/** * @file mingw.mutex.h * @brief std::mutex et al implementation for MinGW ** (c) 2013-2016 by Mega Limited, Auckland, New Zealand * @author Alexander Vassilev * * @copyright Simplified (2-clause) BSD License. * You should have received a copy of the license along with this * program. * * This code is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * @note * This file may become part of the mingw-w64 runtime package. If/when this happens, * the appropriate license will be added, i.e. this code will become dual-licensed, * and the current BSD 2-clause license will stay. */ #ifndef WIN32STDMUTEX_H #define WIN32STDMUTEX_H #if !defined(__cplusplus) || (__cplusplus < 201103L) #error A C++11 compiler is required! #endif // Recursion checks on non-recursive locks have some performance penalty, and // the C++ standard does not mandate them. The user might want to explicitly // enable or disable such checks. If the user has no preference, enable such // checks in debug builds, but not in release builds. #ifdef STDMUTEX_RECURSION_CHECKS #elif defined(NDEBUG) #define STDMUTEX_RECURSION_CHECKS 0 #else #define STDMUTEX_RECURSION_CHECKS 1 #endif #include <chrono> #include <system_error> #include <atomic> #include <mutex> //need for call_once() #if STDMUTEX_RECURSION_CHECKS || !defined(NDEBUG) #include <cstdio> #endif #include <sdkddkver.h> // Detect Windows version. #if (defined(__MINGW32__) && !defined(__MINGW64_VERSION_MAJOR)) #pragma message "The Windows API that MinGW-w32 provides is not fully compatible\ with Microsoft's API. We'll try to work around this, but we can make no\ guarantees. This problem does not exist in MinGW-w64." #include <windows.h> // No further granularity can be expected. #else #if STDMUTEX_RECURSION_CHECKS #include <processthreadsapi.h> // For GetCurrentThreadId #endif #include <synchapi.h> // For InitializeCriticalSection, etc. #include <errhandlingapi.h> // For GetLastError #include <handleapi.h> #endif // Need for the implementation of invoke #include "mingw.invoke.h" #if !defined(_WIN32_WINNT) || (_WIN32_WINNT < 0x0501) #error To use the MinGW-std-threads library, you will need to define the macro _WIN32_WINNT to be 0x0501 (Windows XP) or higher. #endif namespace mingw_stdthread { // The _NonRecursive class has mechanisms that do not play nice with direct // manipulation of the native handle. This forward declaration is part of // a friend class declaration. #if STDMUTEX_RECURSION_CHECKS namespace vista { class condition_variable; } #endif // To make this namespace equivalent to the thread-related subset of std, // pull in the classes and class templates supplied by std but not by this // implementation. using std::lock_guard; using std::unique_lock; using std::adopt_lock_t; using std::defer_lock_t; using std::try_to_lock_t; using std::adopt_lock; using std::defer_lock; using std::try_to_lock; class recursive_mutex { CRITICAL_SECTION mHandle; public: typedef LPCRITICAL_SECTION native_handle_type; native_handle_type native_handle() {return &mHandle;} recursive_mutex() noexcept : mHandle() { InitializeCriticalSection(&mHandle); } recursive_mutex (const recursive_mutex&) = delete; recursive_mutex& operator=(const recursive_mutex&) = delete; ~recursive_mutex() noexcept { DeleteCriticalSection(&mHandle); } void lock() { EnterCriticalSection(&mHandle); } void unlock() { LeaveCriticalSection(&mHandle); } bool try_lock() { return (TryEnterCriticalSection(&mHandle)!=0); } }; #if STDMUTEX_RECURSION_CHECKS struct _OwnerThread { // If this is to be read before locking, then the owner-thread variable must // be atomic to prevent a torn read from spuriously causing errors. std::atomic<DWORD> mOwnerThread; constexpr _OwnerThread () noexcept : mOwnerThread(0) {} static void on_deadlock (void) { using namespace std; fprintf(stderr, "FATAL: Recursive locking of non-recursive mutex\ detected. Throwing system exception\n"); fflush(stderr); throw system_error(make_error_code(errc::resource_deadlock_would_occur)); } DWORD checkOwnerBeforeLock() const { DWORD self = GetCurrentThreadId(); if (mOwnerThread.load(std::memory_order_relaxed) == self) on_deadlock(); return self; } void setOwnerAfterLock(DWORD id) { mOwnerThread.store(id, std::memory_order_relaxed); } void checkSetOwnerBeforeUnlock() { DWORD self = GetCurrentThreadId(); if (mOwnerThread.load(std::memory_order_relaxed) != self) on_deadlock(); mOwnerThread.store(0, std::memory_order_relaxed); } }; #endif // Though the Slim Reader-Writer (SRW) locks used here are not complete until // Windows 7, implementing partial functionality in Vista will simplify the // interaction with condition variables. #if defined(_WIN32) && (WINVER >= _WIN32_WINNT_VISTA) namespace windows7 { class mutex { SRWLOCK mHandle; // Track locking thread for error checking. #if STDMUTEX_RECURSION_CHECKS friend class vista::condition_variable; _OwnerThread mOwnerThread {}; #endif public: typedef PSRWLOCK native_handle_type; #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wzero-as-null-pointer-constant" constexpr mutex () noexcept : mHandle(SRWLOCK_INIT) { } #pragma GCC diagnostic pop mutex (const mutex&) = delete; mutex & operator= (const mutex&) = delete; void lock (void) { // Note: Undefined behavior if called recursively. #if STDMUTEX_RECURSION_CHECKS DWORD self = mOwnerThread.checkOwnerBeforeLock(); #endif AcquireSRWLockExclusive(&mHandle); #if STDMUTEX_RECURSION_CHECKS mOwnerThread.setOwnerAfterLock(self); #endif } void unlock (void) { #if STDMUTEX_RECURSION_CHECKS mOwnerThread.checkSetOwnerBeforeUnlock(); #endif ReleaseSRWLockExclusive(&mHandle); } // TryAcquireSRW functions are a Windows 7 feature. #if (WINVER >= _WIN32_WINNT_WIN7) bool try_lock (void) { #if STDMUTEX_RECURSION_CHECKS DWORD self = mOwnerThread.checkOwnerBeforeLock(); #endif BOOL ret = TryAcquireSRWLockExclusive(&mHandle); #if STDMUTEX_RECURSION_CHECKS if (ret) mOwnerThread.setOwnerAfterLock(self); #endif return ret; } #endif native_handle_type native_handle (void) { return &mHandle; } }; } // Namespace windows7 #endif // Compiling for Vista namespace xp { class mutex { CRITICAL_SECTION mHandle; std::atomic_uchar mState; // Track locking thread for error checking. #if STDMUTEX_RECURSION_CHECKS friend class vista::condition_variable; _OwnerThread mOwnerThread {}; #endif public: typedef PCRITICAL_SECTION native_handle_type; constexpr mutex () noexcept : mHandle(), mState(2) { } mutex (const mutex&) = delete; mutex & operator= (const mutex&) = delete; ~mutex() noexcept { // Undefined behavior if the mutex is held (locked) by any thread. // Undefined behavior if a thread terminates while holding ownership of the // mutex. DeleteCriticalSection(&mHandle); } void lock (void) { unsigned char state = mState.load(std::memory_order_acquire); while (state) { if ((state == 2) && mState.compare_exchange_weak(state, 1, std::memory_order_acquire)) { InitializeCriticalSection(&mHandle); mState.store(0, std::memory_order_release); break; } if (state == 1) { Sleep(0); state = mState.load(std::memory_order_acquire); } } #if STDMUTEX_RECURSION_CHECKS DWORD self = mOwnerThread.checkOwnerBeforeLock(); #endif EnterCriticalSection(&mHandle); #if STDMUTEX_RECURSION_CHECKS mOwnerThread.setOwnerAfterLock(self); #endif } void unlock (void) { #if STDMUTEX_RECURSION_CHECKS mOwnerThread.checkSetOwnerBeforeUnlock(); #endif LeaveCriticalSection(&mHandle); } bool try_lock (void) { unsigned char state = mState.load(std::memory_order_acquire); if ((state == 2) && mState.compare_exchange_strong(state, 1, std::memory_order_acquire)) { InitializeCriticalSection(&mHandle); mState.store(0, std::memory_order_release); } if (state == 1) return false; #if STDMUTEX_RECURSION_CHECKS DWORD self = mOwnerThread.checkOwnerBeforeLock(); #endif BOOL ret = TryEnterCriticalSection(&mHandle); #if STDMUTEX_RECURSION_CHECKS if (ret) mOwnerThread.setOwnerAfterLock(self); #endif return ret; } native_handle_type native_handle (void) { return &mHandle; } }; } // Namespace "xp" #if (WINVER >= _WIN32_WINNT_WIN7) using windows7::mutex; #else using xp::mutex; #endif class recursive_timed_mutex { static constexpr DWORD kWaitAbandoned = 0x00000080l; static constexpr DWORD kWaitObject0 = 0x00000000l; static constexpr DWORD kInfinite = 0xffffffffl; inline bool try_lock_internal (DWORD ms) noexcept { DWORD ret = WaitForSingleObject(mHandle, ms); #ifndef NDEBUG if (ret == kWaitAbandoned) { using namespace std; fprintf(stderr, "FATAL: Thread terminated while holding a mutex."); terminate(); } #endif return (ret == kWaitObject0) || (ret == kWaitAbandoned); } protected: HANDLE mHandle; // Track locking thread for error checking of non-recursive timed_mutex. For // standard compliance, this must be defined in same class and at the same // access-control level as every other variable in the timed_mutex. #if STDMUTEX_RECURSION_CHECKS friend class vista::condition_variable; _OwnerThread mOwnerThread {}; #endif public: typedef HANDLE native_handle_type; native_handle_type native_handle() const {return mHandle;} recursive_timed_mutex(const recursive_timed_mutex&) = delete; recursive_timed_mutex& operator=(const recursive_timed_mutex&) = delete; recursive_timed_mutex(): mHandle(CreateMutex(NULL, FALSE, NULL)) {} ~recursive_timed_mutex() { CloseHandle(mHandle); } void lock() { DWORD ret = WaitForSingleObject(mHandle, kInfinite); // If (ret == WAIT_ABANDONED), then the thread that held ownership was // terminated. Behavior is undefined, but Windows will pass ownership to this // thread. #ifndef NDEBUG if (ret == kWaitAbandoned) { using namespace std; fprintf(stderr, "FATAL: Thread terminated while holding a mutex."); terminate(); } #endif if ((ret != kWaitObject0) && (ret != kWaitAbandoned)) { throw std::system_error(GetLastError(), std::system_category()); } } void unlock() { if (!ReleaseMutex(mHandle)) throw std::system_error(GetLastError(), std::system_category()); } bool try_lock() { return try_lock_internal(0); } template <class Rep, class Period> bool try_lock_for(const std::chrono::duration<Rep,Period>& dur) { using namespace std::chrono; auto timeout = duration_cast<milliseconds>(dur).count(); while (timeout > 0) { constexpr auto kMaxStep = static_cast<decltype(timeout)>(kInfinite-1); auto step = (timeout < kMaxStep) ? timeout : kMaxStep; if (try_lock_internal(static_cast<DWORD>(step))) return true; timeout -= step; } return false; } template <class Clock, class Duration> bool try_lock_until(const std::chrono::time_point<Clock,Duration>& timeout_time) { return try_lock_for(timeout_time - Clock::now()); } }; // Override if, and only if, it is necessary for error-checking. #if STDMUTEX_RECURSION_CHECKS class timed_mutex: recursive_timed_mutex { public: timed_mutex(const timed_mutex&) = delete; timed_mutex& operator=(const timed_mutex&) = delete; void lock() { DWORD self = mOwnerThread.checkOwnerBeforeLock(); recursive_timed_mutex::lock(); mOwnerThread.setOwnerAfterLock(self); } void unlock() { mOwnerThread.checkSetOwnerBeforeUnlock(); recursive_timed_mutex::unlock(); } template <class Rep, class Period> bool try_lock_for(const std::chrono::duration<Rep,Period>& dur) { DWORD self = mOwnerThread.checkOwnerBeforeLock(); bool ret = recursive_timed_mutex::try_lock_for(dur); if (ret) mOwnerThread.setOwnerAfterLock(self); return ret; } template <class Clock, class Duration> bool try_lock_until(const std::chrono::time_point<Clock,Duration>& timeout_time) { return try_lock_for(timeout_time - Clock::now()); } bool try_lock () { return try_lock_for(std::chrono::milliseconds(0)); } }; #else typedef recursive_timed_mutex timed_mutex; #endif class once_flag { // When available, the SRW-based mutexes should be faster than the // CriticalSection-based mutexes. Only try_lock will be unavailable in Vista, // and try_lock is not used by once_flag. #if (_WIN32_WINNT == _WIN32_WINNT_VISTA) windows7::mutex mMutex; #else mutex mMutex; #endif std::atomic_bool mHasRun; once_flag(const once_flag&) = delete; once_flag& operator=(const once_flag&) = delete; template<class Callable, class... Args> friend void call_once(once_flag& once, Callable&& f, Args&&... args); public: constexpr once_flag() noexcept: mMutex(), mHasRun(false) {} }; template<class Callable, class... Args> void call_once(once_flag& flag, Callable&& func, Args&&... args) { if (flag.mHasRun.load(std::memory_order_acquire)) return; lock_guard<decltype(flag.mMutex)> lock(flag.mMutex); if (flag.mHasRun.load(std::memory_order_acquire)) return; detail::invoke(std::forward<Callable>(func),std::forward<Args>(args)...); flag.mHasRun.store(true, std::memory_order_release); } } // Namespace mingw_stdthread // Push objects into std, but only if they are not already there. namespace std { // Because of quirks of the compiler, the common "using namespace std;" // directive would flatten the namespaces and introduce ambiguity where there // was none. Direct specification (std::), however, would be unaffected. // Take the safe option, and include only in the presence of MinGW's win32 // implementation. #if defined(__MINGW32__ ) && !defined(_GLIBCXX_HAS_GTHREADS) using mingw_stdthread::recursive_mutex; using mingw_stdthread::mutex; using mingw_stdthread::recursive_timed_mutex; using mingw_stdthread::timed_mutex; using mingw_stdthread::once_flag; using mingw_stdthread::call_once; #elif !defined(MINGW_STDTHREAD_REDUNDANCY_WARNING) // Skip repetition #define MINGW_STDTHREAD_REDUNDANCY_WARNING #pragma message "This version of MinGW seems to include a win32 port of\ pthreads, and probably already has C++11 std threading classes implemented,\ based on pthreads. These classes, found in namespace std, are not overridden\ by the mingw-std-thread library. If you would still like to use this\ implementation (as it is more lightweight), use the classes provided in\ namespace mingw_stdthread." #endif } #endif // WIN32STDMUTEX_H