = position + d * tangent;\n" " if(dot(next_position, tangent) < dot(uM[woi]*next_position, uM[woi]*tangent)) continue;\n"; fmain += " if(d < dist) { dist = d; which = i; }\n" "}\n"; if(hyperbolic && reg3::ultra_mirror_in()) { fmain += "for(int i="+its(S7*2)+"; i<"+its(S7*2+isize(cgi.vertices_only))+"; i++) {\n"; fmain += " mediump float v = ((position - uM[i] * position)[3] / (uM[i] * tangent - tangent)[3]);\n" " if(v > 1. || v < -1.) continue;\n" " mediump float d = atanh(v);\n" " mediump vec4 next_tangent = position * sinh(d) + tangent * cosh(d);\n" " if(next_tangent[3] < (uM[i] * next_tangent)[3]) continue;\n" " if(d < dist) { dist = d; which = i; }\n" "}\n"; } // 20: get to horosphere +uBLevel (take smaller root) // 21: get to horosphere -uBLevel (take larger root) if(hyperbolic && bt::in()) { fmain += "for(int i=20; i<22; i++) {\n" "mediump float sgn = i == 20 ? -1. : 1.;\n" "mediump vec4 zpos = xpush(uBLevel*sgn) * position;\n" "mediump vec4 ztan = xpush(uBLevel*sgn) * tangent;\n" "mediump float Mp = zpos.w - zpos.x;\n" "mediump float Mt = ztan.w - ztan.x;\n" "mediump float a = (Mp*Mp-Mt*Mt);\n" "mediump float b = Mp/a;\n" "mediump float c = (1.+Mt*Mt) / a;\n" "if(b*b < c) continue;\n" "if(sgn < 0. && Mt > 0.) continue;\n" "mediump float zsgn = (Mt > 0. ? -sgn : sgn);\n" "mediump float u = sqrt(b*b-c)*zsgn + b;\n" "mediump float v = -(Mp*u-1.) / Mt;\n" "mediump float d = asinh(v);\n" "if(d < 0. && abs(log(position.w*position.w-position.x*position.x)) < uBLevel) continue;\n" "if(d < dist) { dist = d; which = i; }\n" "}\n"; } if(prod) fmain += "if(zspeed > 0.) { mediump float d = (uPLevel - zpos) / zspeed; if(d < dist) { dist = d; which = sides-1; }}\n" "if(zspeed < 0.) { mediump float d = (-uPLevel - zpos) / zspeed; if(d < dist) { dist = d; which = sides-2; }}\n"; fmain += "}\n"; fmain += " if(dist < 0.) { dist = 0.; }\n"; fmain += " if(which == -1 && dist == 0.) return;"; } // shift d units if(use_reflect) fmain += "bool reflect = false;\n"; if(in_h2xe()) fmain += " mediump float ch = cosh(dist*xspeed); mediump float sh = sinh(dist*xspeed);\n" " mediump vec4 v = position * ch + tangent * sh;\n" " tangent = tangent * ch + position * sh;\n" " position = v;\n" " zpos += dist * zspeed;\n"; else if(in_s2xe()) fmain += " mediump float ch = cos(dist*xspeed); mediump float sh = sin(dist*xspeed);\n" " mediump vec4 v = position * ch + tangent * sh;\n" " tangent = tangent * ch - position * sh;\n" " position = v;\n" " zpos += dist * zspeed;\n"; else if(in_e2xe()) fmain += " position = position + tangent * dist * xspeed;\n" " zpos += dist * zspeed;\n"; else if(hyperbolic && !stepbased) fmain += " mediump float ch = cosh(dist); mediump float sh = sinh(dist);\n" " mediump vec4 v = position * ch + tangent * sh;\n" " tangent = tangent * ch + position * sh;\n" " position = v;\n"; else if(sphere && !stepbased) fmain += " mediump float ch = cos(dist); mediump float sh = sin(dist);\n" " mediump vec4 v = position * ch + tangent * sh;\n" " tangent = tangent * ch - position * sh;\n" " position = v;\n"; else if(stepbased) { bool use_christoffel = true; if(sol && nih) fsh += "mediump vec4 christoffel(mediump vec4 pos, mediump vec4 vel, mediump vec4 tra) {\n" " return vec4(-(vel.z*tra.x + vel.x*tra.z)*log(2.), (vel.z*tra.y + vel.y * tra.z)*log(3.), vel.x*tra.x * exp(2.*log(2.)*pos.z)*log(2.) - vel.y * tra.y * exp(-2.*log(3.)*pos.z)*log(3.), 0.);\n" " }\n"; else if(nih) fsh += "mediump vec4 christoffel(mediump vec4 pos, mediump vec4 vel, mediump vec4 tra) {\n" " return vec4((vel.z*tra.x + vel.x*tra.z)*log(2.), (vel.z*tra.y + vel.y * tra.z)*log(3.), -vel.x*tra.x * exp(-2.*log(2.)*pos.z)*log(2.) - vel.y * tra.y * exp(-2.*log(3.)*pos.z)*log(3.), 0.);\n" " }\n"; else if(sol) fsh += "mediump vec4 christoffel(mediump vec4 pos, mediump vec4 vel, mediump vec4 tra) {\n" " return vec4(-vel.z*tra.x - vel.x*tra.z, vel.z*tra.y + vel.y * tra.z, vel.x*tra.x * exp(2.*pos.z) - vel.y * tra.y * exp(-2.*pos.z), 0.);\n" " }\n"; else if(nil) { fsh += "mediump vec4 christoffel(mediump vec4 pos, mediump vec4 vel, mediump vec4 tra) {\n" " mediump float x = pos.x;\n" " return vec4(x*vel.y*tra.y - 0.5*dot(vel.yz,tra.zy), -.5*x*dot(vel.yx,tra.xy) + .5 * dot(vel.zx,tra.xz), -.5*(x*x-1.)*dot(vel.yx,tra.xy)+.5*x*dot(vel.zx,tra.xz), 0.);\n" // " return vec4(0.,0.,0.,0.);\n" " }\n"; use_christoffel = false; } else if(sl2) { fsh += "mediump mat4 s_translate(vec4 h) {\n" "return mat4(h.w,h.z,h.y,h.x,-h.z,h.w,-h.x,h.y,h.y,-h.x,h.w,-h.z,h.x,h.y,h.z,h.w);\n" "}\n"; fsh += "mediump mat4 s_itranslate(vec4 h) {\n" "h.xyz = -h.xyz; return s_translate(h);\n" "}\n"; fsh += "mediump vec4 christoffel(mediump vec4 pos, mediump vec4 vel, mediump vec4 tra) {\n" "vel = s_itranslate(pos) * vel;\n" "tra = s_itranslate(pos) * tra;\n" "return s_translate(pos) * vec4(\n" " (vel.y*tra.z+vel.z*tra.y) * " + to_glsl(-(-stretch::factor-2)) + ", " " (vel.x*tra.z+vel.z*tra.x) * " + to_glsl(-stretch::factor-2.) + ", " " 0, 0);\n" "}\n"; } else if(stretch::in()) { fsh += "mediump mat4 s_translate(vec4 h) {\n" "return mat4(h.w,h.z,-h.y,-h.x,-h.z,h.w,h.x,-h.y,h.y,-h.x,h.w,-h.z,h.x,h.y,h.z,h.w);\n" "}\n"; fsh += "mediump mat4 s_itranslate(vec4 h) {\n" "h.xyz = -h.xyz; return s_translate(h);\n" "}\n"; fsh += "mediump vec4 christoffel(mediump vec4 pos, mediump vec4 vel, mediump vec4 tra) {\n" "vel = s_itranslate(pos) * vel;\n" "tra = s_itranslate(pos) * tra;\n" "return s_translate(pos) * vec4(\n" " (vel.y*tra.z+vel.z*tra.y) * " + to_glsl(-stretch::factor) + ", " " (vel.x*tra.z+vel.z*tra.x) * " + to_glsl(stretch::factor) + ", " " 0, 0);\n" "}\n"; } else use_christoffel = false; if(use_christoffel) fsh += "mediump vec4 get_acc(mediump vec4 pos, mediump vec4 vel) {\n" " return christoffel(pos, vel, vel);\n" " }\n"; if(sn::in() && !asonov) fsh += "uniform mediump float uBinaryWidth;\n"; fmain += " dist = next < minstep ? 2.*next : next;\n"; if(nil) fsh += "mediump vec4 translate(mediump vec4 a, mediump vec4 b) {\n" "return vec4(a[0] + b[0], a[1] + b[1], a[2] + b[2] + a[0] * b[1], b[3]);\n" "}\n" "mediump vec4 translatev(mediump vec4 a, mediump vec4 t) {\n" "return vec4(t[0], t[1], t[2] + a[0] * t[1], 0.);\n" "}\n" "mediump vec4 itranslate(mediump vec4 a, mediump vec4 b) {\n" "return vec4(-a[0] + b[0], -a[1] + b[1], -a[2] + b[2] - a[0] * (b[1]-a[1]), b[3]);\n" "}\n" "mediump vec4 itranslatev(mediump vec4 a, mediump vec4 t) {\n" "return vec4(t[0], t[1], t[2] - a[0] * t[1], 0.);\n" "}\n"; if(nil) fmain += "tangent = translate(position, itranslate(position, tangent));\n"; if(use_christoffel) fmain += "mediump vec4 vel = tangent * dist;\n" "mediump vec4 acc1 = get_acc(position, vel);\n" "mediump vec4 acc2 = get_acc(position + vel / 2., vel + acc1/2.);\n" "mediump vec4 acc3 = get_acc(position + vel / 2. + acc1/4., vel + acc2/2.);\n" "mediump vec4 acc4 = get_acc(position + vel + acc2/2., vel + acc3/2.);\n" "mediump vec4 nposition = position + vel + (acc1+acc2+acc3)/6.;\n"; if(sl2) fmain += "nposition = nposition / sqrt(dot(position.zw, position.zw) - dot(nposition.xy, nposition.xy));\n"; else if(stretch::in()) fmain += "nposition = nposition / sqrt(dot(nposition, nposition));\n"; if(nil) { fmain += "mediump vec4 xp, xt;\n" "mediump vec4 back = itranslatev(position, tangent);\n" "if(back.x == 0. && back.y == 0.) {\n" " xp = vec4(0., 0., back.z*dist, 1.);\n" " xt = back;\n" " }\n" "else if(abs(back.z) == 0.) {\n" " xp = vec4(back.x*dist, back.y*dist, back.x*back.y*dist*dist/2., 1.);\n" " xt = vec4(back.x, back.y, dist*back.x*back.y, 0.);\n" " }\n" "else if(abs(back.z) < 1e-1) {\n" // we use the midpoint method here, because the formulas below cause glitches due to mediump float precision " mediump vec4 acc = christoffel(vec4(0,0,0,1), back, back);\n" " mediump vec4 pos2 = back * dist / 2.;\n" " mediump vec4 tan2 = back + acc * dist / 2.;\n" " mediump vec4 acc2 = christoffel(pos2, tan2, tan2);\n" " xp = vec4(0,0,0,1) + back * dist + acc2 / 2. * dist * dist;\n" " xt = back + acc * dist;\n" " }\n" "else {\n" " mediump float alpha = atan2(back.y, back.x);\n" " mediump float w = back.z * dist;\n" " mediump float c = length(back.xy) / back.z;\n" " xp = vec4(2.*c*sin(w/2.) * cos(w/2.+alpha), 2.*c*sin(w/2.)*sin(w/2.+alpha), w*(1.+(c*c/2.)*((1.-sin(w)/w)+(1.-cos(w))/w * sin(w+2.*alpha))), 1.);\n" " xt = back.z * vec4(" "c*cos(alpha+w)," "c*sin(alpha+w)," "1. + c*c*2.*sin(w/2.)*sin(alpha+w)*cos(alpha+w/2.)," "0.);\n" " }\n" "mediump vec4 nposition = translate(position, xp);\n"; } if(nil) fmain += "mediump float rz = (abs(nposition.x) > abs(nposition.y) ? -nposition.x*nposition.y : 0.) + nposition.z;\n"; if(asonov) { fsh += "uniform mediump mat4 uStraighten;\n"; fmain += "mediump vec4 sp = uStraighten * nposition;\n"; } if(hyperbolic) { fmain += " mediump float ch = cosh(dist); mediump float sh = sinh(dist);\n" " mediump vec4 v = position * ch + tangent * sh;\n" " mediump vec4 ntangent = tangent * ch + position * sh;\n" " mediump vec4 nposition = v;\n"; } if(sphere && !use_christoffel) { fmain += " mediump float ch = cos(dist); mediump float sh = sin(dist);\n" " mediump vec4 v = position * ch + tangent * sh;\n" " mediump vec4 ntangent = tangent * ch - position * sh;\n" " mediump vec4 nposition = v;\n"; } bool reg = hyperbolic || sphere || euclid || sl2; if(reg) { fsh += "mediump float len_h(vec4 h) { return 1. - h[3]; }\n"; string s = rotspace ? "-2" : ""; fmain += " mediump float best = len(nposition);\n" " for(int i=0; i 1.) which = 5;\n" "if(sp.x <-1.) which = 10;\n" "if(sp.y <-1.) which = 11;\n" "if(sp.z > 1.) {\n" "mediump float best = 999.;\n" "for(int i=0; i<4; i++) {\n" "mediump float cand = len(uStraighten * uM[i] * position);\n" "if(cand < best) { best = cand; which = i;}\n" "}\n" "}\n" "if(sp.z < -1.) {\n" "mediump float best = 999.;\n" "for(int i=6; i<10; i++) {\n" "mediump float cand = len(uStraighten * uM[i] * position);\n" "if(cand < best) { best = cand; which = i;}\n" "}\n" "}\n"; else if(sol && !nih) fmain += "if(nposition.x > uBinaryWidth) which = 0;\n" "if(nposition.x <-uBinaryWidth) which = 4;\n" "if(nposition.y > uBinaryWidth) which = 1;\n" "if(nposition.y <-uBinaryWidth) which = 5;\n"; if(nih) fmain += "if(nposition.x > uBinaryWidth) which = 0;\n" "if(nposition.x <-uBinaryWidth) which = 2;\n" "if(nposition.y > uBinaryWidth) which = 1;\n" "if(nposition.y <-uBinaryWidth) which = 3;\n"; if(sol && nih) fmain += "if(nposition.z > .5) which = nposition.x > 0. ? 5 : 4;\n" "if(nposition.z <-.5) which = nposition.y > uBinaryWidth/3. ? 8 : nposition.y < -uBinaryWidth/3. ? 6 : 7;\n"; if(nih && !sol) fmain += "if(nposition.z > .5) which = 4;\n" "if(nposition.z < -.5) which = (nposition.y > uBinaryWidth/3. ? 9 : nposition.y < -uBinaryWidth/3. ? 5 : 7) + (nposition.x>0.?1:0);\n"; if(sol && !nih && !asonov) fmain += "if(nposition.z > log(2.)/2.) which = nposition.x > 0. ? 3 : 2;\n" "if(nposition.z <-log(2.)/2.) which = nposition.y > 0. ? 7 : 6;\n"; } else if(nil) fmain += "if(nposition.x > .5) which = 3;\n" "if(nposition.x <-.5) which = 0;\n" "if(nposition.y > .5) which = 4;\n" "if(nposition.y <-.5) which = 1;\n" "if(rz > .5) which = 5;\n" "if(rz <-.5) which = 2;\n"; fmain += "next = maxstep;\n" "}\n"; fmain += "position = nposition;\n"; if(use_christoffel) fmain += "tangent = tangent + (acc1+2.*acc2+2.*acc3+acc4)/(6.*dist);\n"; else if(nil) fmain += "tangent = translatev(position, xt);\n"; else fmain += "tangent = ntangent;\n"; if(stretch::in() || sl2) { fmain += "tangent = s_itranslate(position) * tangent;\n" "tangent[3] = 0.;\n" "float nvelsquared = dot(tangent.xy, tangent.xy) + " + to_glsl(stretch::squared()) + " * tangent.z * tangent.z;\n" "tangent /= sqrt(nvelsquared);\n" "tangent = s_translate(position) * tangent;\n"; } } else fmain += "position = position + tangent * dist;\n"; if(hyperbolic) fmain += "position /= sqrt(position.w*position.w - dot(position.xyz, position.xyz));\n" "tangent -= dot(vec4(-position.xyz, position.w), tangent) * position;\n" "tangent /= sqrt(dot(tangent.xyz, tangent.xyz) - tangent.w*tangent.w);\n"; if(hyperbolic && bt::in()) { fmain += "if(which == 20) {\n" " mediump float best = 999.;\n" " for(int i="+its(flat2)+"; i<"+its(S7)+"; i++) {\n" " mediump float cand = len(uM[i] * position);\n" " if(cand < best) { best = cand; which = i; }\n" " }\n" "}\n" "if(which == 21) {\n" "mediump float best = 999.;\n" "for(int i=0; i<"+its(flat1)+"; i++) {\n" " mediump float cand = len(uM[i] * position);\n" " if(cand < best) { best = cand; which = i; }\n" " }\n" // "gl_FragColor = vec4(.5 + .5 * sin((go+dist)*100.), 1, float(which)/3., 1); return;\n" "}\n"; } if(volumetric::on) fmain += "if(dist > 0. && go < " + to_glsl(hard_limit) + ") {\n" " if(dist > "+to_glsl(hard_limit)+" - go) dist = "+to_glsl(hard_limit)+" - go;\n" " mediump vec4 col = texture2D(tVolumetric, cid);\n" " mediump float factor = col.w; col.w = 1.;\n" " mediump float frac = exp(-(factor + 1. / uExpDecay) * dist);\n" " gl_FragColor += left * (1.-frac) * col;\n" " left *= frac;\n" " }\n;"; fmain += " go = go + dist;\n"; fmain += "if(which == -1) continue;\n"; if(prod) fmain += "position.w = -zpos;\n"; if(reg3::ultra_mirror_in()) fmain += "if(which >= " + its(S7) + ") {" " tangent = uM[which] * tangent;\n" " continue;\n" " }\n"; // apply wall color fmain += " mediump vec2 u = cid + vec2(float(which) / float(uLength), 0);\n" " mediump vec4 col = texture2D(tWallcolor, u);\n" " if(col[3] > 0.0) {\n"; if(hard_limit < NO_LIMIT) fmain += " if(go > " + to_glsl(hard_limit) + ") { gl_FragDepth = 1.; return; }\n"; if(!(levellines && disable_texture)) fmain += " mediump vec2 inface = map_texture(position, which+walloffset);\n" " mediump vec3 tmap = texture2D(tTextureMap, u).rgb;\n" " if(tmap.z == 0.) col.xyz *= min(1., (1.-inface.x)/ tmap.x);\n" " else {\n" " mediump vec2 inface2 = tmap.xy + tmap.z * inface;\n" " col.xyz *= texture2D(tTexture, inface2).rgb;\n" " }\n"; if(volumetric::on) fmain += " mediump float d = uExpStart * exp(-go / uExpDecay);\n"; else fmain += " mediump float d = max(1. - go / uLinearSightRange, uExpStart * exp(-go / uExpDecay));\n"; if(!volumetric::on) fmain += " col.xyz = col.xyz * d + uFogColor.xyz * (1.-d);\n"; if(nil) fmain += " if(abs(abs(position.x)-abs(position.y)) < .005) col.xyz /= 2.;\n"; if(use_reflect) fmain += " if(col.w == 1.) {\n" " col.w = " + to_glsl(1-reflect_val)+";\n" " reflect = true;\n" " }\n"; ld vnear = glhr::vnear_default; ld vfar = glhr::vfar_default; fmain += " gl_FragColor.xyz += left * col.xyz * col.w;\n"; if(use_reflect) fmain += " if(reflect && depthtoset) {\n"; else fmain += " if(col.w == 1.) {\n"; if(hyperbolic) fmain += " mediump float z = at0.z * sinh(go);\n" " mediump float w = 1.;\n"; else fmain += " mediump float z = at0.z * go;\n" " mediump float w = 1.;\n"; if(levellines) { if(hyperbolic) fmain += "gl_FragColor.xyz *= 0.5 + 0.5 * cos(z/cosh(go) * uLevelLines * 2. * PI);\n"; else fmain += "gl_FragColor.xyz *= 0.5 + 0.5 * cos(z * uLevelLines * 2. * PI);\n"; fsh += "uniform mediump float uLevelLines;\n"; } #ifndef GLES_ONLY fmain += " gl_FragDepth = (" + to_glsl(-vnear-vfar)+"+w*" + to_glsl(2*vnear*vfar)+"/z)/" + to_glsl(vnear-vfar)+";\n" " gl_FragDepth = (gl_FragDepth + 1.) / 2.;\n"; #endif if(!use_reflect) fmain += " return;\n"; else fmain += " depthtoset = false;\n"; fmain += " }\n" " left *= (1. - col.w);\n" " }\n"; if(use_reflect) { if(prod) fmain += "if(reflect && which >= "+its(deg-2)+") { zspeed = -zspeed; continue; }\n"; if(hyperbolic && bt::in()) fmain += "if(reflect && (which < "+its(flat1)+" || which >= "+its(flat2)+")) {\n" " mediump float x = -log(position.w - position.x);\n" " mediump vec4 xtan = xpush(-x) * tangent;\n" " mediump float diag = (position.y*position.y+position.z*position.z)/2.;\n" " mediump vec4 normal = vec4(1.-diag, -position.y, -position.z, -diag);\n" " mediump float mdot = dot(xtan.xyz, normal.xyz) - xtan.w * normal.w;\n" " xtan = xtan - normal * mdot * 2.;\n" " tangent = xpush(x) * xtan;\n" " continue;\n" " }\n"; if(asonov) { fmain += " if(reflect) {\n" " if(which == 4 || which == 10) tangent = refl(tangent, position.z, uReflectX);\n" " else if(which == 5 || which == 11) tangent = refl(tangent, position.z, uReflectY);\n" " else tangent.z = -tangent.z;\n" " }\n"; fsh += "uniform mediump vec4 uReflectX, uReflectY;\n" "mediump vec4 refl(mediump vec4 t, float z, mediump vec4 r) {\n" "t.x *= exp(z); t.y /= exp(z);\n" "t -= dot(t, r) * r;\n" "t.x /= exp(z); t.y *= exp(z);\n" "return t;\n" "}\n"; } else if(sol && !nih && !asonov) fmain += " if(reflect) {\n" " if(which == 0 || which == 4) tangent.x = -tangent.x;\n" " else if(which == 1 || which == 5) tangent.y = -tangent.y;\n" " else tangent.z = -tangent.z;\n" " continue;\n" " }\n"; else if(nih) fmain += " if(reflect) {\n" " if(which == 0 || which == 2) tangent.x = -tangent.x;\n" " else if(which == 1 || which == 3) tangent.y = -tangent.y;\n" " else tangent.z = -tangent.z;\n" " continue;\n" " }\n"; else fmain += " if(reflect) {\n" " tangent = uM["+its(deg)+"+which] * tangent;\n" " continue;\n" " }\n"; } // next cell fmain += " mediump vec4 connection = texture2D(tConnections, u);\n" " cid = connection.xy;\n"; if(prod) fmain += " if(which == sides-2) { zpos += uPLevel+uPLevel; }\n" " if(which == sides-1) { zpos -= uPLevel+uPLevel; }\n"; fmain += " int mid = int(connection.z * 1024.);\n" " mediump mat4 m = " GET("uM", "mid") " * " GET("uM", "walloffset+which") ";\n" " position = m * position;\n" " tangent = m * tangent;\n"; if(bi) { fmain += "walloffset = int(connection.w * 256.);\n" "sides = int(connection.w * 4096.) - 16 * walloffset;\n"; // fmain += "if(sides != 8) { gl_FragColor = vec4(.5,float(sides)/8.,.5,1); return; }"; } fmain += " }\n" " gl_FragColor.xyz += left * uFogColor.xyz;\n"; #ifndef GLES_ONLY if(use_reflect) fmain += " if(depthtoset) gl_FragDepth = 1.;\n"; else fmain += " gl_FragDepth = 1.;\n"; #endif fmain += " }"; fsh += fmain; callhooks(hooks_rayshader, vsh, fsh); our_raycaster = make_shared (vsh, fsh); } full_enable(our_raycaster); } int length, per_row, rows; void bind_array(vector>& v, GLint t, GLuint& tx, int id) { if(t == -1) println(hlog, "bind to nothing"); glUniform1i(t, id); if(tx == 0) glGenTextures(1, &tx); glActiveTexture(GL_TEXTURE0 + id); glBindTexture(GL_TEXTURE_2D, tx); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexImage2D(GL_TEXTURE_2D, 0, 0x8814 /* GL_RGBA32F */, length, isize(v)/length, 0, GL_RGBA, GL_FLOAT, &v[0]); GLERR("bind_array"); } void uniform2(GLint id, array fl) { glUniform2f(id, fl[0], fl[1]); } array enc(int i, int a) { array res; res[0] = ((i%per_row) * deg + a + .5) / length; res[1] = ((i / per_row) + .5) / rows; return res; } color_t color_out_of_range = 0x0F0800FF; int gms_size; transmatrix get_ms(cell *c, int a, bool mirror) { int z = a ? 1 : -1; if(c->type == 3) { hyperpoint h = project_on_triangle( hybrid::get_corner(c, a, 0, z), hybrid::get_corner(c, a, 1, z), hybrid::get_corner(c, a, 2, z) ); transmatrix T = rspintox(h); if(mirror) T = T * MirrorX; return T * xpush(-2*hdist0(h)) * spintox(h); } else { hyperpoint h = Hypc; for(int a=0; atype; a++) { hyperpoint corner = hybrid::get_corner(c, a, 0, z); h += corner; } h = normalize(h); ld d = hdist0(h); if(h[2] > 0) d = -d; if(mirror) return MirrorZ * zpush(2*d); return zpush(2*d); } } EX void cast() { if(isize(cgi.raywall) > irays) reset_raycaster(); enable_raycaster(); if(comparison_mode) glColorMask( GL_TRUE,GL_FALSE,GL_FALSE,GL_TRUE ); auto& o = our_raycaster; vector screen = { glhr::makevertex(-1, -1, 1), glhr::makevertex(-1, +1, 1), glhr::makevertex(+1, -1, 1), glhr::makevertex(-1, +1, 1), glhr::makevertex(+1, -1, 1), glhr::makevertex(+1, +1, 1) }; ld d = current_display->eyewidth(); if(vid.stereo_mode == sLR) d = 2 * d - 1; else d = -d; glUniform1f(o->uShift, -global_projection * d); auto& cd = current_display; cd->set_viewport(global_projection); cd->set_mask(global_projection); glUniform1f(o->uFovX, cd->tanfov / (vid.stereo_mode == sLR ? 2 : 1)); glUniform1f(o->uFovY, cd->tanfov * cd->ysize / cd->xsize); glUniform1f(o->uPosX, -((cd->xcenter-cd->xtop)*2./cd->xsize - 1)); glUniform1f(o->uPosY, -((cd->ycenter-cd->ytop)*2./cd->ysize - 1)); if(!callhandlers(false, hooks_rayset, o)) { length = 4096; per_row = length / deg; vector lst; cell *cs = centerover; transmatrix T = cview().T; if(global_projection) T = xpush(vid.ipd * global_projection/2) * T; if(nonisotropic) T = NLP * T; T = inverse(T); virtualRebase(cs, T); int ray_fixes = 0; back: for(int a=0; atype; a++) if(hdist0(hybrid::ray_iadj(cs, a) * tC0(T)) < hdist0(tC0(T))) { println(hlog, "ray error"); T = currentmap->iadj(cs, a) * T; cs = cs->move(a); ray_fixes++; if(ray_fixes > 100) return; goto back; } if(true) { manual_celllister cl; cl.add(cs); bool optimize = !isWall3(cs); for(int i=0; i 0 && c->wall == waBarrier) continue; if(optimize && isWall3(c)) continue; forCellCM(c2, c) { if(rays_generate) setdist(c2, 7, c); cl.add(c2); if(isize(cl.lst) >= max_cells) goto finish; } } finish: lst = cl.lst; } rows = next_p2((isize(lst)+per_row-1) / per_row); map ids; for(int i=0; iuLength, length); GLERR("uniform mediump length"); glUniformMatrix4fv(o->uStart, 1, 0, glhr::tmtogl_transpose3(T).as_array()); if(o->uLP != -1) glUniformMatrix4fv(o->uLP, 1, 0, glhr::tmtogl_transpose3(inverse(NLP)).as_array()); GLERR("uniform mediump start"); uniform2(o->uStartid, enc(ids[cs], 0)); GLERR("uniform mediump startid"); glUniform1f(o->uIPD, vid.ipd); GLERR("uniform mediump IPD"); if(o->uWallOffset != -1) { glUniform1i(o->uWallOffset, wall_offset(cs)); glUniform1i(o->uSides, cs->type + (WDIM == 2 ? 2 : 0)); } auto sa = hybrid::gen_sample_list(); vector ms(sa.back().first, Id); for(auto& p: sa) { int id = p.first; cell *c = p.second; if(!c) continue; for(int j=0; jtype; j++) ms[id+j] = hybrid::ray_iadj(c, j); if(WDIM == 2) for(int a: {0, 1}) { ms[id+c->type+a] = get_ms(c, a, false); } } // println(hlog, ms); if(!sol && !nil && (reflect_val || reg3::ultra_mirror_in())) { if(BITRUNCATED) exit(1); for(int j=0; jtype; j++) { transmatrix T = inverse(ms[j]); hyperpoint h = tC0(T); ld d = hdist0(h); transmatrix U = rspintox(h) * xpush(d/2) * MirrorX * xpush(-d/2) * spintox(h); ms.push_back(U); } if(WDIM == 2) for(int a: {0, 1}) { ms.push_back(get_ms(cs, a, true)); } if(reg3::ultra_mirror_in()) { for(auto v: cgi.ultra_mirrors) ms.push_back(v); } } vector> connections(length * rows); vector> wallcolor(length * rows); vector> texturemap(length * rows); vector> volumetric(length * rows); if(1) for(cell *c: lst) { int id = ids[c]; auto& vmap = volumetric::vmap; if(volumetric::on) { celldrawer dd; dd.c = c; dd.setcolors(); int u = (id/per_row*length) + (id%per_row * deg); color_t vcolor; if(vmap.count(c)) vcolor = vmap[c]; else vcolor = (backcolor << 8); volumetric[u] = glhr::acolor(vcolor); } forCellIdEx(c1, i, c) { int u = (id/per_row*length) + (id%per_row * deg) + i; if(!ids.count(c1)) { wallcolor[u] = glhr::acolor(color_out_of_range | 0xFF); texturemap[u] = glhr::makevertex(0.1,0,0); continue; } auto code = enc(ids[c1], 0); connections[u][0] = code[0]; connections[u][1] = code[1]; if(isWall3(c1)) { celldrawer dd; dd.c = c1; dd.setcolors(); shiftmatrix Vf; dd.set_land_floor(Vf); color_t wcol = darkena(dd.wcol, 0, 0xFF); int dv = get_darkval(c1, c->c.spin(i)); float p = 1 - dv / 16.; wallcolor[u] = glhr::acolor(wcol); for(int a: {0,1,2}) wallcolor[u][a] *= p; if(qfi.fshape) { texturemap[u] = floor_texture_map[qfi.fshape->id]; } else texturemap[u] = glhr::makevertex(0.1,0,0); } else { color_t col = transcolor(c, c1, winf[c->wall].color) | transcolor(c1, c, winf[c1->wall].color); if(col == 0) wallcolor[u] = glhr::acolor(0); else { int dv = get_darkval(c1, c->c.spin(i)); float p = 1 - dv / 16.; wallcolor[u] = glhr::acolor(col); for(int a: {0,1,2}) wallcolor[u][a] *= p; texturemap[u] = glhr::makevertex(0.001,0,0); } } int wo = wall_offset(c); if(wo >= irays) { println(hlog, "wo=", wo, " irays = ", irays); reset_raycaster(); return; } transmatrix T = currentmap->iadj(c, i) * inverse(ms[wo + i]); for(int k=0; k<=isize(ms); k++) { if(k < isize(ms) && !eqmatrix(ms[k], T)) continue; if(k == isize(ms)) ms.push_back(T); connections[u][2] = (k+.5) / 1024.; break; } connections[u][3] = (wall_offset(c1) / 256.) + (c1->type + (WDIM == 2 ? 2 : 0) + .5) / 4096.; } if(WDIM == 2) for(int a: {0, 1}) { celldrawer dd; dd.c = c; dd.setcolors(); shiftmatrix Vf; dd.set_land_floor(Vf); int u = (id/per_row*length) + (id%per_row * deg) + c->type + a; wallcolor[u] = glhr::acolor(darkena(dd.fcol, 0, 0xFF)); if(qfi.fshape) texturemap[u] = floor_texture_map[qfi.fshape->id]; else texturemap[u] = glhr::makevertex(0.1,0,0); } } if(prod) { for(auto p: sa) { int id =p.first; if(id == 0) continue; ms[id-2] = Id; ms[id-1] = Id; } } vector wallstart; for(auto i: cgi.wallstart) wallstart.push_back(i); glUniform1iv(o->uWallstart, isize(wallstart), &wallstart[0]); vector wallx, wally; for(auto& m: cgi.raywall) { wallx.push_back(glhr::pointtogl(m[0])); wally.push_back(glhr::pointtogl(m[1])); } glUniform4fv(o->uWallX, isize(wallx), &wallx[0][0]); glUniform4fv(o->uWallY, isize(wally), &wally[0][0]); if(o->uLevelLines != -1) glUniform1f(o->uLevelLines, levellines); if(o->uBinaryWidth != -1) glUniform1f(o->uBinaryWidth, vid.binary_width/2 * (nih?1:log(2))); if(o->uStraighten != -1) { glUniformMatrix4fv(o->uStraighten, 1, 0, glhr::tmtogl_transpose(asonov::straighten).as_array()); } if(o->uReflectX != -1) { auto h = glhr::pointtogl(tangent_length(spin(90*degree) * asonov::ty, 2)); glUniform4fv(o->uReflectX, 1, &h[0]); h = glhr::pointtogl(tangent_length(spin(90*degree) * asonov::tx, 2)); glUniform4fv(o->uReflectY, 1, &h[0]); } if(o->uPLevel != -1) glUniform1f(o->uPLevel, cgi.plevel / 2); if(o->uBLevel != -1) glUniform1f(o->uBLevel, log(bt::expansion()) / 2); if(o->uLinearSightRange != -1) glUniform1f(o->uLinearSightRange, sightranges[geometry]); glUniform1f(o->uExpDecay, exp_decay_current()); glUniform1f(o->uExpStart, exp_start); vector gms; for(auto& m: ms) gms.push_back(glhr::tmtogl_transpose3(m)); glUniformMatrix4fv(o->uM, isize(gms), 0, gms[0].as_array()); gms_size = isize(gms); bind_array(wallcolor, o->tWallcolor, txWallcolor, 4); bind_array(connections, o->tConnections, txConnections, 3); bind_array(texturemap, o->tTextureMap, txTextureMap, 5); if(volumetric::on) bind_array(volumetric, o->tVolumetric, txVolumetric, 6); auto cols = glhr::acolor(darkena(backcolor, 0, 0xFF)); if(o->uFogColor != -1) glUniform4f(o->uFogColor, cols[0], cols[1], cols[2], cols[3]); } glVertexAttribPointer(hr::aPosition, 4, GL_FLOAT, GL_FALSE, sizeof(glvertex), &screen[0]); if(ray::comparison_mode) glhr::set_depthtest(false); else { glhr::set_depthtest(true); glhr::set_depthwrite(true); } glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glActiveTexture(GL_TEXTURE0 + 0); glBindTexture(GL_TEXTURE_2D, floor_textures->renderedTexture); glDrawArrays(GL_TRIANGLES, 0, 6); GLERR("finish"); } EX namespace volumetric { EX bool on; EX map vmap; int intensity = 16; EX void enable() { if(!on) { on = true; reset_raycaster(); } } EX void random_fog() { enable(); for(cell *c: currentmap->allcells()) vmap[c] = ((rand() % 0x1000000) << 8) | intensity; } EX void menu() { cmode = sm::SIDE | sm::MAYDARK; gamescreen(0); dialog::init(XLAT("volumetric raycasting")); if(!cheater) { dialog::addItem(XLAT("enable the cheat mode for additional options"), 'X'); dialog::add_action(enable_cheat); dialog::addBack(); dialog::display(); return; } dialog::addBoolItem(XLAT("active"), on, 'a'); dialog::add_action([&] { on = !on; reset_raycaster(); }); dialog::addSelItem(XLAT("intensity of random coloring"), its(intensity), 'i'); dialog::add_action([] { dialog::editNumber(intensity, 0, 255, 5, 15, "", ""); dialog::reaction = random_fog; }); dialog::addItem(XLAT("color randomly"), 'r'); dialog::add_action(random_fog); dialog::addColorItem("color cell under cursor", vmap.count(centerover) ? vmap[centerover] : 0, 'c'); dialog::add_action([&] { enable(); dialog::openColorDialog(vmap[centerover]); dialog::dialogflags |= sm::SIDE; }); dialog::addColorItem("color cell under player", vmap.count(cwt.at) ? vmap[cwt.at] : 0, 'p'); dialog::add_action([&] { enable(); dialog::openColorDialog(vmap[cwt.at]); dialog::dialogflags |= sm::SIDE; }); dialog::addBreak(150); dialog::addHelp("This fills all the cells with glowing fog, for cool visualizations"); dialog::addBreak(150); dialog::addBack(); dialog::display(); } EX } EX void configure() { cmode = sm::SIDE | sm::MAYDARK; gamescreen(0); dialog::init(XLAT("raycasting configuration")); dialog::addBoolItem(XLAT("available in current geometry"), available(), 0); dialog::addBoolItem(XLAT("use raycasting?"), want_use == 2 ? true : in_use, 'u'); if(want_use == 1) dialog::lastItem().value = XLAT("SMART"); dialog::add_action([] { want_use++; want_use %= 3; }); dialog::addBoolItem_action(XLAT("comparison mode"), comparison_mode, 'c'); dialog::addSelItem(XLAT("exponential range"), fts(exp_decay_current()), 'r'); dialog::add_action([&] { dialog::editNumber(exp_decay_current(), 0, 40, 0.25, 5, XLAT("exponential range"), XLAT("brightness formula: max(1-d/sightrange, s*exp(-d/r))") ); }); dialog::addSelItem(XLAT("exponential start"), fts(exp_start), 's'); dialog::add_action([&] { dialog::editNumber(exp_start, 0, 1, 0.1, 1, XLAT("exponential start"), XLAT("brightness formula: max(1-d/sightrange, s*exp(-d/r))\n") ); }); if(hard_limit < NO_LIMIT) dialog::addSelItem(XLAT("hard limit"), fts(hard_limit), 'H'); else dialog::addBoolItem(XLAT("hard limit"), false, 'H'); dialog::add_action([&] { if(hard_limit >= NO_LIMIT) hard_limit = 10; dialog::editNumber(hard_limit, 0, 100, 1, 10, XLAT("hard limit"), ""); dialog::reaction = reset_raycaster; dialog::extra_options = [] { dialog::addItem("no limit", 'N'); dialog::add_action([] { hard_limit = NO_LIMIT; reset_raycaster(); }); }; }); if(!nil) { dialog::addSelItem(XLAT("reflective walls"), fts(reflect_val), 'R'); dialog::add_action([&] { dialog::editNumber(reflect_val, 0, 1, 0.1, 0, XLAT("reflective walls"), ""); dialog::reaction = reset_raycaster; }); } if(nonisotropic || stretch::in()) { dialog::addSelItem(XLAT("max step"), fts(maxstep_current()), 'x'); dialog::add_action([] { dialog::editNumber(maxstep_current(), 1e-6, 1, 0.1, sol ? 0.05 : 0.1, XLAT("max step"), "affects the precision of solving the geodesic equation in Solv"); dialog::scaleLog(); dialog::bound_low(1e-9); dialog::reaction = reset_raycaster; }); dialog::addSelItem(XLAT("min step"), fts(minstep), 'n'); dialog::add_action([] { dialog::editNumber(minstep, 1e-6, 1, 0.1, 0.001, XLAT("min step"), "how precisely should we find out when do cross the cell boundary"); dialog::scaleLog(); dialog::bound_low(1e-9); dialog::reaction = reset_raycaster; }); } dialog::addBoolItem(XLAT("volumetric raytracing"), volumetric::on, 'v'); dialog::add_action_push(volumetric::menu); dialog::addSelItem(XLAT("iterations"), its(max_iter_current()), 's'); dialog::add_action([&] { dialog::editNumber(max_iter_current(), 0, 600, 1, 60, XLAT("iterations"), "in H3/H2xE/E3 this is the number of cell boundaries; in nonisotropic, the number of simulation steps"); dialog::reaction = reset_raycaster; }); dialog::addSelItem(XLAT("max cells"), its(max_cells), 's'); dialog::add_action([&] { dialog::editNumber(max_cells, 16, 131072, 0.1, 4096, XLAT("max cells"), ""); dialog::scaleLog(); dialog::extra_options = [] { dialog::addBoolItem_action("generate", rays_generate, 'G'); dialog::addColorItem(XLAT("out-of-range color"), color_out_of_range, 'X'); dialog::add_action([] { dialog::openColorDialog(color_out_of_range); dialog::dialogflags |= sm::SIDE; }); }; }); if(gms_size > gms_limit && ray::in_use) { dialog::addBreak(100); dialog::addHelp(XLAT("unfortunately this honeycomb is too complex for the current implementation (%1>%2)", its(gms_size), its(gms_limit))); } edit_levellines('L'); dialog::addBack(); dialog::display(); } #if CAP_COMMANDLINE int readArgs() { using namespace arg; if(0) ; else if(argis("-ray-do")) { PHASEFROM(2); want_use = 2; } else if(argis("-ray-dont")) { PHASEFROM(2); want_use = 0; } else if(argis("-ray-smart")) { PHASEFROM(2); want_use = 1; } else if(argis("-ray-range")) { PHASEFROM(2); shift_arg_formula(exp_start, reset_raycaster); shift_arg_formula(exp_decay_current(), reset_raycaster); } else if(argis("-ray-hard")) { PHASEFROM(2); shift_arg_formula(hard_limit); } else if(argis("-ray-out")) { PHASEFROM(2); shift(); color_out_of_range = arghex(); } else if(argis("-ray-comp")) { PHASEFROM(2); comparison_mode = true; } else if(argis("-ray-sol")) { PHASEFROM(2); shift(); max_iter_sol = argi(); shift_arg_formula(maxstep_sol, reset_raycaster); reset_raycaster(); } else if(argis("-ray-iter")) { PHASEFROM(2); shift(); max_iter_current() = argi(); } else if(argis("-ray-cells")) { PHASEFROM(2); shift(); rays_generate = true; max_cells = argi(); } else if(argis("-ray-reflect")) { PHASEFROM(2); shift_arg_formula(reflect_val, reset_raycaster); } else if(argis("-ray-cells-no")) { PHASEFROM(2); shift(); rays_generate = false; max_cells = argi(); } else if(argis("-ray-random")) { start_game(); shift(); volumetric::intensity = argi(); volumetric::random_fog(); } else if(argis("-ray-cursor")) { start_game(); volumetric::enable(); shift(); volumetric::vmap[centerover] = arghex(); } else return 1; return 0; } auto hook = addHook(hooks_args, 100, readArgs); #endif #if CAP_CONFIG void addconfig() { addparam(exp_start, "ray_exp_start"); addparam(exp_decay_exp, "ray_exp_decay_exp"); addparam(maxstep_sol, "ray_maxstep_sol"); addparam(maxstep_nil, "ray_maxstep_nil"); addparam(minstep, "ray_minstep"); addparam(reflect_val, "ray_reflect_val"); addparam(hard_limit, "ray_hard_limit"); addsaver(want_use, "ray_want_use"); addsaver(exp_decay_poly, "ray_exp_decay_poly"); addsaver(max_iter_iso, "ray_max_iter_iso"); addsaver(max_iter_sol, "ray_max_iter_sol"); addsaver(max_cells, "ray_max_cells"); addsaver(rays_generate, "ray_generate"); } auto hookc = addHook(hooks_configfile, 100, addconfig); #endif #endif #if !CAP_RAY EX always_false in_use; EX always_false comparison_mode; EX void reset_raycaster() { } EX void cast() { } #endif EX } }