// Hyperbolic Rogue -- nonisotropic spaces (Solv and Nil) // Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details /** \file nonisotropic.cpp * \brief nonisotropic spaces (Solv and Nil) */ #include "hyper.h" namespace hr { EX namespace nisot { EX bool local_perspective_used; EX bool geodesic_movement = true; EX transmatrix translate(hyperpoint h, ld co IS(1)) { if(sl2 || sphere) return co > 0 ? stretch::translate(h) : stretch::itranslate(h); transmatrix T = Id; for(int i=0; i compressed_point; inline hyperpoint decompress(compressed_point p) { return point3(p[0], p[1], p[2]); } inline compressed_point compress(hyperpoint h) { return make_array(h[0], h[1], h[2]); } struct tabled_inverses { int PRECX, PRECY, PRECZ; vector tab; string fname; bool loaded; void load(); hyperpoint get(ld ix, ld iy, ld iz, bool lazy); compressed_point& get_int(int ix, int iy, int iz) { return tab[(iz*PRECY+iy)*PRECX+ix]; } GLuint texture_id; bool toload; GLuint get_texture_id(); tabled_inverses(string s) : fname(s), texture_id(0), toload(true) {} }; #endif void tabled_inverses::load() { if(loaded) return; FILE *f = fopen(fname.c_str(), "rb"); if(!f) f = fopen((rsrcdir + fname).c_str(), "rb"); if(!f) { addMessage(XLAT("geodesic table missing")); pmodel = mdPerspective; return; } hr::ignore(fread(&PRECX, 4, 1, f)); hr::ignore(fread(&PRECY, 4, 1, f)); hr::ignore(fread(&PRECZ, 4, 1, f)); tab.resize(PRECX * PRECY * PRECZ); hr::ignore(fread(&tab[0], sizeof(compressed_point) * PRECX * PRECY * PRECZ, 1, f)); fclose(f); loaded = true; } hyperpoint tabled_inverses::get(ld ix, ld iy, ld iz, bool lazy) { ix *= PRECX-1; iy *= PRECY-1; iz *= PRECZ-1; hyperpoint res; if(lazy) { if(isnan(ix) || isnan(iy) || isnan(iz)) return Hypc; return decompress(get_int(int(ix+.5), int(iy+.5), int(iz+.5))); } else { if(ix >= PRECX-1 || isnan(ix)) ix = PRECX-2; if(iy >= PRECX-1 || isnan(iy)) iy = PRECX-2; if(iz >= PRECZ-1 || isnan(iz)) iz = PRECZ-2; int ax = ix, bx = ax+1; int ay = iy, by = ay+1; int az = iz, bz = az+1; #define S0(x,y,z) get_int(x, y, z)[t] #define S1(x,y) (S0(x,y,az) * (bz-iz) + S0(x,y,bz) * (iz-az)) #define S2(x) (S1(x,ay) * (by-iy) + S1(x,by) * (iy-ay)) for(int t=0; t<3; t++) res[t] = S2(ax) * (bx-ix) + S2(bx) * (ix-ax); res[3] = 0; } return res; } GLuint tabled_inverses::get_texture_id() { #if CAP_GL if(!toload) return texture_id; load(); if(!loaded) return 0; println(hlog, "installing table"); toload = false; if(texture_id == 0) glGenTextures(1, &texture_id); glBindTexture( GL_TEXTURE_3D, texture_id); glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE); auto xbuffer = new glvertex[PRECZ*PRECY*PRECX]; for(int z=0; z iz) minz--; ld maxz = minz + 1; for(int it=0; it<20; it++) { ld z = (minz + maxz) / 2; if(z_to_iz(z) < iz) minz = z; else maxz = z; } return (minz+maxz) / 2; } EX hyperpoint azeq_to_table(hyperpoint x) { // azimuthal equidistant to Poincare ld r = hypot_d(3, x); if(r == 0) return point3(0,0,0); ld make_r = sinh(r) / (1 + cosh(r)); ld d = make_r / r; return x * d; } EX hyperpoint table_to_azeq(hyperpoint x) { // Poincare to azimuthal equidistant ld hr = sqhypot_d(3, x); if(hr < 1e-5) return x * 2; if(hr >= 1) return x * 60; ld hz = (1 + hr) / (1 - hr); ld d = (hz+1) * acosh(hz) / sinh(acosh(hz)); return x * d; } struct hrmap_solnih : hrmap { hrmap *binary_map; hrmap *ternary_map; /* nih only */ map, heptagon*> at; map> coords; heptagon *origin; heptagon *getOrigin() override { return origin; } heptagon *get_at(heptagon *x, heptagon *y) { auto& h = at[make_pair(x, y)]; if(h) return h; h = init_heptagon(S7); h->c7 = newCell(S7, h); coords[h] = make_pair(x, y); h->distance = x->distance; h->zebraval = x->emeraldval; h->emeraldval = y->emeraldval; return h; } hrmap_solnih() { heptagon *alt; heptagon *alt3; if(true) { dynamicval g(geometry, gBinary4); alt = init_heptagon(S7); alt->s = hsOrigin; alt->alt = alt; binary_map = bt::new_alt_map(alt); } if(nih) { dynamicval g(geometry, gTernary); alt3 = init_heptagon(S7); alt3->s = hsOrigin; alt3->alt = alt3; ternary_map = bt::new_alt_map(alt3); } else { alt3 = alt; ternary_map = nullptr; } origin = get_at(alt, alt3); } heptagon *altstep(heptagon *h, int d) { dynamicval g(geometry, gBinary4); dynamicval cm(currentmap, binary_map); return h->cmove(d); } heptagon *altstep3(heptagon *h, int d) { dynamicval g(geometry, gTernary); dynamicval cm(currentmap, ternary_map); return h->cmove(d); } heptagon *create_step(heptagon *parent, int d) override { auto p = coords[parent]; auto pf = p.first, ps = p.second; auto rule = [&] (heptagon *c1, heptagon *c2, int d1) { auto g = get_at(c1, c2); parent->c.connect(d, g, d1, false); return g; }; switch(geometry){ case gSol: switch(d) { case 0: // right return rule(altstep(pf, 2), ps, 4); case 1: // up return rule(pf, altstep(ps, 2), 5); case 2: // front left return rule(altstep(pf, 0), altstep(ps, 3), ps->zebraval ? 7 : 6); case 3: // front right return rule(altstep(pf, 1), altstep(ps, 3), ps->zebraval ? 7 : 6); case 4: // left return rule(altstep(pf, 4), ps, 0); case 5: // down return rule(pf, altstep(ps, 4), 1); case 6: // back down return rule(altstep(pf, 3), altstep(ps, 0), pf->zebraval ? 3 : 2); case 7: // back up return rule(altstep(pf, 3), altstep(ps, 1), pf->zebraval ? 3 : 2); default: return NULL; } case gNIH: switch(d) { case 0: // right return rule(altstep(pf, 2), ps, 2); case 1: // up return rule(pf, altstep3(ps, 3), 3); case 2: // left return rule(altstep(pf, 4), ps, 0); case 3: // down return rule(pf, altstep3(ps, 5), 1); case 4: // back return rule(altstep(pf, 3), altstep3(ps, 4), 5 + pf->zebraval + 2 * ps->zebraval); default: return rule(altstep(pf, (d-5) % 2), altstep3(ps, (d-5)/2), 4); } case gSolN: switch(d) { case 0: // right return rule(altstep(pf, 2), ps, 2); case 1: // up return rule(pf, altstep3(ps, 3), 3); case 2: // left return rule(altstep(pf, 4), ps, 0); case 3: // down return rule(pf, altstep3(ps, 5), 1); case 4: case 5: return rule(altstep(pf, d-4), altstep3(ps, 4), ps->zebraval + 6); case 6: case 7: case 8: return rule(altstep(pf, 3), altstep3(ps, d-6), pf->zebraval + 4); default: return NULL; } default: throw hr_exception("not solnihv"); } } ~hrmap_solnih() { delete binary_map; if(ternary_map) delete ternary_map; for(auto& p: at) clear_heptagon(p.second); } transmatrix adjmatrix(int i, int j) { switch(geometry) { case gSol: { ld z = log(2); ld bw = vid.binary_width * z; switch(i) { case 0: return xpush(+bw); case 1: return ypush(+bw); case 2: case 3: return ypush(bw*(6.5-j)) * zpush(+z) * xpush(bw*(i-2.5)); case 4: return xpush(-bw); case 5: return ypush(-bw); case 6: case 7: return xpush(bw*(2.5-j)) * zpush(-z) * ypush(bw*(i-6.5)); default:return Id; } } case gNIH: { ld bw = vid.binary_width; switch(i) { case 0: return xpush(+bw); case 1: return ypush(+bw); case 2: return xpush(-bw); case 3: return ypush(-bw); case 4: return xpush(-((j-5)%2-.5)*bw) * ypush(-((j-5)/2-1)*bw) * zpush(1); default: return zpush(-1) * xpush(((i-5)%2-.5)*bw) * ypush(((i-5)/2-1)*bw); } } case gSolN: { ld bw = vid.binary_width; switch(i) { case 0: return xpush(+bw); case 1: return ypush(+bw); case 2: return xpush(-bw); case 3: return ypush(-bw); case 4: case 5: return ypush(bw*(7-j)) * zpush(+1) * xpush(bw*(i-4.5)); case 6: case 7: case 8: return xpush(bw*(4.5-j)) * zpush(-1) * ypush(bw*(i-7)); default: throw hr_exception("wrong dir"); } } default: throw hr_exception("wrong geometry"); } } transmatrix adj(heptagon *h, int d) override { h->cmove(d); return adjmatrix(d, h->c.spin(d)); } transmatrix relative_matrixh(heptagon *h2, heptagon *h1, const hyperpoint& hint) override { for(int i=0; itype; i++) if(h1->move(i) == h2) return adjmatrix(i, h1->c.spin(i)); if(gmatrix0.count(h2->c7) && gmatrix0.count(h1->c7)) return inverse_shift(gmatrix0[h1->c7], gmatrix0[h2->c7]); transmatrix front = Id, back = Id; int up, down; switch(geometry) { case gSol: up = 2; down = 6; break; case gSolN: up = 4; down = 7; break; case gNIH: up = 4; down = 4; break; default: throw hr_exception("not nihsolv"); } while(h1->distance > h2->distance) front = front * adj(h1, down), h1 = h1->cmove(down); while(h1->distance < h2->distance) back = iadj(h2, down) * back, h2 = h2->cmove(down); while(coords[h1].first != coords[h2].first) front = front * adj(h1, down), back = iadj(h2, down) * back, h1 = h1->cmove(down), h2 = h2->cmove(down); while(coords[h1].second != coords[h2].second) front = front * adj(h1, up), back = iadj(h2, up) * back, h1 = h1->cmove(up), h2 = h2->cmove(up); return front * back; } }; EX pair getcoord(heptagon *h) { return ((hrmap_solnih*)currentmap)->coords[h]; } EX heptagon *get_at(heptagon *h1, heptagon *h2, bool gen) { auto m = ((hrmap_solnih*)currentmap); if(!gen && !m->at.count(make_pair(h1, h2))) return nullptr; return m->get_at(h1, h2); } EX string common = "uniform mediump sampler3D tInvExpTable;" "uniform mediump float PRECX, PRECY, PRECZ;" "float x_to_ix(float u) {" " if(u < 1e-6) return 0.;" " float diag = u*u/2.;" " float x = diag;" " float y = u;" " float z = diag+1.;" " x /= (1.+z);" " y /= (1.+z);" " return 0.5 - atan((0.5-x) / y) / 3.1415926535897932384626433832795;" " }" "float z_to_iz_s(float z) {" "return sinh(z) / (1. + cosh(z));" "}" "float z_to_iz_ns(float z) {" "z = sinh(z) / (1. + cosh(z));" "return (z+1.)/2.;" "}"; hyperpoint christoffel(const hyperpoint at, const hyperpoint velocity, const hyperpoint transported) { const ld l2 = log(2); const ld l3 = log(3); switch(geom()) { case gcSolN: return hpxyz3( -(velocity[2] * transported[0] + velocity[0] * transported[2]) * l2, (velocity[2] * transported[1] + velocity[1] * transported[2]) * l3, velocity[0] * transported[0] * exp(2*l2*at[2]) * l2 - velocity[1] * transported[1] * exp(-2*l3*at[2]) * l3, 0 ); case gcSol: return hpxyz3( -velocity[2] * transported[0] - velocity[0] * transported[2], velocity[2] * transported[1] + velocity[1] * transported[2], velocity[0] * transported[0] * exp(2*at[2]) - velocity[1] * transported[1] * exp(-2*at[2]), 0 ); case gcNIH: return hpxyz3( (velocity[2] * transported[0] + velocity[0] * transported[2]) * l2, (velocity[2] * transported[1] + velocity[1] * transported[2]) * l3, -(velocity[0] * transported[0] * exp(-2*l2*at[2]) * l2 + velocity[1] * transported[1] * exp(-2*l3*at[2]) * l3), 0 ); default: throw hr_exception("christoffel not in solnihv"); } } EX hyperpoint get_inverse_exp_symsol(hyperpoint h, flagtype flags) { auto& s = get_tabled(); s.load(); ld ix = h[0] >= 0. ? sn::x_to_ix(h[0]) : sn::x_to_ix(-h[0]); ld iy = h[1] >= 0. ? sn::x_to_ix(h[1]) : sn::x_to_ix(-h[1]); ld iz = sn::z_to_iz(h[2]); if(h[2] < 0.) { iz = -iz; swap(ix, iy); } hyperpoint res = s.get(ix, iy, iz, flags & pfNO_INTERPOLATION); if(h[2] < 0.) { swap(res[0], res[1]); res[2] = -res[2]; } if(h[0] < 0.) res[0] = -res[0]; if(h[1] < 0.) res[1] = -res[1]; if(flags & pfNO_DISTANCE) return res; return table_to_azeq(res); } EX hyperpoint get_inverse_exp_nsym(hyperpoint h, flagtype flags) { auto& s = get_tabled(); s.load(); ld ix = h[0] >= 0. ? sn::x_to_ix(h[0]) : sn::x_to_ix(-h[0]); ld iy = h[1] >= 0. ? sn::x_to_ix(h[1]) : sn::x_to_ix(-h[1]); ld iz = sn::z_to_iz(h[2]); hyperpoint res = s.get(ix, iy, iz, flags & pfNO_INTERPOLATION); if(h[0] < 0.) res[0] = -res[0]; if(h[1] < 0.) res[1] = -res[1]; if(flags & pfNO_DISTANCE) return res; return table_to_azeq(res); } EX string shader_symsol = sn::common + "vec4 inverse_exp(vec4 h) {" "float ix = h[0] >= 0. ? x_to_ix(h[0]) : x_to_ix(-h[0]);" "float iy = h[1] >= 0. ? x_to_ix(h[1]) : x_to_ix(-h[1]);" "float iz = z_to_iz_s(h[2]);" "if(h[2] < 1e-6) { iz = -iz; float s = ix; ix = iy; iy = s; }" "if(iz < 0.) iz = 0.;" "vec4 res;" "float cx = ix*(1.-1./PRECX) + .5/PRECX;" "float cy = iy*(1.-1./PRECY) + .5/PRECY;" "float cz = iz*(1.-1./PRECZ) + .5/PRECZ;" // "if(ix > .5 && iy > .6 && ix < iy + .05 && iz < .2 && iz < (iy - 0.5) * 0.6)" "\n#ifndef SOLV_ALL\n" "bool ok = true;" // hard to tell which triangles fall on the other sides "if(iz < .03 && ix > .65 && iy > .65) ok = false;" "if(iz < .013 && ix > .55 && iy > .55) ok = false;" "if(iz < .0075 && ix > .45 && iy > .45) ok = false;" "if(iz > 0.004 && ix > 0.4 && iy > 0.4 && ix < .6 && iy < .6) ok = true;" "if(iz > 0.000004 && ix > 0.4 && ix < 0.7 && iy > 0.4 && iy < 0.7) ok = true;" "if(iz < 0.04 && ix > 0.70 && ix < 0.8 && iy > 0.5 && iy < 0.7) ok = false;" "if(iz < 0.05 && ix > .45 && iy > .75 && ix < .55 && iy < .95) ok = false;" "if(iz < 0.05 && ix > .85 && iy > .45 && iy < .75) ok = false;" "if(iz < 0.025 && ix > .65 && iy > .65 && ix < .8 && iy < .8) ok = false;" "if(!ok) res = vec4(0./0.,0./0.,0./0.,1);" "else " "\n#endif\n" "res = texture3D(tInvExpTable, vec3(cx, cy, cz));" "if(h[2] < 1e-6) { res.xy = res.yx; res[2] = -res[2]; }" "if(h[0] < 0.) res[0] = -res[0];" "if(h[1] < 0.) res[1] = -res[1];" "return res;" "}"; EX string shader_nsymsol = sn::common + R"*( vec4 inverse_exp(vec4 h) { float ix = h[0] >= 0. ? x_to_ix(h[0]) : x_to_ix(-h[0]); float iy = h[1] >= 0. ? x_to_ix(h[1]) : x_to_ix(-h[1]); float iz = z_to_iz_ns(h[2]); vec4 res; float cx = ix*(1.-1./PRECX) + .5/PRECX; float cy = iy*(1.-1./PRECY) + .5/PRECY; float cz = iz*(1.-1./PRECZ) + .5/PRECZ; if(ix > .65 && iy > .5 && iz > .45 && iz < .55) res = vec4(0.,0.,0.,1.); else if(ix > .55 && iy > .75 && ix < .7 && iz > .45 && iz < .55) res = vec4(0.,0.,0.,1.); else if(ix > .45 && iy > .75 && ix < .7 && iz > .4 && iz < .5) res = vec4(0.,0.,0.,1.); else if(ix > .85 && iy > .5 && iz > .55 && iz < .75) res = vec4(0.,0.,0.,1.); else if(ix > .7 && iy > .55 && iz > .42 && iz < .58) res = vec4(0.,0.,0.,1.); else if(iz > 0.45 && ix > 0.8 && iy > 0.3 && iy < 0.6) res = vec4(0.,0.,0.,1.); else if(iz > 0.45 && ix > 0.8 && iy > 0.3 && iy < 0.6) res = vec4(0.,0.,0.,1.); else if(iz > .4 && iz < .55 && ix > .7 && iy > .36 && iy < .5 && ix < .8 && ix+iy > 1.2) res = vec4(0.,0.,0.,1.); else res = texture3D(tInvExpTable, vec3(cx, cy, cz)); if(h[0] < 0.) res[0] = -res[0]; if(h[1] < 0.) res[1] = -res[1]; return res; })*"; EX string shader_nsym = sn::common + "vec4 inverse_exp(vec4 h) {" "float ix = h[0] >= 0. ? x_to_ix(h[0]) : x_to_ix(-h[0]);" "float iy = h[1] >= 0. ? x_to_ix(h[1]) : x_to_ix(-h[1]);" "float iz = z_to_iz_ns(h[2]);" "vec4 res;" "float cx = ix*(1.-1./PRECX) + .5/PRECX;" "float cy = iy*(1.-1./PRECY) + .5/PRECY;" "float cz = iz*(1.-1./PRECZ) + .5/PRECZ;" "res = texture3D(tInvExpTable, vec3(cx, cy, cz));" "if(h[0] < 0.) res[0] = -res[0];" "if(h[1] < 0.) res[1] = -res[1];" "return res;" "}"; EX ld solrange_xy = 15; EX ld solrange_z = 4; EX bool in_table_range(hyperpoint h) { return abs(h[0]) < solrange_xy && abs(h[1]) < solrange_xy && abs(h[2]) < solrange_z; } EX tabled_inverses solt = sn::tabled_inverses("solv-geodesics.dat"); EX tabled_inverses niht = sn::tabled_inverses("shyp-geodesics.dat"); EX tabled_inverses sont = sn::tabled_inverses("ssol-geodesics.dat"); EX tabled_inverses& get_tabled() { switch(geom()) { case gcSol: return solt; case gcNIH: return niht; case gcSolN: return sont; default: throw hr_exception("not solnih"); } } EX int approx_distance(heptagon *h1, heptagon *h2) { auto m = (sn::hrmap_solnih*) currentmap; dynamicval g(geometry, gBinary4); dynamicval cm(currentmap, m->binary_map); int d1 = bt::celldistance3_approx(m->coords[h1].first, m->coords[h2].first); int d2 = bt::celldistance3_approx(m->coords[h1].second, m->coords[h2].second); return d1 + d2 - abs(h1->distance - h2->distance); } EX void create_faces() { if(geometry == gSol) { ld zstep = -log(2) / 2; ld bwh = vid.binary_width * zstep; auto pt = [&] (int x, int y, int z) { return xpush(bwh*x) * ypush(bwh*y) * zpush(zstep*z) * C0; }; add_wall(0, {pt(-1,-1,-1), pt(-1,-1,+1), pt(-1,00,+1), pt(-1,+1,+1), pt(-1,+1,-1)}); add_wall(1, {pt(-1,-1,-1), pt(00,-1,-1), pt(+1,-1,-1), pt(+1,-1,+1), pt(-1,-1,+1)}); add_wall(2, {pt(+1,+1,-1), pt(+1,-1,-1), pt(00,-1,-1), pt(00,+1,-1)}); add_wall(3, {pt(00,+1,-1), pt(00,-1,-1), pt(-1,-1,-1), pt(-1,+1,-1)}); add_wall(4, {pt(+1,-1,-1), pt(+1,-1,+1), pt(+1,00,+1), pt(+1,+1,+1), pt(+1,+1,-1)}); add_wall(5, {pt(-1,+1,-1), pt(00,+1,-1), pt(+1,+1,-1), pt(+1,+1,+1), pt(-1,+1,+1)}); add_wall(6, {pt(-1,+1,+1), pt(+1,+1,+1), pt(+1,00,+1), pt(-1,00,+1)}); add_wall(7, {pt(-1,00,+1), pt(+1,00,+1), pt(+1,-1,+1), pt(-1,-1,+1)}); } if(geometry == gNIH) { ld zstep = .5; ld bwh = vid.binary_width / 6; auto pt = [&] (int x, int y, int z) { return xpush(bwh*x) * ypush(bwh*y) * zpush(zstep*z) * C0; }; add_wall(0, {pt(+3,-3,-1), pt(+3,-3,+1), pt(+3,+3,+1), pt(+3,+3,-1), pt(+3,+1,-1), pt(+3,-1,-1) }); add_wall(1, {pt(-3,+3,-1), pt(-3,+3,+1), pt(+3,+3,+1), pt(+3,+3,-1), pt(+0,+3,-1) }); add_wall(2, {pt(-3,-3,-1), pt(-3,-3,+1), pt(-3,+3,+1), pt(-3,+3,-1), pt(-3,+1,-1), pt(-3,-1,-1) }); add_wall(3, {pt(-3,-3,-1), pt(-3,-3,+1), pt(+3,-3,+1), pt(+3,-3,-1), pt(+0,-3,-1)}); add_wall(4, {pt(-3,-3,+1), pt(-3,+3,+1), pt(+3,+3,+1), pt(+3,-3,+1)}); for(int i=0; i<6; i++) { int x = -3 + (i%2) * 3; int y = -3 + (i/2) * 2; add_wall(5+i, {pt(x,y,-1), pt(x+3,y,-1), pt(x+3,y+2,-1), pt(x,y+2,-1)}); } } if(geometry == gSolN) { ld zstep = -.5; ld bwh = vid.binary_width / 6; auto pt = [&] (int x, int y, int z) { return xpush(bwh*x) * ypush(bwh*y) * zpush(zstep*z) * C0; }; add_wall(0, {pt(+3,-3,-1), pt(+3,-3,+1), pt(+3,-1,+1), pt(+3,+1,+1), pt(+3,+3,+1), pt(+3,+3,-1)}); add_wall(1, {pt(-3,+3,-1), pt(00,+3,-1), pt(+3,+3,-1), pt(+3,+3,+1), pt(-3,+3,+1)}); add_wall(2, {pt(-3,-3,-1), pt(-3,-3,+1), pt(-3,-1,+1), pt(-3,+1,+1), pt(-3,+3,+1), pt(-3,+3,-1)}); add_wall(3, {pt(-3,-3,-1), pt(00,-3,-1), pt(+3,-3,-1), pt(+3,-3,+1), pt(-3,-3,+1)}); add_wall(4, {pt(-3,+3,-1), pt(-3,-3,-1), pt(00,-3,-1), pt(00,+3,-1)}); add_wall(5, {pt(00,+3,-1), pt(00,-3,-1), pt(+3,-3,-1), pt(+3,+3,-1)}); add_wall(6, {pt(-3,-3,+1), pt(+3,-3,+1), pt(+3,-1,+1), pt(-3,-1,+1)}); add_wall(7, {pt(-3,-1,+1), pt(+3,-1,+1), pt(+3,+1,+1), pt(-3,+1,+1)}); add_wall(8, {pt(-3,+1,+1), pt(+3,+1,+1), pt(+3,+3,+1), pt(-3,+3,+1)}); } get_hsh().compute_hept(); } EX } #endif EX namespace nilv { #if HDR /** nmSym is the rotationally symmetric model of Nil, while nmHeis is the Heisenberg model. */ constexpr ld nmSym = 0, nmHeis = 1; #endif /** HyperRogue currently uses nmSym by default, but some parts are still written in nmHeis */ EX ld model_used = nmSym; /** a helper function for model conversions */ EX ld sym_to_heis_bonus(const hyperpoint& H) { return H[0] * H[1] / 2; } EX hyperpoint convert(hyperpoint H, ld from, ld to) { H[2] += sym_to_heis_bonus(H) * (to - from); return H; } EX void convert_ref(hyperpoint& H, ld from, ld to) { H[2] += sym_to_heis_bonus(H) * (to - from); } EX void convert_tangent_ref(hyperpoint at, hyperpoint& v, ld from, ld to) { v[2] += (at[0] * v[1] + at[1] * v[0]) * (to - from) / 2; } EX void convert_ref(transmatrix& T, ld from, ld to) { auto T1 = transpose(T); convert_ref(T1[3], from, to); for(int i: {0, 1, 2}) convert_tangent_ref(T1[3], T1[i], from, to); T = transpose(T1); } EX hyperpoint checked_convert(hyperpoint H, ld from, ld to) { if(nil) return convert(H, from, to); return H; } hyperpoint christoffel(const hyperpoint Position, const hyperpoint Velocity, const hyperpoint Transported, ld model = model_used) { hyperpoint c; c[3] = 0; ld x = Position[0]; ld y = Position[1]; auto mu = model; c[ 0 ] = 0 + Velocity[ 0 ] * Transported[ 1 ] * ( y*(mu - 1)/4 ) + Velocity[ 1 ] * Transported[ 0 ] * ( y*(mu - 1)/4 ) + Velocity[ 1 ] * Transported[ 1 ] * ( x*(mu + 1)/2 ) + Velocity[ 1 ] * Transported[ 2 ] * ( -1/2. ) + Velocity[ 2 ] * Transported[ 1 ] * ( -1/2. ); c[ 1 ] = 0 + Velocity[ 0 ] * Transported[ 0 ] * ( y*(1 - mu)/2 ) + Velocity[ 0 ] * Transported[ 1 ] * ( -x*(mu + 1)/4 ) + Velocity[ 0 ] * Transported[ 2 ] * ( 1/2. ) + Velocity[ 1 ] * Transported[ 0 ] * ( -x*(mu + 1)/4 ) + Velocity[ 2 ] * Transported[ 0 ] * ( 1/2. ); c[ 2 ] = 0 + Velocity[ 0 ] * Transported[ 0 ] * ( x*y*(1 - mu*mu)/4 ) + Velocity[ 0 ] * Transported[ 1 ] * ( -mu*mu*x*x/8 + mu*mu*y*y/8 - mu*x*x/4 - mu*y*y/4 + mu/2 - x*x/8 + y*y/8 ) + Velocity[ 0 ] * Transported[ 2 ] * ( x*(mu + 1)/4 ) + Velocity[ 1 ] * Transported[ 0 ] * ( -mu*mu*x*x/8 + mu*mu*y*y/8 - mu*x*x/4 - mu*y*y/4 + mu/2 - x*x/8 + y*y/8 ) + Velocity[ 1 ] * Transported[ 1 ] * ( x*y*(mu*mu - 1)/4 ) + Velocity[ 1 ] * Transported[ 2 ] * ( y*(1 - mu)/4 ) + Velocity[ 2 ] * Transported[ 0 ] * ( x*(mu + 1)/4 ) + Velocity[ 2 ] * Transported[ 1 ] * ( y*(1 - mu)/4 ); return c; } EX hyperpoint formula_exp(hyperpoint v) { // copying Modelling Nil-geometry in Euclidean Space with Software Presentation // v[0] = c cos alpha // v[1] = c sin alpha // v[2] = w if(v[0] == 0 && v[1] == 0) return point31(v[0], v[1], v[2]); if(v[2] == 0) return convert(point31(v[0], v[1], 0), nmSym, model_used); ld alpha = atan2(v[1], v[0]); ld w = v[2]; ld c = hypot(v[0], v[1]) / v[2]; return convert(point31( 2 * c * sin(w/2) * cos(w/2 + alpha), 2 * c * sin(w/2) * sin(w/2 + alpha), w * (1 + (c*c/2) * ((1 - sin(w)/w) + (1-cos(w))/w * sin(w + 2 * alpha))) ), nmHeis, model_used); } EX hyperpoint get_inverse_exp(hyperpoint h, flagtype prec IS(pNORMAL)) { ld wmin, wmax; ld side = convert(h, model_used, nmSym)[2]; convert_ref(h, model_used, nmHeis); if(hypot_d(2, h) < 1e-6) return point3(h[0], h[1], h[2]); else if(side > 1e-6) { wmin = 0, wmax = TAU; } else if(side < -1e-6) { wmin = - TAU, wmax = 0; } else return point3(h[0], h[1], 0); ld alpha_total = h[0] ? atan(h[1] / h[0]) : 90._deg; ld b; if(abs(h[0]) > abs(h[1])) b = h[0] / 2 / cos(alpha_total); else b = h[1] / 2 / sin(alpha_total); ld s = sin(2 * alpha_total); int max_iter = (prec & pfLOW_BS_ITER) ? 5 : 20; for(int it=0;; it++) { ld w = (wmin + wmax) / 2; ld z = b * b * (s + (sin(w) - w)/(cos(w) - 1)) + w; if(it == max_iter) { ld alpha = alpha_total - w/2; ld c = b / sin(w/2); return point3(c * w * cos(alpha), c * w * sin(alpha), w); } if(h[2] > z) wmin = w; else wmax = w; } } EX string nilshader() { return "vec4 inverse_exp(vec4 h) {" "float wmin, wmax;" "h[2] += h[0] * h[1] / 2. * " + glhr::to_glsl(1-model_used) + ";" "float side = h[2] - h[0] * h[1] / 2.;" "if(h[0]*h[0] + h[1]*h[1] < 1e-12) return vec4(h[0], h[1], h[2], 1);" "if(side > 1e-6) { wmin = 0.; wmax = 2.*PI; }" "else if(side < -1e-6) { wmin = -2.*PI; wmax = 0.; }" "else return vec4(h[0], h[1], 0., 1.);" "float at = h[0] != 0. ? atan(h[1] / h[0]) : PI/2.;" "float b = abs(h[0]) > abs(h[1]) ? h[0] / 2. / cos(at) : h[1] / 2. / sin(at);" "float s = sin(2. * at);" "for(int it=0; it<50; it++) {" "float w = (wmin + wmax) / 2.;" // the formula after ':' produces visible numerical artifacts for w~0 "float z = b * b * (s + (abs(w) < .1 ? w/3. + w*w*w/90. + w*w*w*w*w/2520.: (sin(w) - w)/(cos(w) - 1.))) + w;" "if(h[2] > z) wmin = w;" "else wmax = w;" "}" "float w = (wmin + wmax) / 2.;" "float alpha = at - w/2.;" "float c = b / sin(w/2.);" "return vec4(c*w*cos(alpha), c*w*sin(alpha), w, 1.);" "}"; } #if HDR bool mvec_uses_hex(); /** This type is used for indexed Nil cells. See mvec_to_point to convert from this to hyperpoint the tile is centered at. In non-hex Nils, these correspond exactly to coordinates in nmHeis model (with nilwidth equal 1). In hex Nils, these would be valid in nmSym models if the 'z' coordinates were halved. (But, they are sheared, as for usual hex coordinates in HyperRogue.) **/ struct mvec : array { explicit mvec() = default; constexpr explicit mvec(int x, int y, int z) : array{{x, y, z}} {} mvec inverse() { auto& a = *this; if(mvec_uses_hex()) return mvec(-a[0], -a[1], -a[2]); return mvec(-a[0], -a[1], -a[2]+a[1] * a[0]); } mvec operator * (const mvec b) { auto& a = *this; if(mvec_uses_hex()) return mvec(a[0]+b[0], a[1]+b[1], a[2]+b[2]+a[0]*b[1]-a[1]*b[0]); return mvec(a[0] + b[0], a[1] + b[1], a[2] + b[2] + a[0] * b[1]); } }; #endif static constexpr mvec mvec_zero = mvec(0, 0, 0); EX ld nilwidth = 1; EX bool mvec_uses_hex() { return current_ns().mvec_hex; } EX hyperpoint mvec_to_point(mvec m) { if(mvec_uses_hex()) return convert(hpxy3((m[0] + m[1] / 2.) * nilwidth, (m[1] * sqrt(3)/2) * nilwidth, m[2] * sqrt(3) / 4 * nilwidth * nilwidth), nmSym, model_used); return convert(hpxy3(m[0] * nilwidth, m[1] * nilwidth, m[2] * nilwidth * nilwidth), nmHeis, model_used); } #if HDR struct nilstructure { vector movevectors; vector> facevertices; bool mvec_hex; vector other_side; string name; }; #endif EX hyperpoint heis(ld x, ld y, ld z) { return convert(point31(x, y, z), nmHeis, model_used); } EX hyperpoint hexrota(ld x, ld y, ld z) { return convert(point31(x/2, y * sqrt(3)/6, z / 24 * sqrt(3)), nmSym, model_used); } EX int nil_structure_index; nilstructure ns6 = { {{ mvec(-1,0,0), mvec(0,-1,0), mvec(0,0,-1), mvec(1,0,0), mvec(0,1,0), mvec(0,0,1) }}, {{ { heis(-0.5,-0.5,-0.25), heis(-0.5,-0.5,0.75), heis(-0.5,0.5,0.25), heis(-0.5,0.5,-0.75), }, { heis(0.5,-0.5,-0.5), heis(0.5,-0.5,0.5), heis(-0.5,-0.5,0.5), heis(-0.5,-0.5,-0.5), }, { heis(0,0,-0.5), heis(-0.5,0.5,-0.75), heis(-0.5,-0.5,-0.25), heis(0,0,-0.5), heis(-0.5,-0.5,-0.25), heis(-0.5,-0.5,-0.5), heis(0,0,-0.5), heis(-0.5,-0.5,-0.5), heis(0.5,-0.5,-0.5), heis(0,0,-0.5), heis(0.5,-0.5,-0.5), heis(0.5,-0.5,-0.75), heis(0,0,-0.5), heis(0.5,-0.5,-0.75), heis(0.5,0.5,-0.25), heis(0,0,-0.5), heis(0.5,0.5,-0.25), heis(0.5,0.5,-0.5), heis(0,0,-0.5), heis(0.5,0.5,-0.5), heis(-0.5,0.5,-0.5), heis(0,0,-0.5), heis(-0.5,0.5,-0.5), heis(-0.5,0.5,-0.75), }, { heis(0.5,0.5,-0.25), heis(0.5,0.5,0.75), heis(0.5,-0.5,0.25), heis(0.5,-0.5,-0.75), }, { heis(-0.5,0.5,-0.5), heis(-0.5,0.5,0.5), heis(0.5,0.5,0.5), heis(0.5,0.5,-0.5), }, { heis(0,0,0.5), heis(-0.5,0.5,0.25), heis(-0.5,-0.5,0.75), heis(0,0,0.5), heis(-0.5,-0.5,0.75), heis(-0.5,-0.5,0.5), heis(0,0,0.5), heis(-0.5,-0.5,0.5), heis(0.5,-0.5,0.5), heis(0,0,0.5), heis(0.5,-0.5,0.5), heis(0.5,-0.5,0.25), heis(0,0,0.5), heis(0.5,-0.5,0.25), heis(0.5,0.5,0.75), heis(0,0,0.5), heis(0.5,0.5,0.75), heis(0.5,0.5,0.5), heis(0,0,0.5), heis(0.5,0.5,0.5), heis(-0.5,0.5,0.5), heis(0,0,0.5), heis(-0.5,0.5,0.5), heis(-0.5,0.5,0.25), }, }}, false, {3,4,5,0,1,2}, "six sides" }; nilstructure ns8 = { {{ mvec(-1,0,0), mvec(-1,0,1), mvec(0,-1,0), mvec(0,0,-1), mvec(1,0,0), mvec(1,0,-1), mvec(0,1,0), mvec(0,0,1) }}, {{ { heis(-0.5,-0.5,-0.25), heis(-0.5,-0.5,0.75), heis(-0.5,0.5,-0.25), }, { heis(-0.5,-0.5,0.75), heis(-0.5,0.5,0.75), heis(-0.5,0.5,-0.25), }, { heis(-0.5,-0.5,-0.25), heis(-0.5,-0.5,0.75), heis(0.5,-0.5,0.25), heis(0.5,-0.5,-0.75), }, { heis(-0.5,-0.5,-0.25), heis(-0.5,0.5,-0.25), heis(0.5,0.5,-0.75), heis(0.5,-0.5,-0.75), }, { heis(0.5,0.5,0.25), heis(0.5,-0.5,0.25), heis(0.5,-0.5,-0.75), }, { heis(0.5,0.5,-0.75), heis(0.5,0.5,0.25), heis(0.5,-0.5,-0.75), }, { heis(-0.5,0.5,0.75), heis(-0.5,0.5,-0.25), heis(0.5,0.5,-0.75), heis(0.5,0.5,0.25), }, { heis(-0.5,-0.5,0.75), heis(-0.5,0.5,0.75), heis(0.5,0.5,0.25), heis(0.5,-0.5,0.25), }, }}, false, {4,5,6,7,0,1,2,3}, "eight sides" }; nilstructure nshex = { {{ mvec(1,0,0), mvec(1,-1,0), mvec(0,-1,0), mvec(-1,0,0), mvec(-1,1,0), mvec(0,1,0), mvec(0,0,-1), mvec(0,0,1) }}, {{ {hexrota(1,-1,2),hexrota(1,-1,-4),hexrota(1,1,-2),hexrota(1,1,4)}, {hexrota(0,-2,2),hexrota(0,-2,-4),hexrota(1,-1,-2),hexrota(1,-1,4)}, {hexrota(-1,-1,2),hexrota(-1,-1,-4),hexrota(0,-2,-2),hexrota(0,-2,4)}, {hexrota(-1,1,2),hexrota(-1,1,-4),hexrota(-1,-1,-2),hexrota(-1,-1,4)}, {hexrota(0,2,2),hexrota(0,2,-4),hexrota(-1,1,-2),hexrota(-1,1,4)}, {hexrota(1,1,2),hexrota(1,1,-4),hexrota(0,2,-2),hexrota(0,2,4)}, {hexrota(0,0,-3),hexrota(1,1,-2),hexrota(1,-1,-4),hexrota(0,0,-3),hexrota(1,-1,-4),hexrota(1,-1,-2),hexrota(0,0,-3),hexrota(1,-1,-2),hexrota(0,-2,-4),hexrota(0,0,-3),hexrota(0,-2,-4),hexrota(0,-2,-2),hexrota(0,0,-3),hexrota(0,-2,-2),hexrota(-1,-1,-4),hexrota(0,0,-3),hexrota(-1,-1,-4),hexrota(-1,-1,-2),hexrota(0,0,-3),hexrota(-1,-1,-2),hexrota(-1,1,-4),hexrota(0,0,-3),hexrota(-1,1,-4),hexrota(-1,1,-2),hexrota(0,0,-3),hexrota(-1,1,-2),hexrota(0,2,-4),hexrota(0,0,-3),hexrota(0,2,-4),hexrota(0,2,-2),hexrota(0,0,-3),hexrota(0,2,-2),hexrota(1,1,-4),hexrota(0,0,-3),hexrota(1,1,-4),hexrota(1,1,-2)}, {hexrota(0,0,3),hexrota(1,1,4),hexrota(1,-1,2),hexrota(0,0,3),hexrota(1,-1,2),hexrota(1,-1,4),hexrota(0,0,3),hexrota(1,-1,4),hexrota(0,-2,2),hexrota(0,0,3),hexrota(0,-2,2),hexrota(0,-2,4),hexrota(0,0,3),hexrota(0,-2,4),hexrota(-1,-1,2),hexrota(0,0,3),hexrota(-1,-1,2),hexrota(-1,-1,4),hexrota(0,0,3),hexrota(-1,-1,4),hexrota(-1,1,2),hexrota(0,0,3),hexrota(-1,1,2),hexrota(-1,1,4),hexrota(0,0,3),hexrota(-1,1,4),hexrota(0,2,2),hexrota(0,0,3),hexrota(0,2,2),hexrota(0,2,4),hexrota(0,0,3),hexrota(0,2,4),hexrota(1,1,2),hexrota(0,0,3),hexrota(1,1,2),hexrota(1,1,4)} }}, true, {3,4,5,0,1,2,7,6}, "hex" }; EX vector nil_structures = { &ns6, &ns8, &nshex }; EX nilstructure& current_ns() { return *nil_structures[nil_structure_index]; } EX array nilperiod, nilperiod_edit; int S7_edit; EX transmatrix adjmatrix(int i) { return nisot::translate(mvec_to_point(current_ns().movevectors[i])); } struct hrmap_nil : hrmap { map at; map coords; heptagon *getOrigin() override { return get_at(mvec_zero); } ~hrmap_nil() { for(auto& p: at) clear_heptagon(p.second); } heptagon *get_at(mvec c) { auto& h = at[c]; if(h) return h; h = init_heptagon(S7); h->c7 = newCell(S7, h); coords[h] = c; h->zebraval = c[0]; h->emeraldval = c[1]; h->fieldval = c[2]; return h; } heptagon *create_step(heptagon *parent, int d) override { auto p = coords[parent]; auto q = p * current_ns().movevectors[d]; for(int a=0; a<3; a++) q[a] = zgmod(q[a], nilperiod[a]); auto child = get_at(q); parent->c.connect(d, child, current_ns().other_side[d], false); return child; } transmatrix adj(heptagon *h, int i) override { return adjmatrix(i); } transmatrix relative_matrixh(heptagon *h2, heptagon *h1, const hyperpoint& hint) override { for(int a=0; amove(a)) return adjmatrix(a); auto p = coords[h1].inverse() * coords[h2]; for(int a=0; a<3; a++) p[a] = szgmod(p[a], nilperiod[a]); return nisot::translate(mvec_to_point(p)); } }; EX mvec get_coord(heptagon *h) { return ((hrmap_nil*)currentmap)->coords[h]; } EX heptagon *get_heptagon_at(mvec m) { return ((hrmap_nil*)currentmap)->get_at(m); } EX void set_flags() { ginf[gNil].sides = isize(current_ns().movevectors); int coords = 0; for(int a=0; a<3; a++) if(nilperiod[a]) coords++; set_flag(ginf[gNil].flags, qANYQ, coords); set_flag(ginf[gNil].flags, qCLOSED, coords == 3); set_flag(ginf[gNil].flags, qSMALL, coords == 3 && nilperiod[0] * nilperiod[1] * nilperiod[2] <= 4096); } EX hyperpoint on_geodesic(hyperpoint s0, hyperpoint s1, ld x) { hyperpoint local = nisot::translate(s0, -1) * s1; hyperpoint h = get_inverse_exp(local); return nisot::translate(s0) * formula_exp(h * x); } EX color_t colorize(cell *c, char whichCanvas) { mvec at = ((hrmap_nil*)currentmap)->coords[c->master]; color_t res = 0; auto setres = [&] (int z, color_t which) { if(zgmod(at[2] - z, nilperiod[2]) == 0) res = which; if(zgmod(at[2] - z-1, nilperiod[2]) == 0) res = which; }; if(at[1] == 0 && at[0] >=0 && at[0] < 4) setres(-at[0], gradient(0x1FF0000, 0x10000FF, 0, at[0], 4)); else if(at[0] == 4 && at[1] >= 0 && at[1] < 4) setres(at[1]*3-4, gradient(0x10000FF, 0x100FF00, 0, at[1], 4)); else if(at[1] == 4 && at[0] >= 0 && at[0] <= 4) setres(4+at[0], gradient(0x100FF00, 0x1FFFF00, 4, at[0], 0)); else if(at[0] == 0 && at[1] >= 0 && at[1] <= 4) setres(at[1], gradient(0x1FFFF00, 0x1FF0000, 4, at[1], 0)); return res; } EX void prepare_niltorus3() { nilperiod_edit = nilperiod; S7_edit = nil_structure_index; } EX void show_niltorus3() { cmode = sm::SIDE | sm::MAYDARK; gamescreen(); dialog::init(XLAT("Nil quotient spaces")); for(int a=0; a<3; a++) { string title = XLAT("%1 period", s0+char('X'+a)); dialog::addSelItem(title, its(nilperiod_edit[a]), 'x'); dialog::add_action([=] { dialog::editNumber(nilperiod_edit[a], 0, 60, 1, 0, title, XLAT("Set to 0 to make it non-periodic.") ); dialog::bound_low(0); }); } dialog::addSelItem(XLAT("honeycomb"), XLAT(nil_structures[S7_edit]->name), 'h'); dialog::add_action([] { S7_edit = (S7_edit+1)%isize(nil_structures); }); bool ok = (!nilperiod_edit[1]) || (nilperiod_edit[2] && nilperiod_edit[1] % nilperiod_edit[2] == 0); dialog::addBreak(50); if(ok) { dialog::addItem(XLAT("activate"), 'a'); dialog::add_action([] { stop_game(); nilperiod = nilperiod_edit; nil_structure_index = S7_edit; set_flags(); geometry = gNil; start_game(); }); } else dialog::addInfo(XLAT("Y period must be divisible by Z period")); dialog::addBreak(50); dialog::addBack(); dialog::display(); } EX void create_faces() { for(int i=0; i fvs = nilv::current_ns().facevertices[i]; using nilv::nilwidth; for(auto& h: fvs) h[0] *= nilwidth, h[1] *= nilwidth, h[2] *= nilwidth * nilwidth; add_wall(i, fvs); } get_hsh().compute_hept(); } EX } EX bool in_s2xe() { return gproduct && hybrid::under_class() == gcSphere; } EX bool in_h2xe() { return gproduct && hybrid::under_class() == gcHyperbolic; } EX bool in_e2xe() { return gproduct && hybrid::under_class() == gcEuclid; } EX namespace hybrid { EX eGeometry underlying; EX geometry_information *underlying_cgip; EX eGeometryClass under_class() { if(embedded_plane) { auto c = geom3::ginf_backup[geometry].cclass; if(c == gcEuclid) c = cginf.g.sig[2] > 0 ? gcSphere : gcHyperbolic; return c; } return ginf[hybrid::underlying].cclass; } EX int csteps; EX int disc_quotient = 0; EX map altmap_heights; EX void configure(eGeometry g) { if(WDIM == 3) return; ray::reset_raycaster(); check_cgi(); cgi.require_basics(); underlying = geometry; underlying_cgip = cgip; bool sph = sphere; bool euc = euclid; auto keep = ginf[g].menu_displayed_name; ginf[g] = ginf[underlying]; ginf[g].menu_displayed_name = keep; if(g == gTwistedProduct) { ginf[g].g = euc ? giNil : sph ? giSphere3 : giSL2; ginf[g].tiling_name = "Iso(" + ginf[g].tiling_name + ")"; string& qn = ginf[g].quotient_name; if(csteps && csteps != (sph ? cgi.psl_steps*2 : 0)) { string qplus; if(csteps == cgi.psl_steps) qplus = sph ? "elliptic" : "PSL"; else if(csteps == 2 * cgi.psl_steps && !sph) qplus = "SL"; else qplus = its(csteps); if(qn == "none") qn = qplus; else qn = qn + "/" + qplus; } if(sph) ginf[g].flags |= qELLIPTIC; if(csteps && csteps != cgi.psl_steps && csteps != 2*cgi.psl_steps) ginf[g].flags |= qANYQ; } else { ginf[g].cclass = gcProduct; ginf[g].g.gameplay_dimension++; ginf[g].g.graphical_dimension++; ginf[g].tiling_name += "xZ"; if(csteps) ginf[g].flags |= qANYQ, ginf[g].tiling_name += its(csteps); } ginf[g].flags |= qHYBRID; } EX void reconfigure() { if(!mhybrid) return; stop_game(); auto g = geometry; geometry = underlying; configure(g); geometry = g; } EX void enable_rotspace() { if(euclid) { start_game(); int q = cwt.at->type; stop_game(); hybrid::csteps = q; set_plevel(TAU / q); set_geometry(gProduct); hybrid::reconfigure(); } else { stop_game(); set_geometry(gTwistedProduct); check_cgi(); cgi.require_basics(); hybrid::csteps = cgi.psl_steps; hybrid::reconfigure(); } } EX void fixup_csteps() { check_cgi(); cgi.require_basics(); if(!hybrid::csteps || gmod(cgi.psl_steps, hybrid::csteps)) { hybrid::csteps = cgi.psl_steps; hybrid::reconfigure(); } } EX hrmap *pmap; EX geometry_information *pcgip; EX eGeometry actual_geometry; #if HDR template auto in_actual(const T& t) -> decltype(t()) { if(pmap == nullptr) return t(); dynamicval g(geometry, actual_geometry); dynamicval gc(cgip, pcgip); dynamicval gu(currentmap, pmap); dynamicval gup(pmap, NULL); return t(); } #define PIA(x) hr::hybrid::in_actual([&] { return (x); }) #endif EX void set_plevel(ld lev) { stop_game(); vid.plevel_factor = 1; check_cgi(); cgi.prepare_basics(); vid.plevel_factor = lev / cgi.plevel; check_cgi(); } struct hrmap_hybrid : hrmap { hrmap *underlying_map; bool twisted; map> spins; map, cell*> at; map> where; heptagon *getOrigin() override { return underlying_map->getOrigin(); } const int SHIFT_UNKNOWN = 30000; map> shifts; map orig_height; EX vector& make_shift(cell *c) { auto& res = shifts[c]; if(res.empty()) res = vector (c->type+1, SHIFT_UNKNOWN); return res; } EX int& get_shift_current(cellwalker cw) { return make_shift(cw.at)[cw.spin]; } EX bool have_shift(cellwalker cw) { return shifts.count(cw.at) && get_shift_current(cw) != SHIFT_UNKNOWN; } EX int get_shift(cellwalker cw0) { if(S3 >= OINF) return 0; auto& v = get_shift_current(cw0); if(v != SHIFT_UNKNOWN) return v; if(nil) { /** we prevent possible 'two candidate' errors by computing the correct value, we know all the positions in the underlying map, so we can do that */ transmatrix uT, uU, uT1; in_underlying([&] { uT = currentmap->relative_matrix(cw0.at, currentmap->gamestart(), C0); uU = currentmap->adj(cw0.at, cw0.spin); uT1 = currentmap->relative_matrix(cw0.cpeek(), currentmap->gamestart(), C0); }); transmatrix lT = twist::lift_matrix(uT); transmatrix lU = twist::lift_matrix(uU); transmatrix lT1 = twist::lift_matrix(uT1); if(!orig_height.count(cw0.at)) orig_height[cw0.at] = (lT*C0) [2]; ld diff = (lT * lU * iso_inverse(lT1) * C0)[2] - orig_height[cw0.at]; if(!orig_height.count(cw0.peek())) orig_height[cw0.peek()] = -diff; diff += orig_height[cw0.peek()]; if(abs(frac(diff / cgi.plevel + 0.5) - 0.5) > 1e-6) throw hr_exception("not an integer in get_shift"); v = floor(diff / cgi.plevel + 0.5); return v; } vector candidates; for(int a: {1, -1}) { cellwalker cw = cw0; cw += wstep; cw += a; int s = 0; while(cw != cw0) { if(!have_shift(cw)) goto next; s += shifts[cw.at][cw.spin]; cw += wstep; cw += a; } candidates.push_back(-a * cgi.single_step * (sphere ? -1 : 1) - s); next: ; } if(candidates.size() == 2 && candidates[0] != candidates[1]) { if(!quotient) println(hlog, "two candidates in shift : ", candidates); int val = candidates[0] - candidates[1]; int old_disc_quotient = disc_quotient; if(disc_quotient == 0) disc_quotient = val; disc_quotient = gcd(val, disc_quotient); if(disc_quotient < 0) disc_quotient = -disc_quotient; if(old_disc_quotient != disc_quotient && !in_underlying([] { return quotient; })) addMessage(XLAT("ERROR: failed to solve the twist values, the map will be incorrect", its(disc_quotient))); } int val = 0; auto cw1 = cw0+wstep; if(1) { /* the value from PSL, helps to draw the underlying space correctly */ auto ps = cgi.psl_steps; val = cw0.spin*ps / cw0.at->type - cw1.spin*ps / cw1.at->type + ps/2; } if(!candidates.empty()) val = candidates[0]; v = val; get_shift_current(cw1) = -val; return val; } EX void ensure_shifts(cell *c) { if(S3 >= OINF) return; if(!make_shift(c)[c->type]) return; forCellEx(c1, c) for(int a=0; atype; a++) { cellwalker cw0(c, a); cellwalker cw = cw0; while(cw != cw0) { get_shift(cw); cw += wstep; cw += a; } } make_shift(c)[c->type] = 0; } EX int cycle_discrepancy(cellwalker cw0) { int total = 0; auto cw = cw0; do { total += get_shift(cw); cw += wstep; cw++; } while(cw != cw0); return total + cgi.single_step * (sphere ? -1 : 1); } EX void fix_bounded_cycles() { if(!mtwisted) return; if(!closed_manifold) return; in_underlying([&] { cellwalker final(currentmap->gamestart(), 0); auto& ac = currentmap->allcells(); for(cell *c: ac) for(int i=0; itype; i++) { cellwalker cw(c, i); int cd = cycle_discrepancy(cw); if(!cd) continue; while(cw != final) { if(celldist(cw.peek()) < celldist(cw.at)) { cw += wstep; cw++; } else { get_shift_current(cw) -= cd; get_shift_current(cw+wstep) += cd; cw++; } } } disc_quotient = abs(cycle_discrepancy(final)); if(debugflags & DF_GEOM) for(cell *c: ac) for(int i=0; itype; i++) { cellwalker cw(c, i); if(cycle_discrepancy(cw)) println(hlog, cw, cycle_discrepancy(cw)); } }); } template auto in_underlying(const T& t) -> decltype(t()) { pcgip = cgip; dynamicval gpm(pmap, this); dynamicval gag(actual_geometry, geometry); dynamicval g(geometry, underlying); dynamicval gss(underlying_cgip->single_step, cgi.single_step); dynamicval gsp(underlying_cgip->psl_steps, cgi.psl_steps); dynamicval gc(cgip, underlying_cgip); dynamicval gu(currentmap, underlying_map); return t(); } cell *getCell(cell *u, int h) { if(twisted) { if(!spins.count(u)) println(hlog, "link missing: ", u); else { while(h >= csteps) h -= csteps, u = spins[u].first.at; while(h < 0) h += csteps, u = spins[u].second.at; } } h = zgmod(h, csteps); cell*& c = at[make_pair(u, h)]; if(!c) { c = newCell(u->type+2, u->master); where[c] = {u, h}; } return c; } cell* gamestart() override { return getCell(underlying_map->gamestart(), 0); } hrmap_hybrid() { underlying_map = nullptr; twisted = false; disc_quotient = 0; in_underlying([this] { initcells(); underlying_map = currentmap; }); for(hrmap*& m: allmaps) if(m == underlying_map) m = NULL; fix_bounded_cycles(); } ~hrmap_hybrid() { in_underlying([] { delete currentmap; }); for(auto& p: at) destroy_cell(p.second); } void find_cell_connection(cell *c, int d) override { hybrid::find_cell_connection(c, d); } int shvid(cell *c) override { cell *c1 = hybrid::get_where(c).first; return PIU( hr::shvid(c1) ); } int full_shvid(cell *c) override { cell *c1 = hybrid::get_where(c).first; return PIU( currentmap->full_shvid(c1) ); } transmatrix spin_to(cell *c, int d, ld bonus) override { if(d >= c->type-2) return Id; c = get_where(c).first; return fix4_f( in_underlying([&] { return currentmap->spin_to(c, d, bonus); }) ); } transmatrix spin_from(cell *c, int d, ld bonus) override { if(d >= c->type-2) return Id; c = get_where(c).first; return fix4_f( in_underlying([&] { return currentmap->spin_from(c, d, bonus); }) ); } subcellshape& get_cellshape(cell *c) override { int id = full_shvid(c); return generate_subcellshape_if_needed(c, id); } }; hrmap_hybrid* hmap() { return (hrmap_hybrid*) currentmap; } EX cell *get_at(cell *base, int level) { return hmap()->getCell(base, level); } EX pair get_where(cell *c) { return hmap()->where[c]; } EX void find_cell_connection(cell *c, int d) { auto m = hmap(); if(d >= c->type - 2) { int s = cgi.single_step; int lev = m->where[c].second + (d == c->type-1 ? s : -s); cell *c1 = get_at(m->where[c].first, lev); c->c.connect(d, c1, c1->type - 3 + c->type - d, false); } else { auto cu = m->where[c].first; auto cu1 = m->in_underlying([&] { return cu->cmove(d); }); int d1 = cu->c.spin(d); int s = 0; if(geometry == gTwistedProduct) { auto cm = (hrmap_hybrid*)currentmap; m->in_underlying([&] { cm->ensure_shifts(cu); }); s = ((hrmap_hybrid*)currentmap)->get_shift(cellwalker(cu, d)); } cell *c1 = get_at(cu1, m->where[c].second + s); c->c.connect(d, c1, d1, cu->c.mirror(d)); } } EX hrmap* get_umap() { if(!dynamic_cast(currentmap)) return nullptr; else return ((hrmap_hybrid*)currentmap)->underlying_map; } #if HDR template auto in_underlying_geometry(const T& f) -> decltype(f()) { if(!mhybrid && !gproduct) return f(); if(embedded_plane) { if(cgi.emb->is_euc_in_product()) { dynamicval dgc(cginf.g.kind, cginf.g.sig[2] < 0 ? gcHyperbolic : gcSphere); return f(); } if(cgi.emb->is_cylinder()) { dynamicval dgc(cginf.g.kind, cginf.g.sig[2] < 0 ? gcHyperbolic : gcSphere); return f(); } geom3::light_flip(true); finalizer ff([] { geom3::light_flip(false); }); return f(); } if(geom3::flipped) throw hr_exception("called in_underlying_geometry in flipped"); pcgip = cgip; dynamicval gag(actual_geometry, geometry); dynamicval g(geometry, underlying); dynamicval gss(underlying_cgip->single_step, cgi.single_step); dynamicval gsp(underlying_cgip->psl_steps, cgi.psl_steps); dynamicval gc(cgip, underlying_cgip); dynamicval gpm(pmap, currentmap); dynamicval gm(currentmap, get_umap()); return f(); } #define PIU(x) hr::hybrid::in_underlying_geometry([&] { return (x); }) #endif /** like in_underlying_geometry but does not return */ EX void switch_to_underlying() { if(!mhybrid && !gproduct) return; if(embedded_plane) throw hr_exception("switch_to_underlying in embedded_plane"); auto m = hmap(); pmap = m; actual_geometry = geometry; geometry = underlying; underlying_cgip->single_step = cgi.single_step; underlying_cgip->psl_steps = cgi.psl_steps; pcgip = cgip; cgip = underlying_cgip; currentmap = m->underlying_map; } /** like in_actual but does not return */ EX void switch_to_actual() { if(!pmap) return; geometry = actual_geometry; cgip = pcgip; currentmap = pmap; pmap = nullptr; } // next: 0 = i-th corner, 1 = next corner, 2 = center of the wall EX hyperpoint get_corner(cell *c, int i, int next, ld z) { ld lev = cgi.plevel * z / 2; if(WDIM == 2) { ld zz = lerp(cgi.FLOOR, cgi.WALL, (1+z) / 2); hyperpoint h = orthogonal_move(get_corner_position(c, i+next), zz); return h; } if(gproduct) { dynamicval g(geometry, hybrid::underlying); dynamicval gc(cgip, hybrid::underlying_cgip); dynamicval gm(currentmap, ((hrmap_hybrid*)currentmap)->underlying_map); return scale_point(get_corner_position(c, i+next), exp(lev)); } else { #if MAXMDIM >= 4 ld tf, he, alpha; in_underlying_geometry([&] { hyperpoint h1 = get_corner_position(c, i); hyperpoint h2 = get_corner_position(c, i+1); hyperpoint hm; if(next == 2) { hm = h1; he = 0; } else { hyperpoint hm = mid(h1, h2); he = hdist(hm, h2)/2; if(next) he = -he; } tf = hdist0(hm)/2; alpha = atan2(hm[1], hm[0]); }); return spin(alpha) * twist::uxpush(tf) * twist::uypush(he) * twist::uzpush(lev) * C0; #else throw hr_exception(); #endif } } auto clear_samples = addHook(hooks_clearmemory, 40, [] () { for(auto& c: cgis) for(auto& v: c.second.walloffsets) v.second = nullptr; altmap_heights.clear(); }); EX vector> gen_sample_list() { if(!mhybrid && WDIM != 2 && PURE) return {make_pair(0, centerover), make_pair(centerover->type, nullptr)}; vector> result; for(auto& v: cgi.walloffsets) if(v.first >= 0) result.push_back(v); sort(result.begin(), result.end()); int last = 0; for(auto& r: result) if(r.second) last = r.first + r.second->type + (WDIM == 2 ? 2 : 0); result.emplace_back(last, nullptr); return result; } vector to_link; EX void will_link(cell *c) { if(pmap && ((hrmap_hybrid*) pmap)->twisted) to_link.push_back(c); } EX bool in_link = false; EX void link() { if(in_link) return; dynamicval b(in_link, true); auto pm = (hrmap_hybrid*) pmap; if(!pm) return; auto& ss = pm->spins; int success = -1; while(success) { vector xlink = std::move(to_link); success = 0; for(cell *c: xlink) { bool success_here = ss.count(c); if(!success_here) forCellIdEx(c2, i, c) if(ss.count(c2)) { ss[c].first = ss[c2].first + c->c.spin(i) + wstep - i; ss[c].second = ss[c2].second + c->c.spin(i) + wstep - i; success++; success_here = true; break; } if(!success_here) to_link.push_back(c); } } } EX int celldistance(cell *c1, cell *c2) { if(sl2) { auto w1 = hybrid::get_where(c1), w2 = hybrid::get_where(c2); return PIU (hr::celldistance(w1.first, w2.first)); } else if(csteps == 0) { auto w1 = hybrid::get_where(c1), w2 = hybrid::get_where(c2); return PIU (hr::celldistance(w1.first, w2.first)) + abs(w1.second - w2.second); } else { int s = 0; int a = 999999, b = -999999; auto c = c1; do { auto w1 = hybrid::get_where(c), w2 = hybrid::get_where(c2); if(w1.second == w2.second) { int d = PIU(hr::celldistance(w1.first, w2.first)); a = min(s+d, a); b = max(s-d, b); } c = c->cmove(c1->type-1); s++; } while(c != c1); return min(a, s-b); } } EX void configure_period() { static int s; s = csteps / cgi.single_step; string str = ""; if(mtwisted) str = XLAT( "If the 2D underlying manifold is bounded, the period should be a divisor of the 'rotation space' " "value (PSL(2,R)) times the Euler characteristics of the underlying manifold. " "For unbounded underlying manifold, any value should work (theoretically, " "the current implementation in HyperRogue is not perfect).\n\n" "We won't stop you from trying illegal numbers, but they won't work correctly."); dialog::editNumber(s, 0, 16, 1, 0, XLAT("%1 period", "Z"), str); dialog::bound_low(0); auto set_s = [] (int s1, bool ret) { return [s1,ret] { if(ret) popScreen(); if(csteps == s1) return; stop_game(); csteps = s1 * cgi.single_step; hybrid::reconfigure(); start_game(); }; }; dialog::get_di().extra_options = [=] () { if(mtwisted) { int e_steps = cgi.psl_steps / gcd(cgi.single_step, cgi.psl_steps); bool ubounded = PIU(closed_manifold); dialog::addSelItem( sphere ? XLAT("elliptic") : XLAT("PSL(2,R)"), its(e_steps), 'P'); dialog::add_action(set_s(e_steps, true)); dialog::addSelItem( sphere ? XLAT("sphere") : XLAT("SL(2,R)"), its(2*e_steps), 'P'); dialog::add_action(set_s(2*e_steps, true)); if(sl2 && !ubounded) { dialog::addSelItem( XLAT("universal cover"), its(0), 'P'); dialog::add_action(set_s(0, true)); } dialog::addSelItem(ubounded ? XLAT("maximum") : XLAT("works correctly so far"), its(disc_quotient), 'Q'); dialog::add_action(set_s(disc_quotient, true)); } else { dialog::addSelItem( XLAT("non-periodic"), its(0), 'N'); dialog::add_action(set_s(0, true)); } dialog::get_di().reaction_final = set_s(s, false); }; } EX ld underlying_scale = 0; EX bool drawing_underlying = false; EX bool underlying_as_pc = true; EX void draw_underlying(bool cornermode) { if(underlying_scale <= 0) return; ld d = hybrid::get_where(centerover).second; d *= cgi.plevel; transmatrix T = twist::uzpush(-d) * spin(-2*d); if(det(T) < 0) T = centralsym * T; ld orig_d = d; if(mproduct) d = 0; hyperpoint h = inverse(View * spin(master_to_c7_angle()) * T) * C0; auto g = std::move(gmatrix); auto g0 = std::move(gmatrix0); ld alpha = atan2(ortho_inverse(NLP) * point3(1, 0, 0)); dynamicval dn(NLP); dynamicval dv(View); bool inprod = mproduct; transmatrix pView = View; if(inprod) { ld z = zlevel(tC0(View)); /* special case when we are actually in E2xE as a rotation space */ if(in_e2xe() && abs(cgi.plevel * hybrid::csteps - TAU) < 1e-6) alpha = orig_d - z; println(hlog, "depth = ", cgi.plevel * hybrid::csteps, " orig_d = ", orig_d, " z = ", z); pView = spin(alpha) * View; for(int a=0; a<3; a++) pView[a] *= exp(-z); } cell *co = hybrid::get_where(centerover).first; hybrid::in_underlying_geometry([&] { cgi.require_shapes(); dynamicval pcc(corner_centering, cornermode ? 1 : 2); dynamicval pf(playerfound, true); dynamicval m5(centerover, co); dynamicval m2(View, inprod ? pView : ypush(0) * twist::qtm(h)); if(PURE && !inprod) View = View * pispin; View = inverse(stretch::mstretch_matrix) * spin(2*d) * View; dynamicval m3(playerV, shiftless(Id)); dynamicval m4(actual_view_transform, Id); dynamicval m6(cwtV, shiftless(Id)); dynamicval pm(pmodel, mdDisk); dynamicval pss(pconf.scale, (sphere ? 10 : euclid ? .4 : 1) * underlying_scale); dynamicval psa(pconf.alpha, sphere ? 10 : 1); dynamicval p(hybrid::pmap, NULL); dynamicval psr(sightrange_bonus, 0); dynamicval psx(vid.use_smart_range, 2); dynamicval psy(vid.smart_range_detail, 1); dynamicval pdu(drawing_underlying, true); calcparam(); reset_projection(); current_display->set_all(0, 0); ptds.clear(); drawthemap(); if(underlying_as_pc) drawPlayer(moPlayer, centerover, sphere ? shiftless(xpush(M_PI) * spin90()) : shiftless(spin90()), 0xFFFFFFFF, 0); drawqueue(); if(!underlying_as_pc) displaychr(current_display->xcenter, current_display->ycenter, 0, 24 * mapfontscale / 100, '+', 0xFFFFFFFF); glflush(); }); gmatrix = std::move(g); gmatrix0 = std::move(g0); calcparam(); reset_projection(); current_display->set_all(0, 0); make_actual_view(); } EX } EX namespace product { int z0; struct hrmap_product : hybrid::hrmap_hybrid { transmatrix relative_matrixc(cell *c2, cell *c1, const hyperpoint& hint) override { return in_underlying([&] { return calc_relative_matrix(where[c2].first, where[c1].first, hint); }) * cpush(2, cgi.plevel * szgmod(where[c2].second - where[c1].second, hybrid::csteps)); } transmatrix adj(cell *c, int i) override { if(twisted && i == c->type-1 && where[c].second == hybrid::csteps-1) { auto b = spins[where[c].first].first; transmatrix T = cpush(2, cgi.plevel); T = T * spin(TAU * b.spin / b.at->type); if(b.mirrored) T = T * Mirror; return T; } if(twisted && i == c->type-2 && where[c].second == 0) { auto b = spins[where[c].first].second; transmatrix T = cpush(2, -cgi.plevel); T = T * spin(TAU * b.spin / b.at->type); if(b.mirrored) T = T * Mirror; return T; } if(i == c->type-1) return cpush(2, cgi.plevel); else if(i == c->type-2) return cpush(2, -cgi.plevel); c = where[c].first; return PIU(currentmap->adj(c, i)); } hrmap_product() { current_spin_invalid = false; using hybrid::csteps; if((cspin || cmirror) && csteps) { in_underlying([&] { twisted = validate_spin(); if(!twisted) { current_spin_invalid = true; return; } auto ugs = currentmap->gamestart(); spins[ugs] = make_pair( cellwalker(ugs, gmod(+cspin, ugs->type), cmirror), cellwalker(ugs, gmod(-cspin, ugs->type), cmirror) ); manual_celllister cl; cl.add(ugs); for(int i=0; itype-2) return (cpush(2, +cgi.plevel)); if(i == c->type-1) return (cpush(2, -cgi.plevel)); transmatrix T; cell *cw = hybrid::get_where(c).first; hybrid::in_underlying_geometry([&] { T = currentmap->ray_iadj(cw, i); }); return T; } }; EX bool current_spin_invalid, cmirror; EX int cspin; /* todo might need a shiftpoint version */ EX hyperpoint inverse_exp(hyperpoint h) { hyperpoint res; res[2] = zlevel(h); h = h * exp(-res[2]); ld r = hypot_d(2, h); if(hybrid::under_class() == gcEuclid) { res[0] = h[0]; res[1] = h[1]; } else if(r < 1e-6) { res[0] = h[0]; res[1] = h[1]; } else { auto c = acos_auto_clamp(h[2]); r = c / r; res[0] = h[0] * r; res[1] = h[1] * r; } return res; } EX hyperpoint direct_exp(hyperpoint h) { hyperpoint res; ld d = hypot_d(2, h); ld cd = d == 0 ? 0 : sin_auto(d) / d; res[0] = h[0] * cd; res[1] = h[1] * cd; res[2] = cos_auto(d); return res * exp(h[2]); } EX bool validate_spin() { if(mproduct) return hybrid::in_underlying_geometry(validate_spin); if(aperiodic) return false; if(!quotient && !arcm::in()) return true; map cws; manual_celllister cl; cell *start = currentmap->gamestart(); cl.add(start); cws[start] = cellwalker(start, gmod(cspin, start->type), cmirror); for(int i=0; ic.spin(j); if(!cws.count(c2)) cws[c2] = cwc2; else if(cws[c2] != cwc2) return false; cl.add(c2); } } return true; } EX void show_config() { cmode = sm::SIDE | sm::MAYDARK; gamescreen(); dialog::init(XLAT("quotient product spaces")); dialog::addSelItem(XLAT("%1 period", "Z"), its(hybrid::csteps), 'z'); dialog::add_action(hybrid::configure_period); dialog::addSelItem(XLAT("rotation"), its(cspin), 'r'); dialog::add_action([] { static int s; dialog::editNumber(s, 0, 16, 1, 0, XLAT("rotation", "Z"), XLAT("Works if the underlying space is symmetric.") ); dialog::get_di().reaction_final = [] { if(s == cspin) return; stop_game(); cspin = s; start_game(); }; }); dialog::addBoolItem(XLAT("reflect"), cmirror, 'f'); dialog::add_action([]{ stop_game(); cmirror = !cmirror; start_game(); }); if(current_spin_invalid) dialog::addInfo("the current rotation is invalid"); else dialog::addBreak(100); dialog::addBreak(50); dialog::addBack(); dialog::display(); } EX } EX namespace slr { /** in what range are we rendering SL(2,R) */ EX ld range_xy = 2; /** in what Z range are we rendering SL(2,R) */ EX ld range_z = 2; /** the number of steps for inverse_exp in the shader */ EX int shader_iterations = 15; EX transmatrix translate(hyperpoint h) { return matrix4( h[3], -h[2], h[1], h[0], h[2], h[3], -h[0], h[1], h[1], -h[0], h[3], h[2], h[0], h[1], -h[2], h[3] ); } EX hyperpoint polar(ld r, ld theta, ld phi) { return hyperpoint(sinh(r) * cos(theta-phi), sinh(r) * sin(theta-phi), cosh(r) * sin(phi), cosh(r) * cos(phi)); } EX hyperpoint xyz_point(ld x, ld y, ld z) { ld r = hypot(x, y); ld f = r ? sinh(r) / r : 1; return hyperpoint(x * f * cos(z) + y * f * sin(z), y * f * cos(z) - x * f * sin(z), cosh(r) * sin(z), cosh(r) * cos(z)); } EX hyperpoint get_inverse_exp(shiftpoint h) { ld xy = hypot_d(2, h.h); ld phi = atan2(h[2], h[3]) + h.shift; if(xy < 1e-6) return point31(0.,0.,phi); bool flipped = phi > 0; if(flipped) phi = -phi; ld SV = stretch::not_squared(); ld K = -1; ld alpha = flipped ? atan2(h[1], h[0]) - h.shift : atan2(h[1], -h[0]) + h.shift; hyperpoint res; ld fiber_barrier = atan(1/SV); ld flip_barrier = atan( 1 / tanh(asinh(xy)) / SV); // test the side of the flip barrier int part = -1; if(1) { ld kk = flip_barrier; ld x_part = cos(kk); ld z_part = sin(kk); ld rparam = x_part / z_part / SV; ld r = atanh(rparam); ld cr = cosh(r); ld sr = sinh(r); // sinh(r) = xy // r = tanh(sinh(xy)) ld z = cr * (K - 1/SV/SV); ld k = 90._deg; ld a = k / K; ld zw = xy * cr / sr; ld u = z * a; ld phi1 = atan2(zw, cos(k)) - u; if(phi < phi1) part = 2; } if(part == -1) { ld zw = xy; ld u = xy * (K - 1/SV/SV) / K; ld phi1 = atan2(zw, 1) - u; if(phi > phi1) part = 0; else part = 1; } if(part == 2) { ld min_k = fiber_barrier; ld max_k = flip_barrier; for(int it=0; it<30; it++) { ld kk = (min_k + max_k) / 2; ld x_part = cos(kk); ld z_part = sin(kk); ld rparam = x_part / z_part / SV; assert(rparam <= 1); ld r = atanh(rparam); ld cr = cosh(r); ld sr = sinh(r); ld z = cr * (K - 1/SV/SV); ld k = M_PI - asin(xy / sr); ld a = k / K; ld len = a * hypot(sr, cr/SV); ld zw = xy * cr / sr; ld u = z * a; ld phi1 = atan2(zw, cos(k)) - u; if(phi < phi1) max_k = kk; else min_k = kk; ld r_angle = alpha + u; res = point3(cos(r_angle) * x_part * len, -sin(r_angle) * x_part * len, z_part * len); } } if(part == 0) { ld min_k = 0; ld max_k = fiber_barrier; for(int it=0; it<30; it++) { ld kk = (min_k + max_k) / 2; ld x_part = cos(kk); ld z_part = sin(kk); ld rparam = x_part / z_part / SV; ld cr = 1 / sqrt(rparam*rparam - 1); ld sr = rparam * cr; ld z = cr * (K - 1/SV/SV); ld k = asinh(xy / sr); ld a = k / K; ld len = a * hypot(sr, cr/SV); ld zw = xy * cr / sr; ld u = z * a; ld phi1 = atan2(zw, cosh(k)) - u; if(phi > phi1) max_k = kk; else min_k = kk; ld r_angle = alpha + u; res = point3(cos(r_angle) * x_part * len, -sin(r_angle) * x_part * len, z_part * len); } } if(part == 1) { ld min_k = fiber_barrier; ld max_k = flip_barrier; for(int it=0; it<30; it++) { ld kk = (min_k + max_k) / 2; ld x_part = cos(kk); ld z_part = sin(kk); ld rparam = x_part / z_part / SV; ld r = atanh(rparam); ld cr = cosh(r); ld sr = sinh(r); ld z = cr * (K - 1/SV/SV); ld k = asin(xy / sr); ld a = k / K; ld len = a * hypot(sr, cr/SV); ld zw = xy * cr / sr; ld u = z * a; ld phi1 = atan2(zw, cos(k)) - u; if(isnan(phi1)) max_k = kk; else if(phi > phi1) max_k = kk; else min_k = kk; ld r_angle = alpha + u; res = point3(cos(r_angle) * x_part * len, -sin(r_angle) * x_part * len, z_part * len); } } if(flipped) res[0] *= -1, res[2] *= -1; return res; } #if ISWEB #define ITERATE " for(int it=0; it<50; it++) { if(it >= uIterations) break; " #else #define ITERATE " for(int it=0; it 0.;" "if(flipped) phi = -phi;" "float alpha = flipped ? atan2(h[1], h[0]) - uIndexSL : atan2(h[1], -h[0]) + uIndexSL;" "float fiber_barrier = atan(1./uSV);" "float flip_barrier = atan(1. / tanh(asinh(xy)) / uSV);" "int part = 0;" "if(true) {" "float x_part = cos(flip_barrier);" "float z_part = sin(flip_barrier);" "float rparam = x_part / z_part / uSV;" "float r = atanh(rparam);" "float cr = cosh(r);" "float sr = sinh(r);" "float z = cr * (-1.-1./uSV/uSV);" "float k = PI/2.;" "float a = -k;" "float zw = xy * cr / sr;" "float u = z * a;" "float phi1 = atan2(zw, cos(k)) - u;" "if(phi < phi1) part = 2;" "}\n" "if(part == 0) {" "float zw = xy;" "float u = xy * (1. + 1./uSV/uSV);" "float phi1 = atan2(zw, 1.) - u;" "if(phi > phi1) part = 0; else part = 1;" "}\n" "if(part == 2) {" "float min_k = fiber_barrier;" "float max_k = flip_barrier;" ITERATE "float kk = (min_k + max_k) / 2.;" "float x_part = cos(kk);" "float z_part = sin(kk);" "float rparam = x_part / z_part / uSV;" "float r = atanh(rparam);" "float cr = cosh(r);" "float sr = sinh(r);" "float z = cr * (-1. - 1./uSV/uSV);" "float k = PI - asin(xy / sr);" "float a = -k;" "float len = a * length(vec2(sr, cr/uSV));" "float zw = xy * cr / sr;" "float u = z * a;" "float phi1 = atan2(zw, cos(k)) - u;" "if(phi < phi1) max_k = kk; else min_k = kk;" "float r_angle = alpha + u;" "res = vec4(cos(r_angle) * x_part * len, -sin(r_angle) * x_part * len, z_part * len, 1);" "}" "}\n" "if(part == 0) {" "float min_k = 0.;" "float max_k = fiber_barrier;" ITERATE "float kk = (min_k + max_k) / 2.;" "float x_part = cos(kk);" "float z_part = sin(kk);" "float rparam = x_part / z_part / uSV;" "float cr = 1. / sqrt(rparam*rparam - 1.);" "float sr = rparam * cr;" "float z = cr * (-1. - 1./uSV/uSV);" "float k = asinh(xy / sr);" "float a = -k;" "float len = a * length(vec2(sr, cr/uSV));" "float zw = xy * cr / sr;" "float u = z * a;" "float phi1 = atan2(zw, cosh(k)) - u;" "if(phi > phi1) max_k = kk; else min_k = kk;" "float r_angle = alpha + u;" "res = vec4(cos(r_angle) * x_part * len, -sin(r_angle) * x_part * len, z_part * len, 1);" "}" "}\n" "if(part == 1) {" "float min_k = fiber_barrier;" "float max_k = flip_barrier;" ITERATE "float kk = (min_k + max_k) / 2.;" "float x_part = cos(kk);" "float z_part = sin(kk);" "float rparam = x_part / z_part / uSV;" "float r = atanh(rparam);" "float cr = cosh(r);" "float sr = sinh(r);" "float z = cr * (-1. - 1./uSV/uSV);" "float k = asin(xy / sr);" "float a = -k;" "float len = a * length(vec2(sr, cr/uSV));" "float zw = xy * cr / sr;" "float u = z * a;" "float phi1 = atan2(zw, cos(k)) - u;" "if(phi > phi1) max_k = kk;" "else min_k = kk;" "float r_angle = alpha + u;" "res = vec4(cos(r_angle) * x_part * len, -sin(r_angle) * x_part * len, z_part * len, 1);" "}" "}\n" "if(flipped) res[0] *= -1., res[2] *= -1.;" "return res;" "}"; EX } EX namespace twist { #if MAXMDIM >= 4 EX transmatrix uxpush(ld x) { if(sl2) return xpush(x); if(nil) return xpush(x*2); return cspin(1, 3, x) * cspin(0, 2, x); } EX transmatrix uypush(ld y) { if(sl2) return ypush(y); if(nil) return ypush(y*2); return cspin(0, 3, -y) * cspin(1, 2, y); } EX transmatrix uzpush(ld z) { if(sl2) return zpush(z); if(nil) return zpush(z) * spin(-2*z); return cspin(3, 2, -z) * cspin(0, 1, -z); } EX transmatrix lift_matrix(const transmatrix& T) { hyperpoint d; ld alpha, beta, distance; transmatrix Spin; hybrid::in_underlying_geometry([&] { hyperpoint h = tC0(T); Spin = iso_inverse(gpushxto0(h) * T); d = hr::inverse_exp(shiftless(h)); alpha = atan2(Spin[0][1], Spin[0][0]); distance = hdist0(h); beta = atan2(h[1], h[0]); }); for(int k=0; k<3; k++) Spin[3][k] = Spin[k][3] = 0; Spin[3][3] = 1; return spin(beta) * uxpush(distance/2) * spin(-beta+alpha); } EX std::map saved_matrices_ray; struct hrmap_twisted : hybrid::hrmap_hybrid { std::map saved_matrices; transmatrix adj(cell *c1, int i) override { if(i == c1->type-2) return uzpush(-cgi.plevel) * spin(-2*cgi.plevel); if(i == c1->type-1) return uzpush(+cgi.plevel) * spin(+2*cgi.plevel); cell *c2 = c1->cmove(i); #if CAP_ARCM int id1 = hybrid::underlying == gArchimedean ? arcm::id_of(c1->master) + 20 * arcm::parent_index_of(c1->master) : shvid(c1); int id2 = hybrid::underlying == gArchimedean ? arcm::id_of(c2->master) + 20 * arcm::parent_index_of(c2->master) : shvid(c2); #else int id1 = shvid(c1); int id2 = shvid(c2); #endif int j = c1->c.spin(i); int id = id1 + (id2 << 10) + (i << 20) + (j << 26); auto &M = saved_matrices[id]; if(M[3][3]) return M; cell *cw = where[c1].first; return M = lift_matrix(PIU(currentmap->adj(cw, i))); } transmatrix relative_matrixc(cell *c2, cell *c1, const hyperpoint& hint) override { if(c1 == c2) return Id; if(gmatrix0.count(c2) && gmatrix0.count(c1)) return inverse_shift(gmatrix0[c1], gmatrix0[c2]); for(int i=0; itype; i++) if(c1->move(i) == c2) return adj(c1, i); return Id; // not implemented yet } transmatrix ray_iadj(cell *c1, int i) override { if(i == c1->type-1) return uzpush(-cgi.plevel) * spin(-2*cgi.plevel); if(i == c1->type-2) return uzpush(+cgi.plevel) * spin(+2*cgi.plevel); cell *c2 = c1->cmove(i); #if CAP_ARCM int id1 = hybrid::underlying == gArchimedean ? arcm::id_of(c1->master) + 20 * arcm::parent_index_of(c1->master) : shvid(c1); int id2 = hybrid::underlying == gArchimedean ? arcm::id_of(c2->master) + 20 * arcm::parent_index_of(c2->master) : shvid(c2); #else int id1 = shvid(c1); int id2 = shvid(c2); #endif int j = c1->c.spin(i); int id = id1 + (id2 << 10) + (i << 20) + (j << 26); auto &M = saved_matrices_ray[id]; if(M[3][3]) return M; cell *cw = hybrid::get_where(c1).first; transmatrix T; hybrid::in_underlying_geometry([&] { hyperpoint h0 = get_corner_position(cw, i); hyperpoint h1 = get_corner_position(cw, (i+1)); T = to_other_side(h0, h1); }); return M = lift_matrix(T); } }; /** reinterpret the given point of rotspace as a rotation matrix in the underlying geometry (note: this is the inverse) * note: you should already be in underlying geometry */ EX transmatrix qtm(hyperpoint h) { ld& x = h[0]; ld& y = h[1]; ld& z = h[2]; ld& w = h[3]; ld xx = x*x; ld yy = y*y; ld zz = z*z; ld ww = w*w; ld xy = x*y; ld xz = x*z; ld xw = x*w; ld yz = y*z; ld yw = y*w; ld zw = z*w; transmatrix M; M[0][0] = +xx - yy - zz + ww; M[1][1] = -xx + yy - zz + ww; M[2][2] = -xx - yy + zz + ww; M[0][1] = -2 * (xy + zw); M[1][0] = -2 * (xy - zw); M[0][2] = 2 * (xz - yw); M[2][0] = 2 * (xz + yw); M[1][2] = -2 * (yz + xw); M[2][1] = -2 * (yz - xw); if(hyperbolic) { swap(M[0][2], M[1][2]); swap(M[2][0], M[2][1]); M[1][2] *= -1; M[2][0] *= -1; M[2][2] = xx + yy + zz + ww; return M; } return M; } /** @brief exponential function for both slr and Berger sphere */ EX hyperpoint formula_exp(hyperpoint vel) { bool sp = sphere; ld K = sp ? 1 : -1; if(vel[0] == 0 && vel[1] == 0 && vel[2] == 0) return C0; ld len = hypot_d(3, vel); if(vel[2] < 0) len = -len; ld z_part = vel[2]/len; ld x_part = sqrt(max(1 - z_part * z_part, 0)); ld SV = stretch::not_squared(); ld rparam = x_part / z_part / SV; ld beta = atan2(vel[1], vel[0]); if(len < 0) beta += M_PI; if(sl2 && rparam > 1) { ld cr = 1 / sqrt(rparam*rparam - 1); // *i ld sr = rparam * cr; // *i if(z_part == 0) cr = 0, sr = 1; ld z = cr * (K - 1/SV/SV); // *i ld a = len / hypot(sr, cr/SV); // /i ld k = K*a; // /i ld u = z*a; ld xy = sr * sinh(k); ld zw = cr * sinh(k); return hyperpoint(K*xy * cos(u+beta), K*xy * sin(u+beta), zw * cos(u) - cosh(k) * sin(u), zw * sin(u) + cosh(k)*cos(u)); } else { ld r = atan_auto(rparam); ld cr = cos_auto(r); ld sr = sin_auto(r); ld z = cr * (K - 1/SV/SV); ld a = len / hypot(sr, cr/SV); ld k = K*a; ld u = z*a; ld xy = sr * sin(k); ld zw = cr * sin(k); return hyperpoint(K*xy * cos(u+beta), K*xy * sin(u+beta), zw * cos(u) - cos(k) * sin(u), zw * sin(u) + cos(k)*cos(u)); } } #endif EX } /** stretched rotation space (S3 or SLR) */ EX namespace stretch { EX ld factor; EX bool mstretch; EX transmatrix m_itoa, m_atoi, m_pd; EX ld ms_christoffel[3][3][3]; EX transmatrix mstretch_matrix; EX void enable_mstretch() { mstretch = true; for(int a=0; a<4; a++) for(int b=0; b<4; b++) if(a==3 || b==3) m_atoi[a][b] = (a==b); m_itoa = inverse3(m_atoi); for(int a=0; a<4; a++) for(int b=0; b<4; b++) if(a==3 || b==3) m_itoa[a][b] = m_atoi[a][b] = 0; for(int j=0; j<3; j++) for(int k=0; k<3; k++) { m_pd[j][k] = 0; for(int i=0; i<3; i++) m_pd[j][k] += m_atoi[i][j] * m_atoi[i][k]; } auto& c = ms_christoffel; ld A00 = m_pd[0][0]; ld A11 = m_pd[1][1]; ld A22 = m_pd[2][2]; ld A01 = m_pd[0][1] + m_pd[1][0]; ld A02 = m_pd[0][2] + m_pd[2][0]; ld A12 = m_pd[2][1] + m_pd[1][2]; ld B01 = A01 * A01; ld B02 = A02 * A02; ld B12 = A12 * A12; ld B00 = A00 * A00; ld B11 = A11 * A11; ld B22 = A22 * A22; ld den = (-4*A00*A11*A22 + A00*B12 + B01*A22 - A01*A02*A12 + B02*A11); if(sl2) { c[ 0 ][ 0 ][ 0 ] = (A01*(A01*A12 - 2*A02*A11) - A02*(2*A01*A22 - A02*A12))/den; c[ 0 ][ 0 ][ 1 ] = (A00*A01*A12 - 2*A00*A02*A11 - A01*A11*A12 + A01*A12*A22 + 2*A02*B11 + 2*A02*A11*A22 - A02*B12)/-den ; c[ 0 ][ 0 ][ 2 ] = (-A01*(4*A11*A22 - B12)/2 + A12*(A01*A12 - 2*A02*A11)/2 - (A00 + A22)*(2*A01*A22 - A02*A12))/den; c[ 0 ][ 1 ][ 0 ] = (A00*A01*A12 - 2*A00*A02*A11 - A01*A11*A12 + A01*A12*A22 + 2*A02*B11 + 2*A02*A11*A22 - A02*B12)/-den ; c[ 0 ][ 1 ][ 1 ] = -(A01*(A01*A12 - 2*A02*A11) + A12*(4*A11*A22 - B12))/den; c[ 0 ][ 1 ][ 2 ] = (B01*A22 - B02*A11 + 4*B11*A22 - A11*B12 + 4*A11*B22 - B12*A22)/-den ; c[ 0 ][ 2 ][ 0 ] = (-A01*(4*A11*A22 - B12)/2 + A12*(A01*A12 - 2*A02*A11)/2 - (A00 + A22)*(2*A01*A22 - A02*A12))/den; c[ 0 ][ 2 ][ 1 ] = (B01*A22 - B02*A11 + 4*B11*A22 - A11*B12 + 4*A11*B22 - B12*A22)/-den ; c[ 0 ][ 2 ][ 2 ] = -(A02*(2*A01*A22 - A02*A12) + A12*(4*A11*A22 - B12))/den; c[ 1 ][ 0 ][ 0 ] = (-A01*(2*A00*A12 - A01*A02) + A02*(4*A00*A22 - B02))/den; c[ 1 ][ 0 ][ 1 ] = (A02*(2*A01*A22 - A02*A12)/2 + A12*(4*A00*A22 - B02)/2 + (A00 - A11)*(2*A00*A12 - A01*A02))/den; c[ 1 ][ 0 ][ 2 ] = (-4*B00*A22 + A00*B02 + A00*B12 - 4*A00*B22 - B01*A22 + B02*A22)/-den ; c[ 1 ][ 1 ][ 0 ] = (A02*(2*A01*A22 - A02*A12)/2 + A12*(4*A00*A22 - B02)/2 + (A00 - A11)*(2*A00*A12 - A01*A02))/den; c[ 1 ][ 1 ][ 1 ] = (A01*(2*A00*A12 - A01*A02) + A12*(2*A01*A22 - A02*A12))/den; c[ 1 ][ 1 ][ 2 ] = (A01*(4*A00*A22 - B02)/2 + A02*(2*A00*A12 - A01*A02)/2 + (A11 + A22)*(2*A01*A22 - A02*A12))/den; c[ 1 ][ 2 ][ 0 ] = (-4*B00*A22 + A00*B02 + A00*B12 - 4*A00*B22 - B01*A22 + B02*A22)/-den ; c[ 1 ][ 2 ][ 1 ] = (A01*(4*A00*A22 - B02)/2 + A02*(2*A00*A12 - A01*A02)/2 + (A11 + A22)*(2*A01*A22 - A02*A12))/den; c[ 1 ][ 2 ][ 2 ] = (A02*(4*A00*A22 - B02) + A12*(2*A01*A22 - A02*A12))/den; c[ 2 ][ 0 ][ 0 ] = (A01*(4*A00*A11 - B01) - A02*(2*A00*A12 - A01*A02))/den; c[ 2 ][ 0 ][ 1 ] = (4*B00*A11 - A00*B01 - 4*A00*B11 + A00*B12 + B01*A11 - B02*A11)/-den ; c[ 2 ][ 0 ][ 2 ] = (-A01*(A01*A12 - 2*A02*A11)/2 + A12*(4*A00*A11 - B01)/2 - (A00 + A22)*(2*A00*A12 - A01*A02))/den; c[ 2 ][ 1 ][ 0 ] = (4*B00*A11 - A00*B01 - 4*A00*B11 + A00*B12 + B01*A11 - B02*A11)/-den ; c[ 2 ][ 1 ][ 1 ] = -(A01*(4*A00*A11 - B01) + A12*(A01*A12 - 2*A02*A11))/den; c[ 2 ][ 1 ][ 2 ] = (A00*A01*A12 + 2*A00*A02*A11 - B01*A02 + A01*A11*A12 + A01*A12*A22 - 2*A02*B11 - 2*A02*A11*A22)/-den ; c[ 2 ][ 2 ][ 0 ] = (-A01*(A01*A12 - 2*A02*A11)/2 + A12*(4*A00*A11 - B01)/2 - (A00 + A22)*(2*A00*A12 - A01*A02))/den; c[ 2 ][ 2 ][ 1 ] = (A00*A01*A12 + 2*A00*A02*A11 - B01*A02 + A01*A11*A12 + A01*A12*A22 - 2*A02*B11 - 2*A02*A11*A22)/-den ; c[ 2 ][ 2 ][ 2 ] = -(A02*(2*A00*A12 - A01*A02) + A12*(A01*A12 - 2*A02*A11))/den; } else { c[ 0 ][ 0 ][ 0 ] = (A01*(A01*A12 - 2*A02*A11) + A02*(2*A01*A22 - A02*A12))/den ; c[ 0 ][ 0 ][ 1 ] = (A02*(4*A11*A22 - B12)/2 + A12*(2*A01*A22 - A02*A12)/2 - (A00 - A11)*(A01*A12 - 2*A02*A11))/den ; c[ 0 ][ 0 ][ 2 ] = (-A01*(4*A11*A22 - B12)/2 + A12*(A01*A12 - 2*A02*A11)/2 - (A00 - A22)*(2*A01*A22 - A02*A12))/den ; c[ 0 ][ 1 ][ 0 ] = (A02*(4*A11*A22 - B12)/2 + A12*(2*A01*A22 - A02*A12)/2 - (A00 - A11)*(A01*A12 - 2*A02*A11))/den ; c[ 0 ][ 1 ][ 1 ] = (-A01*(A01*A12 - 2*A02*A11) + A12*(4*A11*A22 - B12))/den ; c[ 0 ][ 1 ][ 2 ] = (B01*A22 - B02*A11 + 4*B11*A22 - A11*B12 - 4*A11*B22 + B12*A22)/(4*A00*A11*A22 - A00*B12 - B01*A22 + A01*A02*A12 - B02*A11) ; c[ 0 ][ 2 ][ 0 ] = (-A01*(4*A11*A22 - B12)/2 + A12*(A01*A12 - 2*A02*A11)/2 - (A00 - A22)*(2*A01*A22 - A02*A12))/den ; c[ 0 ][ 2 ][ 1 ] = (B01*A22 - B02*A11 + 4*B11*A22 - A11*B12 - 4*A11*B22 + B12*A22)/(4*A00*A11*A22 - A00*B12 - B01*A22 + A01*A02*A12 - B02*A11) ; c[ 0 ][ 2 ][ 2 ] = -(A02*(2*A01*A22 - A02*A12) + A12*(4*A11*A22 - B12))/den ; c[ 1 ][ 0 ][ 0 ] = -(A01*(2*A00*A12 - A01*A02) + A02*(4*A00*A22 - B02))/den ; c[ 1 ][ 0 ][ 1 ] = (-A02*(2*A01*A22 - A02*A12)/2 - A12*(4*A00*A22 - B02)/2 + (A00 - A11)*(2*A00*A12 - A01*A02))/den ; c[ 1 ][ 0 ][ 2 ] = (-4*B00*A22 + A00*B02 + A00*B12 + 4*A00*B22 - B01*A22 - B02*A22)/(4*A00*A11*A22 - A00*B12 - B01*A22 + A01*A02*A12 - B02*A11) ; c[ 1 ][ 1 ][ 0 ] = (-A02*(2*A01*A22 - A02*A12)/2 - A12*(4*A00*A22 - B02)/2 + (A00 - A11)*(2*A00*A12 - A01*A02))/den ; c[ 1 ][ 1 ][ 1 ] = (A01*(2*A00*A12 - A01*A02) - A12*(2*A01*A22 - A02*A12))/den ; c[ 1 ][ 1 ][ 2 ] = (A01*(4*A00*A22 - B02)/2 + A02*(2*A00*A12 - A01*A02)/2 + (A11 - A22)*(2*A01*A22 - A02*A12))/den ; c[ 1 ][ 2 ][ 0 ] = (-4*B00*A22 + A00*B02 + A00*B12 + 4*A00*B22 - B01*A22 - B02*A22)/(4*A00*A11*A22 - A00*B12 - B01*A22 + A01*A02*A12 - B02*A11) ; c[ 1 ][ 2 ][ 1 ] = (A01*(4*A00*A22 - B02)/2 + A02*(2*A00*A12 - A01*A02)/2 + (A11 - A22)*(2*A01*A22 - A02*A12))/den ; c[ 1 ][ 2 ][ 2 ] = (A02*(4*A00*A22 - B02) + A12*(2*A01*A22 - A02*A12))/den ; c[ 2 ][ 0 ][ 0 ] = (A01*(4*A00*A11 - B01) + A02*(2*A00*A12 - A01*A02))/den ; c[ 2 ][ 0 ][ 1 ] = (4*B00*A11 - A00*B01 - 4*A00*B11 - A00*B12 + B01*A11 + B02*A11)/(4*A00*A11*A22 - A00*B12 - B01*A22 + A01*A02*A12 - B02*A11) ; c[ 2 ][ 0 ][ 2 ] = (-A01*(A01*A12 - 2*A02*A11)/2 + A12*(4*A00*A11 - B01)/2 - (A00 - A22)*(2*A00*A12 - A01*A02))/den ; c[ 2 ][ 1 ][ 0 ] = (4*B00*A11 - A00*B01 - 4*A00*B11 - A00*B12 + B01*A11 + B02*A11)/(4*A00*A11*A22 - A00*B12 - B01*A22 + A01*A02*A12 - B02*A11) ; c[ 2 ][ 1 ][ 1 ] = (-A01*(4*A00*A11 - B01) + A12*(A01*A12 - 2*A02*A11))/den ; c[ 2 ][ 1 ][ 2 ] = (A00*A01*A12 + 2*A00*A02*A11 - B01*A02 + A01*A11*A12 - A01*A12*A22 - 2*A02*B11 + 2*A02*A11*A22)/(4*A00*A11*A22 - A00*B12 - B01*A22 + A01*A02*A12 - B02*A11) ; c[ 2 ][ 2 ][ 0 ] = (-A01*(A01*A12 - 2*A02*A11)/2 + A12*(4*A00*A11 - B01)/2 - (A00 - A22)*(2*A00*A12 - A01*A02))/den ; c[ 2 ][ 2 ][ 1 ] = (A00*A01*A12 + 2*A00*A02*A11 - B01*A02 + A01*A11*A12 - A01*A12*A22 - 2*A02*B11 + 2*A02*A11*A22)/(4*A00*A11*A22 - A00*B12 - B01*A22 + A01*A02*A12 - B02*A11) ; c[ 2 ][ 2 ][ 2 ] = -(A02*(2*A00*A12 - A01*A02) + A12*(A01*A12 - 2*A02*A11))/den ; } for(int i=0; i<3; i++) for(int j=0; j<3; j++) for(int k=0; k<3; k++) if(c[i][j][k]) println(hlog, tie(i,j,k), " : ", c[i][j][k]); println(hlog, "ATOI = ", m_atoi); println(hlog, "ITOA = ", m_itoa, " vs ", 1/not_squared()); println(hlog, "PD = ", m_pd, " vs ", factor); ray::reset_raycaster(); } EX bool applicable() { return mtwisted || (cgflags & qSTRETCHABLE); } EX bool in() { return (factor || mstretch) && applicable(); } EX transmatrix translate(hyperpoint h) { if(!sphere) return slr::translate(h); return matrix4( h[3], -h[2], h[1], h[0], h[2], h[3], -h[0], h[1], -h[1], h[0], h[3], h[2], -h[0], -h[1], -h[2], h[3] ); } EX transmatrix itranslate(hyperpoint h) { h[0] = -h[0]; h[1] = -h[1]; h[2] = -h[2]; if(!sphere) return slr::translate(h); return translate(h); } hyperpoint mulz(const hyperpoint at, const hyperpoint velocity, ld zf) { auto vel = itranslate(at) * velocity; vel[2] *= zf; return translate(at) * vel; } EX ld squared() { return abs(1 + factor); } EX ld not_squared() { return sqrt(squared()); } EX hyperpoint isometric_to_actual(const hyperpoint at, const hyperpoint velocity) { if(mstretch) return translate(at) * m_itoa * itranslate(at) * velocity; else return mulz(at, velocity, 1/not_squared()); } EX hyperpoint actual_to_isometric(const hyperpoint at, const hyperpoint velocity) { if(mstretch) return translate(at) * m_atoi * itranslate(at) * velocity; else return mulz(at, velocity, not_squared()); } EX hyperpoint christoffel(const hyperpoint at, const hyperpoint velocity, const hyperpoint transported) { auto vel = itranslate(at) * velocity; auto tra = itranslate(at) * transported; hyperpoint c; if(mstretch) { c = Hypc; for(int i=0; i<3; i++) for(int j=0; j<3; j++) for(int k=0; k<3; k++) c[i] += vel[j] * tra[k] * ms_christoffel[i][j][k]; } else { auto K = factor; c[0] = (sphere ? -K : K+2) * (vel[1] * tra[2] + vel[2] * tra[1]); c[1] = (sphere ? K : -(K+2)) * (vel[0] * tra[2] + vel[2] * tra[0]); c[2] = 0; c[3] = 0; } return translate(at) * c; } EX ld sqnorm(hyperpoint at, hyperpoint h) { if(sphere) return sqhypot_d(4, h); h = itranslate(at) * h; return h[0] * h[0] + h[1] * h[1] + h[2] * h[2]; } EX vector inverse_exp_all(hyperpoint h, int generations) { vector res; ld SV = stretch::not_squared(); if(stretch::factor == 0) { ld d = hypot_d(3, h); if(h[3] >= 1 || h[3] <= -1|| d == 0) return res; ld a = acos(h[3]); res.push_back(point31(h[0] * a / d, h[1] * a / d, h[2] * a / d)); a = a - TAU; res.push_back(point31(h[0] * a / d, h[1] * a / d, h[2] * a / d)); return res; } if(h[0] == 0 && h[1] == 0) { ld a = atan2(h[2], h[3]); for(int it=-generations; it= 1 ? 0 : sqrt(1-rp*rp); return atan2(co * sin(a), cos(a)) - co * (1 - 1/SV/SV) * a; }; for(int shift=-generations; shift ", vmin, " to ", vmax); int cmin = ceil((vmin - seek) / TAU); int cmax = floor((vmax - seek) / TAU); for(int c = cmin; c <= cmax; c++) { ld cseek = seek + c * TAU; for(int it=0; it<40; it++) { ld a = (mmin + mmax) / 2; ld cros = ang(a); if(cros > cseek) mmax = a; else mmin = a; } ld a = (mmin + mmax) / 2; ld r = asin_clamp( xy / sin(a) ); ld z_part = 1; ld x_part = SV * tan(r); ld db = hypot(x_part, z_part); x_part /= db; z_part /= db; ld alpha = atan2(-h[1], h[0]); ld z = cos(r) * (1 - 1/SV/SV); ld u = z * a; ld r_angle = alpha + u; ld len = a * hypot(sin_auto(r), cos_auto(r)/SV); auto answer = point3(cos(r_angle) * x_part * len, -sin(r_angle) * x_part * len, z_part * len); // int id = (shift << 10) + (mi << 9) + (t << 8) + c; /* auto f = formula_exp(answer); ld err = sqhypot_d(4, f - h); println(hlog, "************************* ", answer, ": error = ", err, " id = ", id, " params = ", tie(shift, mi, t, c)); */ res.emplace_back(answer); } } } } return res; } EX } EX namespace nisot { EX hyperpoint christoffel(const hyperpoint at, const hyperpoint velocity, const hyperpoint transported) { if(nil) return nilv::christoffel(at, velocity, transported); #if CAP_SOLV else if(sn::in()) return sn::christoffel(at, velocity, transported); #endif else if(stretch::in() || sl2) return stretch::christoffel(at, velocity, transported); else return point3(0, 0, 0); } EX bool in_table_range(hyperpoint h) { #if CAP_SOLV if(sol) return sn::in_table_range(h); #endif return true; } EX hyperpoint get_acceleration(const hyperpoint& at, const hyperpoint& vel) { return christoffel(at, vel, vel); } EX void geodesic_step(hyperpoint& at, hyperpoint& vel) { /* RK4 method */ auto acc1 = get_acceleration(at, vel); auto acc2 = get_acceleration(at + vel/2, vel + acc1/2); auto acc3 = get_acceleration(at + vel/2 + acc1/4, vel + acc2/2); auto acc4 = get_acceleration(at + vel + acc2/2, vel + acc3); at += vel + (acc1+acc2+acc3)/6; vel += (acc1+2*acc2+2*acc3+acc4)/6; } EX int rk_steps = 20; EX hyperpoint numerical_exp(hyperpoint v) { hyperpoint at = point31(0, 0, 0); v /= rk_steps; v[3] = 0; for(int i=0; i ms; if(stretch) { for(int i=0; i<3; i++) { ms[i] = stretch::sqnorm(at, tPos[i]); tPos[i] = stretch::isometric_to_actual(at, tPos[i]); } ms[3] = stretch::sqnorm(at, vel); if(!ms[3]) return Pos; vel = stretch::isometric_to_actual(at, vel); } for(int i=0; i= 4 if(mhybrid) return new twist::hrmap_twisted; if(nil) return new nilv::hrmap_nil; #endif return NULL; } #if CAP_COMMANDLINE auto config = addHook(hooks_args, 0, [] () { using namespace arg; #if CAP_SOLV if(argis("-solrange")) { shift_arg_formula(sn::solrange_xy); shift_arg_formula(sn::solrange_z); return 0; } #endif if(argis("-slrange")) { shift_arg_formula(slr::range_xy); shift_arg_formula(slr::range_z); return 0; } #if CAP_SOLV else if(argis("-fsol")) { shift(); sn::solt.fname = args(); return 0; } else if(argis("-nihsol")) { shift(); sn::niht.fname = args(); return 0; } #endif else if(argis("-product")) { PHASEFROM(2); set_geometry(gProduct); return 0; } else if(argis("-prodlevel")) { /* specify an exact value for cgi.plevel */ shift(); hybrid::set_plevel(argf()); return 0; } else if(argis("-s2xe")) { PHASEFROM(2); shift(); s2xe::qrings = argi(); return 0; } else if(argis("-twisted-product")) { PHASEFROM(2); set_geometry(gTwistedProduct); return 0; } else if(argis("-rotspace")) { PHASEFROM(2); hybrid::enable_rotspace(); return 0; } else if(argis("-rot_uscale")) { PHASEFROM(2); shift_arg_formula(hybrid::underlying_scale); return 0; } else if(argis("-nilperiod")) { PHASEFROM(2); if(nil) stop_game(); for(int a=0; a<3; a++) { shift(); nilv::nilperiod[a] = argi(); } nilv::set_flags(); return 0; } else if(argis("-nilwidth")) { PHASEFROM(2); shift_arg_formula(nilv::nilwidth); return 0; } else if(argis("-nilsi")) { PHASEFROM(2); stop_game(); shift(); nilv::nil_structure_index = argi(); nilv::set_flags(); start_game(); return 0; } else if(argis("-rk-steps")) { PHASEFROM(2); shift(); rk_steps = argi(); return 0; } else if(argis("-nilv")) { PHASEFROM(2); if(nil) stop_game(); shift(); ginf[gNil].sides = argi(); return 0; } #if CAP_SOLV else if(argis("-catperiod")) { PHASEFROM(2); if(sol) stop_game(); shift(); asonov::period_xy = argi(); shift(); asonov::period_z = argi(); asonov::set_flags(); return 0; } #endif else if(argis("-prodperiod")) { PHASEFROM(2); if(mproduct) stop_game(); shift(); hybrid::csteps = argi(); hybrid::reconfigure(); return 0; } else if(argis("-rot-stretch")) { PHASEFROM(2); shift_arg_formula(stretch::factor, ray::reset_raycaster); return 0; } else if(argis("-mstretch")) { PHASEFROM(2); auto& M = stretch::m_atoi; M = Id; stretch::enable_mstretch(); while(true) { shift(); string s = args(); if(isize(s) == 2 && among(s[0], 'a', 'b','c') && among(s[1], 'a', 'b', 'c')) shift_arg_formula(M[s[0]-'a'][s[1]-'a'], stretch::enable_mstretch); else break; } // shift_arg_formula(stretch::yfactor, ray::reset_raycaster); return 0; } else if(argis("-mstretch1")) { PHASEFROM(2); auto& M = stretch::m_atoi; M = Id; M[2][2] = stretch::not_squared(); stretch::enable_mstretch(); // shift_arg_formula(stretch::yfactor, ray::reset_raycaster); return 0; } else if(argis("-prodturn")) { PHASEFROM(2); if(mproduct) stop_game(); shift(); product::cspin = argi(); shift(); product::cmirror = argi(); return 0; } else if(argis("-nil-model")) { shift(); nilv::model_used = argf(); return 0; } return 1; }); #endif } }