// Hyperbolic Rogue -- Euclidean geometry // Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details /** \file euclid.cpp * \brief Euclidean geometry, including 2D, 3D, and quotient spaces */ #include "hyper.h" namespace hr { EX namespace euc { #if HDR struct coord : array { coord() {} coord(int x, int y, int z) { self[0] = x; self[1] = y; self[2] = z; } coord& operator += (coord b) { for(int i: {0,1,2}) self[i] += b[i]; return self; } coord& operator -= (coord b) { for(int i: {0,1,2}) self[i] -= b[i]; return self; } coord operator + (coord b) const { coord a = self; return a += b; } coord operator - (coord b) const { coord a = self; return a -= b; } coord operator -() const { return coord(-self[0], -self[1], -self[2]); } coord& operator +() { return self; } const coord& operator +() const { return self; } coord operator *(int x) const { return coord(x*self[0], x*self[1], x*self[2]); } friend coord operator *(int x, const coord& y) { return coord(x*y[0], x*y[1], x*y[2]); } }; typedef array intmatrix; #endif EX const coord euzero = coord(0,0,0); EX const coord eutester = coord(3,7,0); EX intmatrix euzeroall = make_array(euzero, euzero, euzero); static const intmatrix main_axes = make_array(coord(1,0,0), coord(0,1,0), coord(0,0,1)); EX vector get_shifttable() { static const coord D0 = main_axes[0]; static const coord D1 = main_axes[1]; static const coord D2 = main_axes[2]; vector shifttable; switch(geometry) { case gCubeTiling: shifttable = { +D0, +D1, +D2 }; break; case gRhombic3: shifttable = { D0+D1, D0+D2, D1+D2, D1-D2, D0-D2, D0-D1 }; break; case gBitrunc3: shifttable = { 2*D0, 2*D1, 2*D2, D0+D1+D2, D0+D1-D2, D0-D1-D2, D0-D1+D2 }; break; case gEuclid: shifttable = { D0, D1, D1-D0, -D0, -D1, D0-D1 }; break; case gEuclidSquare: shifttable = { D0, D1, -D0, -D1 }; break; default: printf("euc::get_shifttable() called in geometry that is not euclid3"); exit(1); } // reverse everything int s = isize(shifttable); for(int i=0; i hash; vector seq; int index; void reset() { index = 0; hash.clear(); seq.clear(); } /** add to the tori canonicalization list */ void add(coord val); /** get the representative on the tori canonicalization list */ coord get(coord x); /** find the equivalence class of coo */ coord compute_cat(coord coo); /** canonicalize coord x; in case of twisting, adjust d, M, and mirr accordingly */ void canonicalize(coord& x, coord& d, transmatrix& M, bool& mirr); }; #endif EX torus_config eu_input, eu_edit; EX torus_config_full eu; struct hrmap_euclidean : hrmap_standard { vector shifttable; vector tmatrix; map spacemap; map ispacemap; cell *camelot_center; map eucdata; vector toruscells; vector& allcells() override { if(bounded) { if(isize(toruscells) == 0) { celllister cl(getOrigin()->c7, 1000, 1000000, NULL); toruscells = cl.lst; } return toruscells; } return hrmap::allcells(); } hrmap_euclidean() { shifttable = get_shifttable(); tmatrix.resize(S7); for(int i=0; i (S7); if(!IRREGULAR) h->c7 = newCell(S7, h); #if CAP_IRR else { coord m0 = shifttable[0]; transmatrix dummy; bool mirr; auto ati = at; irr::base_config.canonicalize(ati, m0, dummy, mirr); indenter id(2); for(int spin=0; spinget_at(ati), spin, mirr)); break; } } #endif h->distance = 0; h->cdata = NULL; h->alt = NULL; if(S7 != 14) h->zebraval = gmod(at[0] + at[1] * 2 + at[2] * 4, 5); else h->zebraval = at[0] & 1; spacemap[at] = h; ispacemap[h] = at; return h; } } heptagon *create_step(heptagon *parent, int d) override { int d1 = (d+S7/2)%S7; bool mirr = false; transmatrix I; auto v = ispacemap[parent] + shifttable[d]; auto st = shifttable[d1]; eu.canonicalize(v, st, I, mirr); if(eu.twisted) for(int i=0; ic.connect(d1, parent, d, mirr); return h; } transmatrix adj(heptagon *h, int i) override { if(!eu.twisted) return tmatrix[i]; transmatrix res = tmatrix[i]; coord id = ispacemap[h]; id += shifttable[i]; auto dummy = euzero; bool dm = false; eu.canonicalize(id, dummy, res, dm); return res; } transmatrix adj(cell *c, int i) override { if(WDIM == 3) return adj(c->master, i); else return hrmap_standard::adj(c, i); } void draw_at(cell *at, const shiftmatrix& where) override { dq::clear_all(); dq::enqueue_by_matrix(at->master, where * master_relative(centerover, true)); while(!dq::drawqueue.empty()) { auto& p = dq::drawqueue.front(); heptagon *h = p.first; shiftmatrix V = p.second; dq::drawqueue.pop(); cell *c = h->c7; bool draw = drawcell_subs(c, V * spin(master_to_c7_angle())); if(in_wallopt() && isWall3(c) && isize(dq::drawqueue) > 1000 && !hybrid::pmap) continue; if(draw) for(int i=0; imove(i), optimized_shift(V * adj(h, i))); } } transmatrix relative_matrix(heptagon *h2, heptagon *h1, const hyperpoint& hint) override { if(eu.twisted) { if(h1 == h2) return Id; for(int s=0; smove(s)) return adj(h1, s); coord c1 = ispacemap[h1]; coord c2 = ispacemap[h2]; transmatrix T = eumove(c2 - c1); transmatrix I = Id; coord cs = c1; for(int s=0; s<4; s++) { for(int a=-1; a<=1; a++) for(int b=-1; b<=1; b++) { if(b && WDIM == 2) continue; transmatrix T1 = I * eumove((c2 - cs) + a*eu.user_axes[0] + b*eu.user_axes[1]); if(hdist(tC0(T1), hint) < hdist(tC0(T), hint)) T = T1; } auto co = eu.user_axes[WDIM-1]; cs += co; I = I * eumove(co); auto dummy = euzero; bool dm = false; eu.canonicalize(cs, dummy, I, dm); } return T; } auto d = ispacemap[h2] - ispacemap[h1]; d = basic_canonicalize(d); return eumove(d); } vector get_vertices(cell* c) override { vector res; if(S7 < 14) for(ld a: {-.5,.5}) for(ld b: {-.5,.5}) for(ld c: {-.5, .5}) res.push_back(hpxy3(a,b,c)); if(S7 == 12) { res.push_back(hpxy3(1,0,0)); res.push_back(hpxy3(-1,0,0)); res.push_back(hpxy3(0,1,0)); res.push_back(hpxy3(0,-1,0)); res.push_back(hpxy3(0,0,1)); res.push_back(hpxy3(0,0,-1)); } if(S7 == 14) { for(ld a: {-1.,-.5,0.,.5,1.}) for(ld b: {-1.,-.5,0.,.5,1.}) for(ld c: {-1.,-.5,0.,.5,1.}) if(a == 0 || b == 0 || c == 0) if(a == .5 || a == -.5 || b == .5 || b == -.5 || c == .5 || c == -.5) if(a == 1 || a == -1 || b == 1 || b == -1 || c == 1 || c == -1) res.push_back(hpxy3(a,b,c)); } return res; } }; hrmap_euclidean* cubemap() { if(fake::in()) return FPIU(cubemap()); return ((hrmap_euclidean*) currentmap); } hrmap_euclidean* eucmap() { return cubemap(); } EX vector& get_current_shifttable() { return cubemap()->shifttable; } EX map& get_spacemap() { return cubemap()->spacemap; } EX map& get_ispacemap() { return cubemap()->ispacemap; } EX cell *& get_camelot_center() { return cubemap()->camelot_center; } EX heptagon* get_at(coord co) { return cubemap()->get_at(co); } EX hrmap* new_map() { return new hrmap_euclidean; } EX transmatrix move_matrix(heptagon *h, int i) { return cubemap()->adj(h, i); } EX bool pseudohept(cell *c) { coord co = cubemap()->ispacemap[c->master]; if(S7 == 12) { for(int i=0; i<3; i++) if((co[i] & 1)) return false; } else { for(int i=0; i<3; i++) if(!(co[i] & 1)) return false; } return true; } EX int dist_alt(cell *c) { if(WDIM == 2) { auto v = full_coords2(c); return euclidAlt(v.first, v.second); } if(specialland == laCamelot) return dist_relative(c) + roundTableRadius(c); auto v = cubemap()->ispacemap[c->master]; if(S7 == 6) return v[2]; else if(S7 == 12) return (v[0] + v[1] + v[2]) / 2; else return v[2]/2; } EX bool get_emerald(cell *c) { auto v = cubemap()->ispacemap[c->master]; int s0 = 0, s1 = 0; for(int i=0; i<3; i++) { v[i] = gmod(v[i], 6); int d = min(v[i], 6-v[i]);; s0 += min(v[i], 6-v[i]); s1 += 3-d; } if(s0 == s1) println(hlog, "equality"); return s0 > s1; } bool cellvalid(coord v) { if(S7 == 6) return true; if(S7 == 12) return (v[0] + v[1] + v[2]) % 2 == 0; if(S7 == 14) return v[0] % 2 == v[1] % 2 && v[0] % 2 == v[2] % 2; return false; } EX int celldistance(coord v) { if(S7 == 6) return abs(v[0]) + abs(v[1]) + abs(v[2]); else { for(int i=0; i<3; i++) v[i] = abs(v[i]); sort(v.begin(), v.end()); int dist = 0; if(S7 == 12) { int d = v[1] - v[0]; v[1] -= d; v[2] -= d; dist += d; int m = min((v[2] - v[0]), v[0]); dist += 2 * m; v[0] -= m; v[1] -= m; v[2] -= m * 2; if(v[0]) dist += (v[0] + v[1] + v[2]) / 2; else dist += v[2]; } else { dist = v[0] + (v[1] - v[0]) / 2 + (v[2] - v[0]) / 2; } return dist; } } EX int celldistance(cell *c1, cell *c2) { auto cm = cubemap(); if(GDIM == 2) return dist(full_coords2(c1), full_coords2(c2)); return celldistance(basic_canonicalize(cm->ispacemap[c1->master] - cm->ispacemap[c2->master])); } EX void set_land(cell *c) { setland(c, specialland); auto m = cubemap(); auto co = m->ispacemap[c->master]; int dv = 1; if(geometry != gCubeTiling) dv = 2; int hash = 0; for(int a=0; a<3; a++) hash = 1317 * hash + co[a] / 4; set_euland3(c, co[0]*120, co[1]*120, (co[1]+co[2]) / dv, hash); } EX int dist_relative(cell *c) { auto m = cubemap(); auto& cc = m->camelot_center; int r = roundTableRadius(NULL); cell *start = m->gamestart(); if(!cc) { cc = start; while(euc::celldistance(cc, start) < r + 5) cc = cc->cmove(hrand(cc->type)); } return euc::celldistance(cc, c) - r; } /* quotient spaces */ int determinant(const intmatrix T) { int det = 0; for(int i=0; i<3; i++) det += T[0][i] * T[1][(i+1)%3] * T[2][(i+2)%3]; for(int i=0; i<3; i++) det -= T[0][i] * T[1][(i+2)%3] * T[2][(i+1)%3]; return det; } intmatrix scaled_inverse(const intmatrix T) { intmatrix T2; for(int i=0; i<3; i++) for(int j=0; j<3; j++) T2[j][i] = (T[(i+1)%3][(j+1)%3] * T[(i+2)%3][(j+2)%3] - T[(i+1)%3][(j+2)%3] * T[(i+2)%3][(j+1)%3]); return T2; } EX torus_config torus3(int x, int y, int z) { intmatrix T0 = euzeroall; tie(T0[0][0], T0[1][1], T0[2][2]) = make_tuple(x, y, z); return {T0, 0}; } EX torus_config clear_torus3() { return {euzeroall, 0}; } coord torus_config_full::compute_cat(coord coo) { coord cat = euzero; auto& T2 = inverse_axes; for(int i=0; i<3; i++) { int val = T2[0][i] * coo[0] + T2[1][i] * coo[1] + T2[2][i] * coo[2]; if(i < WDIM - infinite_dims) val = gmod(val, det); cat += val * main_axes[i]; } return cat; } EX bool valid_third_turn(const intmatrix& m) { if(m[0][2] != -m[0][0]-m[0][1]) return false; if(m[1][0] != m[0][1]) return false; if(m[1][1] != m[0][2]) return false; if(m[1][2] != m[0][0]) return false; if(m[2][0] != m[2][1]) return false; if(m[2][0] != m[2][2]) return false; return true; } EX torus_config make_hantzsche_wendt(int v) { intmatrix im; for(int i=0; i<3; i++) for(int j=0; j<3; j++) im[i][j] = 0; for(int i=0; i<3; i++) { im[i][i] = v; im[i][(i+1)%3] = v; } return {im, 32}; } EX bool valid_hantzsche_wendt(const intmatrix& m) { return m[0][0] > 0 && m == make_hantzsche_wendt(m[0][0]).user_axes; } EX torus_config make_third_turn(int a, int b, int c) { intmatrix T0; T0[0][0] = a; T0[0][1] = b; T0[2][0] = c; T0[0][2] = -T0[0][0]-T0[0][1]; T0[1][0] = T0[0][1]; T0[1][1] = T0[0][2]; T0[1][2] = T0[0][0]; T0[2][1] = T0[2][2] = c; return {T0, 8}; } EX torus_config make_quarter_turn(int a, int b, int c) { intmatrix T0 = euzeroall; T0[0][0] = a; T0[0][1] = b; T0[2][0] = c; return {T0, 5}; } void torus_config_full::add(coord val) { auto cat = compute_cat(val); if(hash.count(cat)) return; hash[cat] = isize(seq); seq.push_back(val); } coord torus_config_full::get(coord x) { auto cat = compute_cat(x); auto& st = cubemap()->shifttable; while(!hash.count(cat)) { if(index == isize(seq)) throw hr_exception(); auto v = seq[index++]; for(auto s: st) add(v + s); } return seq[hash[cat]]; } EX bool valid_irr_torus() { #if CAP_IRR if(!IRREGULAR) return true; if(eu.twisted) return false; for(int i=0; i<2; i++) { auto x = eu.user_axes[i]; coord dm = eutester; transmatrix dummy = Id; bool mirr = false; irr::base_config.canonicalize(x, dm, dummy, mirr); auto x0 = eu.user_axes[i]; auto dm0 = eutester; eu.canonicalize(x0, dm0, dummy, mirr); if(x0 != euzero || dm0 != eutester) return false; } #endif return true; } EX void build_torus3(eGeometry g) { int dim = ginf[g].g.gameplay_dimension; eu.user_axes = eu_input.user_axes; if(dim == 2) eu.user_axes[2] = euzero; eu.optimal_axes = eu.user_axes; again: for(int i=0; i= 0 && coo[1] == period - coo[0] && coo[2] == -coo[1] && coo[0]*2 > period && coo[0] < period) return; if(coo[0]*2 <= -period && coo[0] >= -period && coo[2] == period+coo[0] && coo[2] == -coo[1]) return; /* apply periods */ for(int i=0; i<3; i++) { int j = (i+1) % 3; int k = (i+2) % 3; int v1 = coo[i] + coo[j]; int v2 = coo[i] - coo[j]; if(v1 >= period) { coo[i] -= period; coo[j] -= period; } else if(v1 < -period) { coo[i] += period; coo[j] += period; } else if(v2 >= period) { coo[i] -= period; coo[j] += period; } else if(v2 < -period) { coo[i] += period; coo[j] -= period; } else continue; d[j] = -d[j]; d[k] = -d[k]; coo[j] = -coo[j]; coo[k] = -coo[k]; transmatrix S = Id; S[j][j] = -1; S[k][k] = -1; M = M * S; goto restart; } return; } } if(twisted & 16) { int period = T0[2][2]; transmatrix RotYZX = Zero; RotYZX[1][0] = 1; RotYZX[2][1] = 1; RotYZX[0][2] = 1; RotYZX[3][3] = 1; auto& coo = x; while(true) { auto coosum = coo[0] + coo[1] + coo[2]; if(coosum >= 3 * period) { coo[0] -= period, coo[1] -= period, coo[2] -= period; tie(d[0], d[1], d[2]) = make_tuple(d[1], d[2], d[0]); tie(coo[0], coo[1], coo[2]) = make_tuple(coo[1], coo[2], coo[0]); M = M * RotYZX; } else if(coosum < 0) { coo[0] += period, coo[1] += period, coo[2] += period; tie(d[0], d[1], d[2]) = make_tuple(d[2], d[0], d[1]); tie(coo[0], coo[1], coo[2]) = make_tuple(coo[2], coo[0], coo[1]); M = M * RotYZX * RotYZX; } else break; } if(T0[0] != euzero) { while(diagonal_cross(coo, T0[1]) < 0) coo -= T0[0]; while(diagonal_cross(coo, T0[1]) > 0) coo += T0[0]; while(diagonal_cross(coo, T0[0]) > 0) coo -= T0[1]; while(diagonal_cross(coo, T0[0]) < 0) coo += T0[1]; } return; } if(WDIM == 3) { auto& coo = x; while(coo[2] >= T0[2][2]) { coo[2] -= T0[2][2]; if(twisted & 1) coo[0] *= -1, d[0] *= -1, M = M * MirrorX; if(twisted & 2) coo[1] *= -1, d[1] *= -1, M = M * MirrorY; if(twisted & 4) swap(coo[0], coo[1]), swap01(M), swap(d[0], d[1]); } while(coo[2] < 0) { coo[2] += T0[2][2]; if(twisted & 4) swap(coo[0], coo[1]), swap(d[0], d[1]), swap01(M); if(twisted & 1) coo[0] *= -1, d[0] *= -1, M = M * MirrorX; if(twisted & 2) coo[1] *= -1, d[1] *= -1, M = M * MirrorY; } for(int i: {0,1}) if(T0[i][i]) coo[i] = gmod(coo[i], T0[i][i]); return; } else { gp::loc coo = to_loc(x); gp::loc ort = ort1() * twisted_vec; int dsc = dscalar(twisted_vec, twisted_vec); gp::loc d0 (d[0], d[1]); hyperpoint h = eumove(to_coord(twisted_vec)) * C0; while(true) { int dsx = dscalar(coo, twisted_vec); if(dsx >= dsc) coo = coo - twisted_vec; else if (dsx < 0) coo = coo + twisted_vec; else break; M = M * spintox(h) * MirrorY * rspintox(h); auto s = ort * dscalar(d0, ort) * 2; auto v = dscalar(ort, ort); s.first /= v; s.second /= v; d0 = d0 - s; s = ort * dscalar(coo, ort) * 2; s.first /= v; s.second /= v; coo = coo - s; mirr = !mirr; } if(ortho_vec != gp::loc{0,0}) { int osc = dscalar(ortho_vec, ortho_vec); while(true) { int dsx = dscalar(coo, ortho_vec); if(dsx >= osc) coo = coo - ortho_vec; else if(dsx < 0) coo = coo + ortho_vec; else break; } } d[0] = d0.first; d[1] = d0.second; x = to_coord(coo); return; } } coord basic_canonicalize(coord x) { transmatrix M = Id; auto dummy = euzero; bool dm = false; eu.canonicalize(x, dummy, M, dm); return x; } EX void prepare_torus3() { eu_edit = eu_input; } EX void show_fundamental() { initquickqueue(); shiftmatrix M = ggmatrix(cwt.at); shiftpoint h0 = M*C0; auto& T_edit = eu_edit.user_axes; hyperpoint ha = M.T*(eumove(T_edit[0]) * C0 - C0) / 2; hyperpoint hb = M.T*(eumove(T_edit[1]) * C0 - C0) / 2; if(WDIM == 3) { hyperpoint hc = M.T*(eumove(T_edit[2]) * C0 - C0) / 2; for(int d:{-1,1}) for(int e:{-1,1}) { queueline(h0+d*ha+e*hb-hc, h0+d*ha+e*hb+hc, 0xFFFFFFFF); queueline(h0+d*hb+e*hc-ha, h0+d*hb+e*hc+ha, 0xFFFFFFFF); queueline(h0+d*hc+e*ha-hb, h0+d*hc+e*ha+hb, 0xFFFFFFFF); } } else { queueline(h0+ha+hb, h0+ha-hb, 0xFFFFFFFF); queueline(h0-ha+hb, h0-ha-hb, 0xFFFFFFFF); queueline(h0+ha+hb, h0-ha+hb, 0xFFFFFFFF); queueline(h0+ha-hb, h0-ha-hb, 0xFFFFFFFF); } quickqueue(); } intmatrix on_periods(gp::loc a, gp::loc b) { intmatrix res; for(int i=0; i<3; i++) for(int j=0; j<3; j++) res[i][j] = 0; res[0][0] = a.first; res[0][1] = a.second; res[1][0] = b.first; res[1][1] = b.second; res[2][2] = 1; return res; } torus_config single_row_torus(int qty, int dy) { return { on_periods(gp::loc{dy, -1}, gp::loc{qty, 0}), 0 }; } torus_config regular_torus(gp::loc p) { return { on_periods(p, gp::loc(0,1) * p), 0 }; } EX torus_config rectangular_torus(int x, int y, bool klein) { if(S3 == 3) y /= 2; return { on_periods(ort1() * gp::loc(y,0), gp::loc(x,0)), klein?8:0 }; } void torus_config_option(string name, char key, torus_config tc) { dialog::addBoolItem(name, eu_edit.user_axes == tc.user_axes && eu_edit.twisted == tc.twisted && PURE, key); dialog::add_action([tc] { stop_game(); eu_input = eu_edit = tc; set_variation(eVariation::pure); start_game(); }); } EX int quotient_size = 2; EX void show_torus3() { int dim = WDIM; auto& T_edit = eu_edit.user_axes; auto& twisted_edit = eu_edit.twisted; cmode = sm::SIDE | sm::MAYDARK | sm::TORUSCONFIG; gamescreen(1); dialog::init(XLAT("Euclidean quotient spaces")); for(int y=0; y= 0 && i < dim) { for(int j=0; j < dim; j++) { char ch = 'a' + i * 3 + j; if(displayfr(dialog::dcenter + dialog::dfspace * 4 * (j-(dim-1.)/2), v.position, 2, dialog::dfsize, its(T_edit[j][i]), 0xFFFFFF, 8)) getcstat = ch; dialog::add_key_action(ch, [i, j] { auto& T_edit = eu_edit.user_axes; dialog::editNumber(T_edit[j][i], -10, +10, 1, 0, "", XLAT( "This matrix lets you play on the quotient spaces of three-dimensional. " "Euclidean space. Every column specifies a translation vector which " "takes you back to the starting point. For example, if you put " "set 2, 6, 0 on the diagonal, you get back to the starting point " "if you move 2 steps in the X direction, 6 steps in the Y direction " "(the quotient space is infinite in the Z direction).\n\n" "You can also introduce twists for diagonal matrices: after going " "the given number of steps in the Z direction, the space is also " "mirrored or rotated. (More general 'twisted' spaces are currently " "not implemented.)" ) ); dialog::extra_options = show_fundamental; }); } } i++; } } #if CAP_COMMANDLINE int euArgs() { using namespace arg; if(0) ; else if(argis("-t3")) { PHASEFROM(2); stop_game(); auto& T0 = eu_input.user_axes; for(int i=0; i<3; i++) for(int j=0; j<3; j++) { shift(); T0[i][j] = argi(); } build_torus3(); } else if(argis("-t2")) { PHASEFROM(2); stop_game(); auto& T0 = eu_input.user_axes; for(int i=0; i<2; i++) for(int j=0; j<2; j++) { shift(); T0[i][j] = argi(); } shift(); eu_input.twisted = argi(); build_torus3(); } else if(argis("-twistthird")) { PHASEFROM(2); stop_game(); shift(); int a = argi(); shift(); int b = argi(); shift(); int c = argi(); eu_input = make_third_turn(a, b, c); build_torus3(); } else if(argis("-twist3")) { PHASEFROM(2); stop_game(); auto& T0 = eu_input.user_axes; for(int i=0; i<3; i++) for(int j=0; j<3; j++) T0[i][j] = 0; for(int i=0; i<3; i++) { shift(); T0[i][i] = argi(); } shift(); eu_input.twisted = argi(); build_torus3(); } else if(argis("-hw")) { PHASEFROM(2); stop_game(); shift(); eu_input = make_hantzsche_wendt(argi()); build_torus3(); } else if(argis("-twisttest")) { start_game(); celllister cl(cwt.at, 10000, 10000, NULL); for(cell *c: cl.lst) { heptagon *h = c->master; for(int i=0; imove(i) && c->move(k) && h->move(i)->move(j) == h->move(k)->move(l) && h->move(i)->move(j)) { transmatrix T1 = move_matrix(h, i) * move_matrix(h->move(i), j); transmatrix T2 = move_matrix(h, k) * move_matrix(h->move(k), l); if(!eqmatrix(T1, T2)) { println(hlog, c, " @ ", cubemap()->ispacemap[c->master], " : ", i, "/", j, "/", k, "/", l, " :: ", T1, " vs ", T2); exit(1); } } } } else return 1; return 0; } auto euhook = addHook(hooks_args, 100, euArgs); #endif EX int dscalar(gp::loc e1, gp::loc e2) { return 2 * (e1.first * e2.first + e1.second*e2.second) + (S3 == 3 ? e1.first*e2.second + e2.first * e1.second : 0); } EX int dsquare(gp::loc e) { return dscalar(e, e)/2; } EX int dcross(gp::loc e1, gp::loc e2) { return e1.first * e2.second - e1.second*e2.first; } EX gp::loc full_coords2(cell *c) { if(INVERSE) { cell *c1 = gp::get_mapped(c); return UIU(full_coords2(c1)); } auto ans = eucmap()->ispacemap[c->master]; if(S7 == 4 && BITRUNCATED) { if(c == c->master->c7) return to_loc(ans) * gp::loc(1,1); else { auto res = full_coords2(c->cmove(0)) + full_coords2(c->cmove(4)); res.first /= 2; res.second /= 2; return res; } } if(BITRUNCATED) return to_loc(ans) * gp::loc(1,1) + (c == c->master->c7 ? gp::loc(0,0) : gp::eudir((c->c.spin(0)+4)%6)); if(GOLDBERG) { auto li = gp::get_local_info(c); gp::loc shift(0,0); if(li.first_dir >= 0) shift = gp::eudir(li.last_dir) * li.relative; return to_loc(ans) * gp::param + shift; } return to_loc(ans); } /** this is slow, but we use it only for small p's */ EX cell* at(gp::loc p) { cellwalker cw(currentmap->gamestart()); while(p.first--) cw += revstep; cw ++; while(p.second--) cw += revstep; return cw.at; } EX coord to_coord(gp::loc p) { return coord(p.first, p.second, 0); } EX gp::loc sdxy() { return to_loc(eu.user_axes[1]) * gp::univ_param(); } EX pair coord_display(const shiftmatrix& V, cell *c) { if(c != c->master->c7) return {false, ""}; hyperpoint hx = eumove(main_axes[0]) * C0; hyperpoint hy = eumove(main_axes[1]) * C0; hyperpoint hz = WDIM == 2 ? C0 : eumove(main_axes[2]) * C0; hyperpoint h = kz(inverse(build_matrix(hx, hy, hz, C03)) * inverse_shift(ggmatrix(cwt.at->master->c7), V) * C0); if(WDIM == 3) return {true, fts(h[0]) + "," + fts(h[1]) + "," + fts(h[2]) }; else return {true, fts(h[0]) + "," + fts(h[1]) }; } EX gp::loc to_loc(const coord& v) { return gp::loc(v[0], v[1]); } EX map& get_cdata() { return eucmap()->eucdata; } EX transmatrix eumove(coord co) { const double q3 = sqrt(double(3)); if(WDIM == 3) { return eupush3(co[0], co[1], co[2]); } transmatrix Mat = Id; if(a4) { Mat[0][LDIM] += co[0] * cgi.tessf; Mat[1][LDIM] += co[1] * cgi.tessf; } else { Mat[0][LDIM] += (co[0] + co[1] * .5) * cgi.tessf; Mat[1][LDIM] += co[1] * q3 /2 * cgi.tessf; } return Mat; } EX transmatrix eumove(gp::loc co) { return eumove(to_coord(co)); } EX bool chiral(gp::loc g) { int x = g.first; int y = g.second; if(x == 0) return false; if(y == 0) return false; if(x+y == 0) return false; if(x==y) return false; if(S3 == 3 && y == -2*x) return false; if(S3 == 3 && x == -2*y) return false; return true; } EX void twist_once(gp::loc coo) { coo = coo - eu.twisted_vec * gp::univ_param(); if(eu.twisted&8) { gp::loc ort = ort1() * eu.twisted_vec * gp::univ_param(); auto s = ort * dscalar(coo, ort) * 2; auto v = dscalar(ort, ort); s.first /= v; s.second /= v; coo = coo - s; } } EX int dist(int sx, int sy, bool reduce IS(true)) { int z0 = abs(sx); int z1 = abs(sy); if(a4 && BITRUNCATED) return (z0 == z1 && z0 > 0 && !reduce) ? z0+1: max(z0, z1); if(a4) return z0 + z1; int z2 = abs(sx+sy); return max(max(z0,z1), z2); } EX int dist(gp::loc a, gp::loc b) { return dist(a.first-b.first, a.second-b.second, (a.first ^ a.second)&1); } EX int cyldist(gp::loc a, gp::loc b) { a = to_loc(basic_canonicalize(to_coord(a))); b = to_loc(basic_canonicalize(to_coord(b))); if(!quotient) return dist(a, b); int best = 0; for(int sa=0; sa<16; sa++) { auto _a = a, _b = b; if(sa&1) twist_once(_a); if(sa&2) twist_once(_b); if(sa&4) _a = _a + eu.ortho_vec * gp::univ_param(); if(sa&8) _b = _b + eu.ortho_vec * gp::univ_param(); int val = dist(_a, _b); if(sa == 0 || val < best) best = val; } return best; } EX void generate() { #if MAXMDIM >= 4 if(fake::in()) { fake::generate(); return; } auto v = euc::get_shifttable(); auto& cs = cgi.cellshape; cgi.loop = 4; cgi.schmid = 3; if(S7 == 6) { cgi.adjcheck = 1; cgi.face = 4; for(int w=0; w<6; w++) { for(int a=0; a<4; a++) { int t[3]; t[0] = (w>=3) ? -1 : 1; t[1] = among(a, 0, 3) ? -1 : 1; t[2] = among(a, 2, 3) ? -1 : 1; int x = w%3; int y = (x+2)%3; int z = (y+2)%3; cs.push_back(hpxy3(t[x]/2., t[y]/2., t[z]/2.)); } } } if(S7 == 12) { cgi.adjcheck = sqrt(2); cgi.face = 4; for(int w=0; w<12; w++) { auto co = v[w]; vector valid; for(int c=0; c<3; c++) if(co[c]) valid.push_back(c); int third = 3 - valid[1] - valid[0]; hyperpoint v0 = cpush0(valid[0], co[valid[0]] > 0 ? 1 : -1); hyperpoint v1 = cpush0(valid[1], co[valid[1]] > 0 ? 1 : -1); cs.push_back(v0); cs.push_back(v0/2 + v1/2 + cpush0(third, .5) - C0); cs.push_back(v1); cs.push_back(v0/2 + v1/2 + cpush0(third, -.5) - C0); } } if(S7 == 14) { cgi.adjcheck = 2; cgi.face = 4; /* the first face */ auto v = euc::get_shifttable(); for(int w=0; w<14; w++) { if(w%7 < 3) { int z = w>=7?-1:1; cs.push_back(cpush0(w%7, z) + cpush0((w%7+1)%3, 1/2.) - C0); cs.push_back(cpush0(w%7, z) + cpush0((w%7+2)%3, 1/2.) - C0); cs.push_back(cpush0(w%7, z) + cpush0((w%7+1)%3,-1/2.) - C0); cs.push_back(cpush0(w%7, z) + cpush0((w%7+2)%3,-1/2.) - C0); } else { auto t = v[w]; ld x = t[0], y = t[1], z = t[2]; for(hyperpoint h: { hpxy3(x, y/2, 0), hpxy3(x/2, y, 0), hpxy3(0, y, z/2), hpxy3(0, y/2, z), hpxy3(x/2, 0, z), hpxy3(x, 0, z/2) }) cs.push_back(h); } } } reg3::make_vertices_only(); #endif } /** @brief returns true if the current geometry is based on this module * (For example, Archimedean, kite, or fake with underlying non-Euclidean geometry returns false) */ EX bool in() { if(fake::in()) return FPIU(in()); return euclid && standard_tiling(); } EX bool in(int dim) { return in() && WDIM == dim; } EX bool in(int dim, int s7) { return in(dim) && S7 == s7; } EX } EX gp::loc euc2_coordinates(cell *c) { if(euc::in()) return euc::full_coords2(c); hyperpoint h = calc_relative_matrix(c, currentmap->gamestart(), C0) * C0; return gp::loc(floor(h[0]), floor(h[1])); } }