// Hyperbolic Rogue -- advanced geometry // Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details /** \file geometry2.cpp * \brief Matrices to transform between coordinates of various cells, coordinates of cell corners, etc. */ namespace hr { transmatrix &ggmatrix(cell *c); void fixelliptic(transmatrix& at) { if(elliptic && at[LDIM][LDIM] < 0) { for(int i=0; imaster].base.spin; return get_inverse ? irr::cells[id].rpusher * spin(-alpha-master_to_c7_angle()): spin(alpha + master_to_c7_angle()) * irr::cells[id].pusher; } #endif #if CAP_GP else if(GOLDBERG) { if(c == c->master->c7) { return spin((get_inverse?-1:1) * master_to_c7_angle()); } else { auto li = gp::get_local_info(c); transmatrix T = spin(master_to_c7_angle()) * cgi.gpdata->Tf[li.last_dir][li.relative.first&31][li.relative.second&31][gp::fixg6(li.total_dir)]; if(get_inverse) T = inverse(T); return T; } } #endif else if(BITRUNCATED && !euclid) { for(int d=0; dmaster->c7->move(d) == c) return (get_inverse?cgi.invhexmove:cgi.hexmove)[d]; return Id; } else if(WDIM == 3 || euclid) return Id; else return pispin * Id; } EX transmatrix calc_relative_matrix(cell *c2, cell *c1, int direction_hint) { return calc_relative_matrix(c2, c1, ddspin(c1, direction_hint) * xpush0(1e-2)); } EX transmatrix calc_relative_matrix(cell *c2, cell *c1, const hyperpoint& point_hint) { return currentmap->relative_matrix(c2, c1, point_hint); } // target, source, direction from source to target #if CAP_GP namespace gp { extern gp::local_info draw_li; } #endif transmatrix hrmap_standard::relative_matrix(cell *c2, cell *c1, const hyperpoint& point_hint) { heptagon *h1 = c1->master; transmatrix gm = master_relative(c1, true); heptagon *h2 = c2->master; transmatrix where = master_relative(c2); // always add to last! //bool hsol = false; //transmatrix sol; set visited; map>> hbdist; int steps = 0; while(h1 != h2) { steps++; if(steps > 10000) { println(hlog, "not found"); return Id; } if(bounded) { transmatrix T; ld bestdist = 1e9; for(int d=0; dmove(d)) { int sp = h2->c.spin(d); transmatrix S = cgi.heptmove[sp] * spin(2*M_PI*d/S7); if(h2->c.mirror(d)) S = cgi.heptmove[sp] * Mirror * spin(2*M_PI*d/S7); if(h2->move(d) == h1) { transmatrix T1 = gm * S * where; auto curdist = hdist(tC0(T1), point_hint); if(curdist < bestdist) T = T1, bestdist = curdist; } if(geometry != gMinimal) for(int e=0; emove(d)->move(e) == h1) { int sp2 = h2->move(d)->c.spin(e); transmatrix T1 = gm * cgi.heptmove[sp2] * spin(2*M_PI*e/S7) * S * where; auto curdist = hdist(tC0(T1), point_hint); if(curdist < bestdist) T = T1, bestdist = curdist; } } if(bestdist < 1e8) return T; } for(int d=0; dmove(d) == h1) { int sp = h2->c.spin(d); return gm * cgi.heptmove[sp] * spin(2*M_PI*d/S7) * where; } if(among(geometry, gFieldQuotient, gBring, gMacbeath)) { int bestdist = 1000000, bestd = 0; for(int d=0; dcmove(d)->c7, c1); if(dist < bestdist) bestdist = dist, bestd = d; } int sp = h2->c.spin(bestd); where = cgi.heptmove[sp] * spin(2*M_PI*bestd/S7) * where; h2 = h2->move(bestd); } #if CAP_CRYSTAL else if(cryst) { for(int d3=0; d3cmove(d3); if(visited.count(h3)) continue; visited.insert(h3); int sp3 = h2->c.spin(d3); transmatrix where3 = cgi.heptmove[sp3] * spin(2*M_PI*d3/S7) * where; ld dist = crystal::space_distance(h3->c7, c1); hbdist[dist].emplace_back(h3, where3); } auto &bestv = hbdist.begin()->second; tie(h2, where) = bestv.back(); bestv.pop_back(); if(bestv.empty()) hbdist.erase(hbdist.begin()); } #endif else if(h1->distance < h2->distance) { int sp = h2->c.spin(0); h2 = h2->move(0); where = cgi.heptmove[sp] * where; } else { int sp = h1->c.spin(0); h1 = h1->move(0); gm = gm * cgi.invheptmove[sp]; } } return gm * where; } EX transmatrix &ggmatrix(cell *c) { transmatrix& t = gmatrix[c]; if(t[LDIM][LDIM] == 0) { if(euwrap && centerover.at && masterless) t = calc_relative_matrix(c, centerover.at, C0); else if(masterless && WDIM == 2) { if(!centerover.at) centerover = cwt; t = View * eumove(cell_to_vec(c) - cellwalker_to_vec(centerover)); } else t = actualV(viewctr, actual_view_transform * View) * calc_relative_matrix(c, viewcenter(), C0); } return t; } EX transmatrix calc_relative_matrix_help(cell *c, heptagon *h1) { transmatrix gm = Id; heptagon *h2 = c->master; transmatrix where = Id; if(0); #if CAP_GP else if(GOLDBERG && c != c->master->c7) { auto li = gp::get_local_info(c); where = cgi.gpdata->Tf[li.last_dir][li.relative.first&31][li.relative.second&31][gmod(li.total_dir, S6)]; } #endif else if(BITRUNCATED) for(int d=0; dc7->move(d) == c) where = cgi.hexmove[d]; // always add to last! while(h1 != h2) { for(int d=0; dmove(d) == h2) printf("(adj) "); if(h1->distance < h2->distance) { int sp = h2->c.spin(0); printf("A%d ", sp); h2 = h2->move(0); where = cgi.heptmove[sp] * where; } else { int sp = h1->c.spin(0); printf("B%d ", sp); h1 = h1->move(0); gm = gm * cgi.invheptmove[sp]; } } println(hlog, "OK"); println(hlog, gm * where); return gm * where; } struct horo_distance { ld a, b; void become(hyperpoint h1) { if(sol) { a = abs(h1[2]); b = hypot_d(2, h1); } #if CAP_BT else if(binarytiling) { b = intval(h1, C0); a = abs(binary::horo_level(h1)); } #endif else if(hybri) a = 0, b = hdist(h1, C0); else a = 0, b = intval(h1, C0); } horo_distance(hyperpoint h) { become(h); } horo_distance(hyperpoint h1, const transmatrix& T) { #if CAP_BT if(binarytiling) become(inverse(T) * h1); else #endif if(sol || hybri) become(inverse(T) * h1); else a = 0, b = intval(h1, tC0(T)); } bool operator < (const horo_distance z) { #if CAP_BT if(binarytiling || sol) { if(a < z.a-1e-6) return true; if(a > z.a+1e-6) return false; } #endif return b < z.b - 1e-4; } }; template void virtualRebase_cell(cell*& base, T& at, const U& check) { horo_distance currz(check(at)); T best_at = at; while(true) { cell *newbase = NULL; forCellCM(c2, base) { transmatrix V2 = calc_relative_matrix(base, c2, C0); T cand_at = V2 * at; horo_distance newz(check(cand_at)); if(newz < currz) { currz = newz; best_at = cand_at; newbase = c2; } } if(!newbase) break; base = newbase; at = best_at; } } template void virtualRebase(cell*& base, T& at, bool tohex, const U& check) { if(prod) { auto w = hybrid::get_where(base); auto d = product_decompose(check(at)).first; at = mscale(at, -d); hybrid::in_underlying_map([&] { virtualRebase(w.first, at, tohex, check); }); if(d > cgi.plevel / 2) { w.second++; d -= cgi.plevel; } if(d < -cgi.plevel / 2) { w.second--; d += cgi.plevel; } at = mscale(at, +d); base = hybrid::get_at(w.first, w.second); return; } if(sl2) { virtualRebase_cell(base, at, check); return; } if((euclid || sphere) && WDIM == 2) { again: if(euwrap) for(int i=0; i<6; i++) { // fix cylinder and square grid auto newat = eumovedir(3+i) * at; if(hdist0(check(newat)) < hdist0(check(at))) { at = newat; base = createMov(base, i); goto again; } } else forCellCM(c2, base) { auto newat = inverse(ggmatrix(c2)) * ggmatrix(base) * at; if(hypot(check(newat)[0], check(newat)[1]) < hypot(check(at)[0], check(at)[1])) { at = newat; base = c2; goto again; } } fixelliptic(at); return; } at = master_relative(base) * at; base = base->master->c7; while(true) { horo_distance currz(check(at)); heptagon *h = base->master; cell *newbase = NULL; transmatrix bestV; if(WDIM == 2 && !binarytiling && !penrose) for(int d=0; dc7; } } if(newbase) { base = newbase; at = bestV * at; } else { if(tohex && BITRUNCATED) for(int d=0; dc.spin(d)*2*M_PI/S6) * cgi.invhexmove[d]; horo_distance newz(check(V2 * at)); if(newz < currz) { currz = newz; bestV = V2; newbase = c; } } if(newbase) { base = newbase; at = bestV * at; } else at = master_relative(base, true) * at; if(binarytiling || (tohex && (GOLDBERG || IRREGULAR)) || WDIM == 3 || penrose) virtualRebase_cell(base, at, check); break; } } } EX void virtualRebase(cell*& base, transmatrix& at, bool tohex) { virtualRebase(base, at, tohex, tC0); } EX void virtualRebase(cell*& base, hyperpoint& h, bool tohex) { // we perform fixing in check, so that it works with larger range virtualRebase(base, h, tohex, [] (const hyperpoint& h) { if(hyperbolic && GDIM == 2) return hpxy(h[0], h[1]); if(hyperbolic && GDIM == 3) return hpxy3(h[0], h[1], h[2]); return h; }); } // works only in geometries similar to the standard one, and only on heptagons EX void virtualRebaseSimple(heptagon*& base, transmatrix& at) { while(true) { double currz = at[LDIM][LDIM]; heptagon *h = base; heptagon *newbase = NULL; transmatrix bestV {}; for(int d=0; dtype == 8 && (i&1)) return cgi.crossf * sqrt(2); return cgi.crossf; } if(NONSTDVAR || archimedean || WDIM == 3 || binarytiling || penrose) return hdist0(tC0(calc_relative_matrix(c->move(i), c, i))); return !BITRUNCATED ? cgi.tessf : (c->type == 6 && (i&1)) ? cgi.hexhexdist : cgi.crossf; } EX transmatrix cellrelmatrix(cell *c, int i) { if(NONSTDVAR || archimedean || penrose) return calc_relative_matrix(c->move(i), c, i); double d = cellgfxdist(c, i); transmatrix T = ddspin(c, i) * xpush(d); if(c->c.mirror(i)) T = T * Mirror; T = T * iddspin(c->move(i), c->c.spin(i), M_PI); return T; } EX double randd() { return (rand() + .5) / (RAND_MAX + 1.); } EX hyperpoint randomPointIn(int t) { if(NONSTDVAR || archimedean || penrose) { // Let these geometries be less confusing. // Also easier to implement ;) return xspinpush0(2 * M_PI * randd(), asinh(randd() / 20)); } while(true) { hyperpoint h = xspinpush0(2*M_PI*(randd()-.5)/t, asinh(randd())); double d = PURE ? cgi.tessf : t == 6 ? cgi.hexhexdist : cgi.crossf; if(hdist0(h) < hdist0(xpush(-d) * h)) return spin(2*M_PI/t * (rand() % t)) * h; } } EX hyperpoint get_corner_position(cell *c, int cid, ld cf IS(3)) { #if CAP_GP if(GOLDBERG) return gp::get_corner_position(c, cid, cf); #endif #if CAP_IRR if(IRREGULAR) { auto& vs = irr::cells[irr::cellindex[c]]; return mid_at_actual(vs.vertices[cid], 3/cf); } #endif #if CAP_BT if(penrose) return kite::get_corner(c, cid, cf); if(binarytiling) { if(WDIM == 3) { println(hlog, "get_corner_position called"); return C0; } return mid_at_actual(binary::get_horopoint(binary::get_corner_horo_coordinates(c, cid)), 3/cf); } #endif #if CAP_ARCM if(archimedean) { auto &ac = arcm::current; if(PURE) { if(arcm::id_of(c->master) >= ac.N*2) return C0; auto& t = ac.get_triangle(c->master, cid-1); return xspinpush0(-t.first, t.second * 3 / cf * (ac.real_faces == 0 ? 0.999 : 1)); } if(BITRUNCATED) { auto& t0 = ac.get_triangle(c->master, cid-1); auto& t1 = ac.get_triangle(c->master, cid); hyperpoint h0 = xspinpush0(-t0.first, t0.second * 3 / cf * (ac.real_faces == 0 ? 0.999 : 1)); hyperpoint h1 = xspinpush0(-t1.first, t1.second * 3 / cf * (ac.real_faces == 0 ? 0.999 : 1)); return mid3(C0, h0, h1); } if(DUAL) { auto& t0 = ac.get_triangle(c->master, 2*cid-1); return xspinpush0(-t0.first, t0.second * 3 / cf * (ac.real_faces == 0 ? 0.999 : 1)); } } #endif if(PURE) { return ddspin(c,cid,M_PI/S7) * xpush0(cgi.hcrossf * 3 / cf); } if(BITRUNCATED) { if(!ishept(c)) return ddspin(c,cid,M_PI/S6) * xpush0(cgi.hexvdist * 3 / cf); else return ddspin(c,cid,M_PI/S7) * xpush0(cgi.rhexf * 3 / cf); } return C0; } EX bool approx_nearcorner = false; EX hyperpoint nearcorner(cell *c, int i) { if(GOLDBERG) { cellwalker cw(c, i); cw += wstep; transmatrix cwm = calc_relative_matrix(cw.at, c, i); if(elliptic && cwm[2][2] < 0) cwm = centralsym * cwm; return cwm * C0; } #if CAP_IRR if(IRREGULAR) { auto& vs = irr::cells[irr::cellindex[c]]; hyperpoint nc = vs.jpoints[vs.neid[i]]; return mid_at(C0, nc, .94); } #endif #if CAP_ARCM if(archimedean) { if(PURE) { auto &ac = arcm::current; auto& t = ac.get_triangle(c->master, i-1); int id = arcm::id_of(c->master); int id1 = ac.get_adj(ac.get_adj(c->master, i-1), -2).first; return xspinpush0(-t.first - M_PI / c->type, ac.inradius[id/2] + ac.inradius[id1/2] + (ac.real_faces == 0 ? 2 * M_PI / (ac.N == 2 ? 2.1 : ac.N) : 0)); } if(BITRUNCATED) { auto &ac = arcm::current; auto& t = ac.get_triangle(c->master, i); return xspinpush0(-t.first, t.second); } if(DUAL) { auto &ac = arcm::current; auto& t = ac.get_triangle(c->master, i * 2); return xspinpush0(-t.first, t.second); } } #endif #if CAP_BT if(geometry == gBinary4) { ld yx = log(2) / 2; ld yy = yx; hyperpoint neis[5]; neis[0] = binary::get_horopoint(2*yy, -0.5); neis[1] = binary::get_horopoint(2*yy, +0.5); neis[2] = binary::get_horopoint(0, 1); neis[3] = binary::get_horopoint(-2*yy, c->master->zebraval ? -0.25 : +0.25); neis[4] = binary::get_horopoint(0, -1); return neis[i]; } if(penrose) { if(approx_nearcorner) return kite::get_corner(c, i, 3) + kite::get_corner(c, i+1, 3) - C0; else return calc_relative_matrix(c->cmove(i), c, C0) * C0; } if(binarytiling) { if(WDIM == 3) { println(hlog, "nearcorner called"); return Hypc; } ld yx = log(2) / 2; ld yy = yx; // ld xx = 1 / sqrt(2)/2; hyperpoint neis[7]; neis[0] = binary::get_horopoint(0, 1); neis[1] = binary::get_horopoint(yy*2, 1); neis[2] = binary::get_horopoint(yy*2, 0); neis[3] = binary::get_horopoint(yy*2, -1); neis[4] = binary::get_horopoint(0, -1); if(c->type == 7) neis[5] = binary::get_horopoint(-yy*2, -.5), neis[6] = binary::get_horopoint(-yy*2, +.5); else neis[5] = binary::get_horopoint(-yy*2, 0); return neis[i]; } #endif double d = cellgfxdist(c, i); return ddspin(c, i) * xpush0(d); } EX hyperpoint farcorner(cell *c, int i, int which) { #if CAP_GP if(GOLDBERG) { cellwalker cw(c, i); int hint = cw.spin; cw += wstep; transmatrix cwm = calc_relative_matrix(cw.at, c, hint); if(elliptic && cwm[2][2] < 0) cwm = centralsym * cwm; // hyperpoint nfar = cwm*C0; auto li1 = gp::get_local_info(cw.at); if(which == 0) return cwm * get_corner_position(li1, (cw+2).spin); if(which == 1) return cwm * get_corner_position(li1, (cw-1).spin); } #endif #if CAP_IRR if(IRREGULAR) { auto& vs = irr::cells[irr::cellindex[c]]; int neid = vs.neid[i]; int spin = vs.spin[i]; auto &vs2 = irr::cells[neid]; int cor2 = isize(vs2.vertices); transmatrix rel = vs.rpusher * vs.relmatrices[vs2.owner] * vs2.pusher; if(which == 0) return rel * vs2.vertices[(spin+2)%cor2]; if(which == 1) return rel * vs2.vertices[(spin+cor2-1)%cor2]; } #endif #if CAP_BT if(binarytiling || penrose) return nearcorner(c, (i+which) % c->type); // lazy #endif #if CAP_ARCM if(archimedean) { if(PURE) { auto &ac = arcm::current; auto& t = ac.get_triangle(c->master, i-1); int id = arcm::id_of(c->master); auto id1 = ac.get_adj(ac.get_adj(c->master, i-1), -2).first; int n1 = isize(ac.adjacent[id1]); return spin(-t.first - M_PI / c->type) * xpush(ac.inradius[id/2] + ac.inradius[id1/2]) * xspinpush0(M_PI + M_PI/n1*(which?3:-3), ac.circumradius[id1/2]); } if(BITRUNCATED || DUAL) { int mul = DUALMUL; auto &ac = arcm::current; auto adj = ac.get_adj(c->master, i * mul); heptagon h; cell cx; cx.master = &h; arcm::id_of(&h) = adj.first; arcm::parent_index_of(&h) = adj.second; auto& t1 = arcm::current.get_triangle(c->master, i); auto& t2 = arcm::current.get_triangle(adj); return spin(-t1.first) * xpush(t1.second) * spin(M_PI + t2.first) * get_corner_position(&cx, which ? -mul : 2*mul); } } #endif return cellrelmatrix(c, i) * get_corner_position(c->move(i), (cellwalker(c, i) + wstep + (which?-1:2)).spin); } EX hyperpoint midcorner(cell *c, int i, ld v) { auto hcor = farcorner(c, i, 0); auto tcor = get_corner_position(c, i, 3); return mid_at(tcor, hcor, v); } EX hyperpoint get_warp_corner(cell *c, int cid) { // midcorner(c, cid, .5) but sometimes easier versions exist #if CAP_GP if(GOLDBERG) return gp::get_corner_position(c, cid, 2); #endif #if CAP_IRR || CAP_ARCM if(IRREGULAR || archimedean) return midcorner(c, cid, .5); #endif return ddspin(c,cid,M_PI/S7) * xpush0(cgi.tessf/2); } vector hrmap::get_vertices(cell* c) { vector res; for(int i=0; itype; i++) res.push_back(get_corner_position(c, i, 3)); return res; } }