// Hyperbolic Rogue -- cells // Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details /** \file cell.cpp * \brief General cells and maps * * Start with locations.cpp */ #include "hyper.h" namespace hr { #if HDR struct hrmap { virtual heptagon *getOrigin() { return NULL; } virtual cell *gamestart() { return getOrigin()->c7; } virtual ~hrmap() { }; virtual vector& allcells(); virtual void verify() { } virtual void link_alt(const cellwalker& hs) { } virtual void generateAlts(heptagon *h, int levs = IRREGULAR ? 1 : S3 >= OINF ? 1 : S3-3, bool link_cdata = true); heptagon *may_create_step(heptagon *h, int direction) { if(h->move(direction)) return h->move(direction); return create_step(h, direction); } virtual heptagon *create_step(heptagon *h, int direction) { printf("create_step called unexpectedly\n"); exit(1); return NULL; } virtual struct transmatrix relative_matrix(heptagon *h2, heptagon *h1) { printf("relative_matrix called unexpectedly\n"); return Id; } virtual struct transmatrix relative_matrix(cell *c2, cell *c1, const struct hyperpoint& point_hint) { return relative_matrix(c2->master, c1->master); } virtual struct transmatrix adj(cell *c, int i); virtual struct transmatrix iadj(cell *c, int i) { return adj(c->cmove(i), c->c.spin(i)); } virtual void draw() { printf("undrawable\n"); } virtual vector get_vertices(cell*); }; /** hrmaps which are based on regular non-Euclidean 2D tilings, possibly quotient */ struct hrmap_standard : hrmap { void draw() override; transmatrix relative_matrix(cell *c2, cell *c1, const hyperpoint& point_hint) override; heptagon *create_step(heptagon *h, int direction) override; }; void clearfrom(heptagon*); void verifycells(heptagon*); struct hrmap_hyperbolic : hrmap_standard { heptagon *origin; eVariation mvar; hrmap_hyperbolic(); hrmap_hyperbolic(heptagon *origin); heptagon *getOrigin() override { return origin; } ~hrmap_hyperbolic() { // verifycells(origin); // printf("Deleting hyperbolic map: %p\n", this); dynamicval ph(variation, mvar); clearfrom(origin); } void verify() override { verifycells(origin); } }; #endif vector& hrmap::allcells() { static vector default_allcells; if(bounded) { celllister cl(gamestart(), 1000000, 1000000, NULL); default_allcells = cl.lst; return default_allcells; } if(isize(dcal) <= 1) { extern cellwalker cwt; celllister cl(cwt.at, 1, 1000, NULL); default_allcells = cl.lst; return default_allcells; } return dcal; } EX int dirdiff(int dd, int t) { dd %= t; if(dd<0) dd += t; if(t-dd < dd) dd = t-dd; return dd; } EX int cellcount = 0; EX cell *newCell(int type, heptagon *master) { cell *c = tailored_alloc (type); c->type = type; c->master = master; initcell(c); return c; } // -- hrmap --- EX hrmap *currentmap; EX vector allmaps; EX hrmap *newAltMap(heptagon *o) { return new hrmap_hyperbolic(o); } // --- hyperbolic geometry --- hrmap_hyperbolic::hrmap_hyperbolic(heptagon *o) { origin = o; } hrmap_hyperbolic::hrmap_hyperbolic() { // printf("Creating hyperbolic map: %p\n", this); int odegree = geometry == gBinaryTiling ? 6 : S7; origin = tailored_alloc (odegree); heptagon& h = *origin; h.s = hsOrigin; h.emeraldval = a46 ? 0 : 98; h.zebraval = 40; h.fiftyval = 0; h.fieldval = 0; h.rval0 = h.rval1 = 0; h.cdata = NULL; h.alt = NULL; h.distance = 0; mvar = variation; if(0); #if CAP_BT else if(binarytiling) { #if DEBUG_BINARY_TILING binary::xcode.clear(); binary::rxcode.clear(); binary::xcode[&h] = (1 << 16); binary::rxcode[1<<16] = &h; #endif h.zebraval = 0, h.emeraldval = 0, h.c7 = newCell(odegree, origin); } #endif #if CAP_IRR else if(IRREGULAR) irr::link_start(origin); #endif else h.c7 = newCell(S7, origin); } /** very similar to createMove in heptagon.cpp */ EX cell *createMov(cell *c, int d) { if(d<0 || d>= c->type) { printf("ERROR createmov\n"); } if(masterless && !c->move(d)) { int id = decodeId(c->master); for(int dx=-1; dx<=1; dx++) for(int dy=-1; dy<=1; dy++) euclideanAtCreate(id + pair_to_vec(dx, dy)); if(!c->move(d)) { println(hlog, "id = ", id, " vec_to_pair(id) = ", vec_to_pair(id), ": failed to create move ", d, " in Euclidean\n"); exit(0); } } if(c->move(d)) return c->move(d); else if(hybri) hybrid::find_cell_connection(c, d); #if CAP_BT else if(penrose) kite::find_cell_connection(c, d); #endif #if CAP_IRR else if(IRREGULAR) { irr::link_cell(c, d); } #endif #if CAP_GP else if(GOLDBERG) { gp::extend_map(c, d); if(!c->move(d)) { printf("extend failed to create for %p/%d\n", c, d); exit(1); } } #endif #if CAP_ARCM else if(archimedean && PURE) { if(arcm::id_of(c->master) < arcm::current.N * 2) { heptspin hs = heptspin(c->master, d) + wstep + 2 + wstep + 1; c->c.connect(d, hs.at->c7, hs.spin, hs.mirrored); } else c->c.connect(d, c, d, false); } else if(archimedean && DUAL) { if(arcm::id_of(c->master) >= arcm::current.N * 2) { heptagon *h2 = createStep(c->master, d*2); int d1 = c->master->c.spin(d*2); c->c.connect(d, h2->c7, d1/2, false); } else { printf("bad connection\n"); c->c.connect(d,c,d,false); } } #endif else if(archimedean || PURE) { heptagon *h2 = createStep(c->master, d); c->c.connect(d, h2->c7,c->master->c.spin(d), c->master->c.mirror(d)); } else if(c == c->master->c7) { cell *n = newCell(S6, c->master); heptspin hs(c->master, d, false); int alt3 = c->type/2; int alt4 = alt3+1; for(int u=0; uc7->c.connect(hs.spin, n, u, hs.mirrored); if(hs.mirrored && geometry == gSmallElliptic) hs+=-1; hs = hs + alt3 + wstep - alt4; } extern void verifycell(cell *c); verifycell(n); } else { cellwalker cw(c, d, false); cellwalker cw2 = cw - 1 + wstep - 1 + wstep - 1; c->c.connect(d, cw2); } return c->move(d); } EX void eumerge(cell* c1, int s1, cell *c2, int s2, bool mirror) { if(!c2) return; c1->move(s1) = c2; c1->c.setspin(s1, s2, mirror); c2->move(s2) = c1; c2->c.setspin(s2, s1, mirror); } // map, cell*> euclidean; EX hookset *hooks_newmap; /** create a map in the current geometry */ EX void initcells() { DEBB(DF_INIT, ("initcells")); hrmap* res = callhandlers((hrmap*)nullptr, hooks_newmap); if(res) currentmap = res; else if(asonov::in()) currentmap = asonov::new_map(); else if(nonisotropic || hybri) currentmap = nisot::new_map(); #if CAP_CRYSTAL else if(cryst) currentmap = crystal::new_map(); #endif #if CAP_ARCM else if(archimedean) currentmap = arcm::new_map(); #endif #if MAXMDIM >= 4 else if(euclid && WDIM == 3) currentmap = euclid3::new_map(); #endif #if CAP_BT else if(penrose) currentmap = kite::new_map(); #endif else if(fulltorus) currentmap = new_torus_map(); else if(euclid) currentmap = new_euclidean_map(); #if MAXMDIM >= 4 else if(WDIM == 3 && !binarytiling) currentmap = reg3::new_map(); #endif else if(sphere) currentmap = new_spherical_map(); else if(quotient) currentmap = quotientspace::new_map(); #if CAP_BT else if(binarytiling) currentmap = binary::new_map(); #endif else if(S3 >= OINF) currentmap = inforder::new_map(); else currentmap = new hrmap_hyperbolic; allmaps.push_back(currentmap); #if CAP_FIELD windmap::create(); #endif // origin->emeraldval = } EX void clearcell(cell *c) { if(!c) return; DEBB(DF_MEMORY, (format("c%d %p\n", c->type, c))); for(int t=0; ttype; t++) if(c->move(t)) { DEBB(DF_MEMORY, (format("mov %p [%p] S%d\n", c->move(t), c->move(t)->move(c->c.spin(t)), c->c.spin(t)))); if(c->move(t)->move(c->c.spin(t)) != NULL && c->move(t)->move(c->c.spin(t)) != c) { DEBB(DF_MEMORY | DF_ERROR, (format("cell error: type = %d %d -> %d\n", c->type, t, c->c.spin(t)))); exit(1); } c->move(t)->move(c->c.spin(t)) = NULL; } DEBB(DF_MEMORY, (format("DEL %p\n", c))); tailored_delete(c); } EX heptagon deletion_marker; template void subcell(cell *c, const T& t) { if(GOLDBERG) { forCellEx(c2, c) if(c2->move(0) == c && c2 != c2->master->c7) { subcell(c2, t); } } else if(BITRUNCATED && !archimedean && !binarytiling) forCellEx(c2, c) t(c2); t(c); } EX void clearHexes(heptagon *at) { if(at->c7 && at->cdata) { delete at->cdata; at->cdata = NULL; } if(0); #if CAP_IRR else if(IRREGULAR) irr::clear_links(at); #endif else if(at->c7) subcell(at->c7, clearcell); } void unlink_cdata(heptagon *h) { if(h->alt && h->c7) { if(h->alt->cdata == (cdata*) h) h->alt->cdata = NULL; } } EX void clear_heptagon(heptagon *at) { clearHexes(at); tailored_delete(at); } EX void clearfrom(heptagon *at) { if(!at) return; queue q; unlink_cdata(at); q.push(at); at->alt = &deletion_marker; //int maxq = 0; while(!q.empty()) { at = q.front(); // if(q.size() > maxq) maxq = q.size(); q.pop(); DEBB(DF_MEMORY, ("from %p", at)); if(!at->c7) { heptagon *h = (heptagon*) at->cdata; if(h) { if(h->alt != at) { DEBB(DF_MEMORY | DF_ERROR, ("alt error :: h->alt = ", h->alt)); } cell *c = h->c7; subcell(c, destroycellcontents); h->alt = NULL; at->cdata = NULL; } } int edges = at->degree(); if(binarytiling && WDIM == 2) edges = at->c7->type; for(int i=0; imove(i)) { if(at->move(i)->alt != &deletion_marker) q.push(at->move(i)); unlink_cdata(at->move(i)); at->move(i)->alt = &deletion_marker; DEBB(DF_MEMORY, ("!mov ", at->move(i), " [", at->move(i)->move(at->c.spin(i)), "]")); if(at->move(i)->move(at->c.spin(i)) != NULL && at->move(i)->move(at->c.spin(i)) != at) { DEBB(DF_MEMORY | DF_ERROR, ("hept error")); exit(1); } at->move(i)->move(at->c.spin(i)) = NULL; at->move(i) = NULL; } clearHexes(at); tailored_delete(at); } //printf("maxq = %d\n", maxq); } EX void verifycell(cell *c) { int t = c->type; for(int i=0; imove(i); if(c2) { if(!masterless && BITRUNCATED && c == c->master->c7) verifycell(c2); if(c2->move(c->c.spin(i)) && c2->move(c->c.spin(i)) != c) { printf("cell error %p:%d [%d] %p:%d [%d]\n", c, i, c->type, c2, c->c.spin(i), c2->type); exit(1); } } } } EX void verifycells(heptagon *at) { if(GOLDBERG || IRREGULAR || archimedean) return; for(int i=0; itype; i++) if(at->move(i) && at->move(i)->move(at->c.spin(i)) && at->move(i)->move(at->c.spin(i)) != at) { printf("hexmix error %p [%d s=%d] %p %p\n", at, i, at->c.spin(i), at->move(i), at->move(i)->move(at->c.spin(i))); } if(!sphere && !quotient) for(int i=0; imove(i) && at->c.spin(i) == 0 && at->s != hsOrigin) verifycells(at->move(i)); verifycell(at->c7); } EX int eudist(int sx, int sy) { int z0 = abs(sx); int z1 = abs(sy); if(a4 && BITRUNCATED) return (z0 == z1 && z0 > 0) ? z0+1: max(z0, z1); if(a4) return z0 + z1; int z2 = abs(sx+sy); return max(max(z0,z1), z2); } EX int eudist(int vec) { auto p = vec_to_pair(vec); return eudist(p.first, p.second); } EX int compdist(int dx[]) { int mi = dx[0]; for(int u=0; u mi+2) return -1; // { printf("cycle error!\n"); exit(1); } for(int u=0; umaster)); if(nil && !quotient) return DISTANCE_UNKNOWN; if(euwrap && WDIM == 2) return torusconfig::cyldist(decodeId(c->master), 0); if(masterless) return eudist(decodeId(c->master)); if(euclid && (penrose || archimedean)) return celldistance(currentmap->gamestart(), c); if(sphere || binarytiling || WDIM == 3 || cryst || solnih || penrose) return celldistance(currentmap->gamestart(), c); #if CAP_IRR if(IRREGULAR) return irr::celldist(c, false); #endif if(archimedean || ctof(c)) return c->master->distance; #if CAP_GP if(GOLDBERG) return gp::compute_dist(c, celldist); #endif int dx[MAX_S3]; for(int u=0; umaster->distance; return compdist(dx); } #if HDR static const int ALTDIST_BOUNDARY = 99999; static const int ALTDIST_UNKNOWN = 99998; static const int ALTDIST_ERROR = 90000; #endif EX int celldistAlt(cell *c) { if(experimental) return 0; if(hybri) { if(in_s2xe()) return hybrid::get_where(c).second; auto w = hybrid::get_where(c); int d = c->master->alt && c->master->alt->alt ? c->master->alt->alt->fieldval : 0; d = sl2 ? 0 : abs(w.second - d); hybrid::in_underlying_map([&] { d += celldistAlt(w.first); }); return d; } if(masterless) { if(fulltorus) return celldist(c); if(euwrap) return cylinder_alt(c); int x, y; tie(x,y) = vec_to_pair(decodeId(c->master)); return euclidAlt(x, y); } #if CAP_BT if(binarytiling || solnih) return c->master->distance + (specialland == laCamelot && !tactic::on? 30 : 0); #endif if(nil) return c->master->zebraval + abs(c->master->emeraldval) + (specialland == laCamelot && !tactic::on? 30 : 0);; #if CAP_CRYSTAL if(cryst) return crystal::dist_alt(c); #endif if(sphere || quotient) { return celldist(c) - 3; } #if MAXMDIM >= 4 if(euclid && WDIM == 3) return euclid3::dist_alt(c); if(hyperbolic && WDIM == 3) return reg3::altdist(c->master); #endif if(!c->master->alt) return 0; #if CAP_IRR if(IRREGULAR) return irr::celldist(c, true); #endif if(ctof(c)) return c->master->alt->distance; #if CAP_GP if(GOLDBERG) return gp::compute_dist(c, celldistAlt); #endif int dx[MAX_S3]; dx[0] = 0; for(int u=0; umaster->alt == NULL) return ALTDIST_UNKNOWN; for(int u=0; umaster->alt->distance; // return compdist(dx); -> not OK because of boundary conditions int mi = dx[0]; for(int i=1; i mi+2) return ALTDIST_BOUNDARY; // { printf("cycle error!\n"); exit(1); } for(int i=0; i>= 2; i--; i /= 3; if(rval & (16<>= 2; i--; if(rval & (16<>2)&3)+"/"+its((rval>>4)&15); case 2: return "E/"+its((rval>>2)&3)+"/"+its((rval>>4)&2047); case 3: return "P/"+its((rval>>2)&3)+"/"+its((rval>>4)&255); case 4: return "C/"+its(rval&3)+"/"+its((rval>>2)&65535); } return "?"; } EX int randpatternCode(cell *c, int rval) { switch(rval % RPV_MODULO) { case 1: return zebra40(c); case 2: return emeraldval(c); case 3: return fiftyval049(c) + (polara50(c)?50:0) + (polarb50(c)?1000:0); case 4: return towerval(c, celldist) * 6 + celldist(c) % 6; } return 0; } #if HDR #define RANDITER 31 #endif char rpm_memoize[3][256][RANDITER+1]; EX void clearMemoRPM() { for(int a=0; a<3; a++) for(int b=0; b<256; b++) for(int i=0; itype; i++) { if(randpatternMajority(createMov(c,i), ival, iterations-1)) z++; else z--; } if(z!=0) memo = (z>0); else memo = randpattern(c, rval); // printf("%p] rval = %X code = %d iterations = %d result = %d\n", c, rval, code, iterations, memo); return memo; } #define RVAL_MASK 0x10000000 #define DATA_MASK 0x20000000 cdata orig_cdata; EX bool geometry_supports_cdata() { if(hybri) return PIU(geometry_supports_cdata()); return among(geometry, gEuclid, gEuclidSquare, gNormal, gOctagon, g45, g46, g47, gBinaryTiling) || (archimedean && !sphere); } void affect(cdata& d, short rv, signed char signum) { if(rv&1) d.val[0]+=signum; else d.val[0]-=signum; if(rv&2) d.val[1]+=signum; else d.val[1]-=signum; if(rv&4) d.val[2]+=signum; else d.val[2]-=signum; if(rv&8) d.val[3]+=signum; else d.val[3]-=signum; int id = (rv>>4) & 63; if(id < 32) d.bits ^= (1 << id); } void setHeptagonRval(heptagon *h) { if(!(h->rval0 || h->rval1)) { h->rval0 = hrand(0x10000); h->rval1 = hrand(0x10000); } } EX bool dmeq(int a, int b) { return (a&3) == (b&3); } /* kept for compatibility: Racing etc. */ cdata *getHeptagonCdata_legacy(heptagon *h) { if(h->cdata) return h->cdata; if(sphere || quotient) h = currentmap->gamestart()->master; if(h == currentmap->getOrigin()) { h->cdata = new cdata(orig_cdata); for(int& v: h->cdata->val) v = 0; h->cdata->bits = reptilecheat ? (1 << 21) - 1 : 0; if(yendor::on && specialland == laVariant) h->cdata->bits |= (1 << 8) | (1 << 9) | (1 << 12); return h->cdata; } cdata mydata = *getHeptagonCdata_legacy(h->move(0)); for(int di=3; di<5; di++) { heptspin hs(h, di, false); int signum = +1; while(true) { heptspin hstab[15]; hstab[7] = hs; for(int i=8; i<12; i++) { hstab[i] = hstab[i-1]; hstab[i] += ((i&1) ? 4 : 3); hstab[i] += wstep; hstab[i] += ((i&1) ? 3 : 4); } for(int i=6; i>=3; i--) { hstab[i] = hstab[i+1]; hstab[i] += ((i&1) ? 3 : 4); hstab[i] += wstep; hstab[i] += ((i&1) ? 4 : 3); } if(hstab[3].at->distance < hstab[7].at->distance) { hs = hstab[3]; continue; } if(hstab[11].at->distance < hstab[7].at->distance) { hs = hstab[11]; continue; } int jj = 7; for(int k=3; k<12; k++) if(hstab[k].at->distance < hstab[jj].at->distance) jj = k; int ties = 0, tiespos = 0; for(int k=3; k<12; k++) if(hstab[k].at->distance == hstab[jj].at->distance) ties++, tiespos += (k-jj); // printf("ties=%d tiespos=%d jj=%d\n", ties, tiespos, jj); if(ties == 2) jj += tiespos/2; if(jj&1) signum = -1; hs = hstab[jj]; break; } hs = hs + 3 + wstep; setHeptagonRval(hs.at); affect(mydata, hs.spin ? hs.at->rval0 : hs.at->rval1, signum); } return h->cdata = new cdata(mydata); } cdata *getHeptagonCdata(heptagon *h) { if(hybri) { cdata *x; hybrid::in_underlying_map([&] { x = getHeptagonCdata(h); }); return x; } if(geometry == gNormal && BITRUNCATED) return getHeptagonCdata_legacy(h); if(h->cdata) return h->cdata; if(sphere || quotient) h = currentmap->gamestart()->master; bool starting = h->s == hsOrigin; if(binarytiling) { if(binary::mapside(h) == 0) starting = true; for(int i=0; itype; i++) if(binary::mapside(h->cmove(i)) == 0) starting = true; } if(starting) { h->cdata = new cdata(orig_cdata); for(int& v: h->cdata->val) v = 0; h->cdata->bits = reptilecheat ? (1 << 21) - 1 : 0; if(yendor::on && specialland == laVariant) h->cdata->bits |= (1 << 8) | (1 << 9) | (1 << 12); return h->cdata; } int dir = binarytiling ? 5 : 0; cdata mydata = *getHeptagonCdata(h->cmove(dir)); if(S3 >= OINF) { setHeptagonRval(h); affect(mydata, h->rval0, 1); } else if(S3 == 4) { heptspin hs(h, 0); while(dmeq((hs+1).cpeek()->dm4, (hs.at->dm4 - 1))) hs = hs + 1 + wstep + 1; while(dmeq((hs-1).cpeek()->dm4, (hs.at->dm4 - 1))) hs = hs - 1 + wstep - 1; setHeptagonRval(hs.at); affect(mydata, hs.at->rval0, 1); } else for(int di: {0,1}) { heptspin hs(h, dir, false); hs -= di; while(true) { heptspin hs2 = hs + wstep + 1 + wstep - 1; if(dmeq(hs2.at->dm4, hs.at->dm4 + 1)) break; hs = hs2; } while(true) { heptspin hs2 = hs + 1 + wstep - 1 + wstep; if(dmeq(hs2.at->dm4, hs.at->dm4 + 1)) break; hs = hs2; } setHeptagonRval(hs.at); affect(mydata, hs.spin == dir ? hs.at->rval0 : hs.at->rval1, 1); } return h->cdata = new cdata(mydata); } cdata *getEuclidCdata(int h) { if(euwrap) { // fix cylinder? static cdata xx; return &xx; } int x, y; auto& data = archimedean ? arcm::get_cdata() : get_cdata(); // hrmap_euclidean* euc = dynamic_cast (currentmap); if(data.count(h)) return &(data[h]); tie(x,y) = vec_to_pair(h); if(x == 0 && y == 0) { cdata xx; for(int i=0; i<4; i++) xx.val[i] = 0; xx.bits = 0; return &(data[h] = xx); } int ord = 1, bid = 0; while(!((x|y)&ord)) ord <<= 1, bid++; for(int k=0; k<3; k++) { int x1 = x + (k<2 ? ord : 0); int y1 = y - (k>0 ? ord : 0); if((x1&ord) || (y1&ord)) continue; int x2 = x - (k<2 ? ord : 0); int y2 = y + (k>0 ? ord : 0); cdata *d1 = getEuclidCdata(pair_to_vec(x1,y1)); cdata *d2 = getEuclidCdata(pair_to_vec(x2,y2)); cdata xx; double disp = pow(2, bid/2.) * 6; for(int i=0; i<4; i++) { double dv = (d1->val[i] + d2->val[i])/2 + (hrand(1000) - hrand(1000))/1000. * disp; xx.val[i] = floor(dv); if(hrand(1000) / 1000. < dv - floor(dv)) xx.val[i]++; } xx.bits = 0; for(int b=0; b<32; b++) { bool gbit = ((hrand(2)?d1:d2)->bits >> b) & 1; int flipchance = (1< 512) flipchance = 512; if(hrand(1024) < flipchance) gbit = !gbit; if(gbit) xx.bits |= (1<master].second; return pair_to_vec(ld_to_int(T[0][LDIM]), ld_to_int((spin(60*degree) * T)[0][LDIM])); } EX cdata *arcmCdata(cell *c) { heptagon *h2 = arcm::archimedean_gmatrix[c->master].first; dynamicval g(geometry, gNormal); dynamicval cm(currentmap, arcm::current_altmap); return getHeptagonCdata(h2); } EX int getCdata(cell *c, int j) { if(masterless) return getEuclidCdata(decodeId(c->master))->val[j]; else if(archimedean && euclid) return getEuclidCdata(pseudocoords(c))->val[j]; else if(archimedean && hyperbolic) return arcmCdata(c)->val[j]*3; else if(!geometry_supports_cdata()) return 0; else if(ctof(c)) return getHeptagonCdata(c->master)->val[j]*3; else { int jj = 0; auto ar = gp::get_masters(c); for(int k=0; k<3; k++) jj += getHeptagonCdata(ar[k])->val[j]; return jj; } } EX int getBits(cell *c) { if(masterless) return getEuclidCdata(decodeId(c->master))->bits; else if(archimedean && euclid) return getEuclidCdata(pseudocoords(c))->bits; else if(archimedean && (hyperbolic || sl2)) return arcmCdata(c)->bits; else if(!geometry_supports_cdata()) return 0; else if(c == c->master->c7) return getHeptagonCdata(c->master)->bits; else { auto ar = gp::get_masters(c); int b0 = getHeptagonCdata(ar[0])->bits; int b1 = getHeptagonCdata(ar[1])->bits; int b2 = getHeptagonCdata(ar[2])->bits; return (b0 & b1) | (b1 & b2) | (b2 & b0); } } EX cell *heptatdir(cell *c, int d) { if(d&1) { cell *c2 = createMov(c, d); int s = c->c.spin(d); s += 3; s %= 6; return createMov(c2, s); } else return createMov(c, d); } EX int heptdistance(heptagon *h1, heptagon *h2) { // very rough distance int d = 0; #if CAP_CRYSTAL if(cryst) return crystal::space_distance(h1->c7, h2->c7); #endif #if CAP_SOLV if(solnih) return solnihv::approx_distance(h1, h2); #endif while(true) { if(h1 == h2) return d; for(int i=0; imove(i) == h2) return d + 1; int d1 = h1->distance, d2 = h2->distance; if(d1 >= d2) d++, h1 = createStep(h1, binary::updir()); if(d2 > d1) d++, h2 = createStep(h2, binary::updir()); } } EX int heptdistance(cell *c1, cell *c2) { #if CAP_CRYSTAL if(cryst) return crystal::space_distance(c1, c2); #endif if(!hyperbolic || quotient || WDIM == 3) return celldistance(c1, c2); else return heptdistance(c1->master, c2->master); } map, int> saved_distances; set keep_distances_from; set dists_computed; int perma_distances; EX void compute_saved_distances(cell *c1, int max_range, int climit) { celllister cl(c1, max_range, climit, NULL); for(int i=0; i choices; for(auto& p: saved_distances) println(hlog, p); for(auto& p: saved_distances) if(p.first.first == c && p.second == d) choices.push_back(p.first.second); println(hlog, "choices = ", isize(choices)); if(choices.empty()) return NULL; return choices[hrand(isize(choices))]; } EX int celldistance(cell *c1, cell *c2) { if(prod) { auto w1 = hybrid::get_where(c1), w2 = hybrid::get_where(c2); int d; hybrid::in_underlying_map([&] { d = celldistance(w1.first, w2.first) + abs(w1.second - w2.second); }); return d; } if((masterless) && (euclid6 || (euclid4 && PURE))) { if(!euwrap) return eudist(decodeId(c1->master) - decodeId(c2->master)); // fix cylinder else if(euwrap && torusconfig::torus_mode == 0) return get_torus_dist(torusconfig::vec_to_id(decodeId(c1->master)-decodeId(c2->master))); else if(euwrap && !fulltorus) return torusconfig::cyldist(decodeId(c1->master), decodeId(c2->master)); } #if CAP_FIELD if(geometry == gFieldQuotient && !GOLDBERG) return currfp.getdist(fieldpattern::fieldval(c1), fieldpattern::fieldval(c2)); #endif if(bounded) { if(saved_distances.count(make_pair(c1,c2))) return saved_distances[make_pair(c1,c2)]; celllister cl(c1, 100, 100000000, NULL); for(int i=0; i perma_distances + 1000000) erase_saved_distances(); compute_saved_distances(c1, 64, 1000); dists_computed.insert(c1); if(saved_distances.count(make_pair(c1,c2))) return saved_distances[make_pair(c1,c2)]; return DISTANCE_UNKNOWN; } if(S3 >= OINF) return inforder::celldistance(c1, c2); #if CAP_BT && MAXMDIM >= 4 if(binarytiling && WDIM == 3) return binary::celldistance3(c1, c2); #endif #if MAXMDIM >= 4 if(euclid && WDIM == 3) return euclid3::celldistance(c1, c2); if(hyperbolic && WDIM == 3) return reg3::celldistance(c1, c2); #endif return hyperbolic_celldistance(c1, c2); } EX vector build_shortest_path(cell *c1, cell *c2) { #if CAP_CRYSTAL if(cryst) return crystal::build_shortest_path(c1, c2); #endif vector p; if(euclid) { p.push_back(c1); hyperpoint h = tC0(calc_relative_matrix(c2, c1, C0)); cell *x = c1; transmatrix T1 = rspintox(h); int d = celldistance(c1, c2); int steps = d * 10; ld step = hdist0(h) / steps; for(int i=0; i< steps; i++) { T1 = T1 * xpush(step); virtualRebase(x, T1, true); println(hlog, "x = ", x, "p length = ", isize(p), " dist = ", hdist0(tC0(T1)), " dist from end = ", hdist(tC0(T1), tC0(calc_relative_matrix(c2, x, C0)))); while(x != p.back()) { forCellCM(c, p.back()) if(celldistance(x, c) < celldistance(x, p.back())) { p.push_back(c); break; } } } if(isize(p) != d + 1) println(hlog, "warning: path size ", isize(p), " should be ", d+1); } else if(c2 == currentmap->gamestart()) { while(c1 != c2) { p.push_back(c1); forCellCM(c, c1) if(celldist(c) < celldist(c1)) { c1 = c; goto next1; } throw hr_shortest_path_exception(); next1: ; } p.push_back(c1); } else if(c1 == currentmap->gamestart()) { p = build_shortest_path(c2, c1); reverse(p.begin(), p.end()); } else { while(c1 != c2) { p.push_back(c1); forCellCM(c, c1) if(celldistance(c, c2) < celldistance(c1, c2)) { c1 = c; goto next; } throw hr_shortest_path_exception(); next: ; } p.push_back(c1); } return p; } EX void clearCellMemory() { for(int i=0; i