// Hyperbolic Rogue -- cells // Copyright (C) 2011-2018 Zeno Rogue, see 'hyper.cpp' for details // cells the game is played on namespace hr { int fix6(int a) { return (a+MODFIXER)%S6; } int fix7(int a) { return (a+MODFIXER)%S7; } int dirdiff(int dd, int t) { dd %= t; if(dd<0) dd += t; if(t-dd < dd) dd = t-dd; return dd; } int fixdir(int a, cell *c) { a %= c->type; if(a<0) a += c->type; return a; } int cellcount = 0; void initcell(cell *c); // from game.cpp cell *newCell(int type, heptagon *master) { cell *c = new cell; c->type = type; c->master = master; for(int i=0; imove(i) = NULL; initcell(c); return c; } struct cdata { int val[4]; int bits; }; // -- hrmap --- hrmap *currentmap; vector allmaps; // --- auxiliary hyperbolic map for horocycles --- struct hrmap_alternate : hrmap { heptagon *origin; hrmap_alternate(heptagon *o) { origin = o; } ~hrmap_alternate() { clearfrom(origin); } }; hrmap *newAltMap(heptagon *o) { return new hrmap_alternate(o); } // --- hyperbolic geometry --- hrmap_hyperbolic::hrmap_hyperbolic() { // printf("Creating hyperbolic map: %p\n", this); origin = new heptagon; heptagon& h = *origin; h.s = hsOrigin; h.emeraldval = a46 ? 0 : 98; h.zebraval = 40; h.fiftyval = 0; h.fieldval = 0; h.rval0 = h.rval1 = 0; h.cdata = NULL; h.c.clear(); h.alt = NULL; h.distance = 0; isnonbitrunc = nonbitrunc; if(syntetic) synt::initialize(&h); else if(binarytiling) { #if DEBUG_BINARY_TILING binary::xcode.clear(); binary::rxcode.clear(); binary::xcode[&h] = (1 << 16); binary::rxcode[1<<16] = &h; #endif h.zebraval = 0, h.c7 = newCell(6, origin); } else if(irr::on) irr::link_start(origin); else h.c7 = newCell(S7, origin); } // --- spherical geometry --- int spherecells() { if(S7 == 5) return (elliptic?6:12); if(S7 == 4) return (elliptic?3:6); if(S7 == 3) return 4; if(S7 == 2) return (elliptic?1:2); if(S7 == 1) return 1; return 12; } vector siblings; struct hrmap_spherical : hrmap { heptagon *dodecahedron[12]; bool isnonbitrunc; hrmap_spherical() { isnonbitrunc = nonbitrunc; for(int i=0; imove(0) = dodecahedron[i1]; dodecahedron[i]->c.setspin(0, 1, false); dodecahedron[i]->move(1) = dodecahedron[i2]; dodecahedron[i]->c.setspin(1, 0, false); dodecahedron[i]->move(2) = dodecahedron[i1]; dodecahedron[i]->c.setspin(2, 3, true); dodecahedron[i]->move(3) = dodecahedron[i2]; dodecahedron[i]->c.setspin(3, 2, true); } } else for(int i=0; imove(i) = dodecahedron[i+1]; dodecahedron[0]->c.setspin(i, 0, false); dodecahedron[i+1]->move(0) = dodecahedron[0]; dodecahedron[i+1]->c.setspin(0, i, false); dodecahedron[i+1]->move(1) = dodecahedron[(i+S7-1)%S7+1]; dodecahedron[i+1]->c.setspin(1, S7-1, false); dodecahedron[i+1]->move(S7-1) = dodecahedron[(i+1)%S7+1]; dodecahedron[i+1]->c.setspin(S7-1, 1, false); if(S7 == 5 && elliptic) { dodecahedron[i+1]->move(2) = dodecahedron[(i+2)%S7+1]; dodecahedron[i+1]->c.setspin(2, 3, true); dodecahedron[i+1]->move(3) = dodecahedron[(i+3)%S7+1]; dodecahedron[i+1]->c.setspin(3, 2, true); } else if(S7 == 5) { dodecahedron[6]->move(i) = dodecahedron[7+i]; dodecahedron[6]->c.setspin(i, 0, false); dodecahedron[7+i]->move(0) = dodecahedron[6]; dodecahedron[7+i]->c.setspin(0, i, false); dodecahedron[i+7]->move(1) = dodecahedron[(i+4)%5+7]; dodecahedron[i+7]->c.setspin(1, 4, false); dodecahedron[i+7]->move(4) = dodecahedron[(i+1)%5+7]; dodecahedron[i+7]->c.setspin(4, 1, false); dodecahedron[i+1]->move(2) = dodecahedron[7+(10-i)%5]; dodecahedron[i+1]->c.setspin(2, 2, false); dodecahedron[7+(10-i)%5]->move(2) = dodecahedron[1+i]; dodecahedron[7+(10-i)%5]->c.setspin(2, 2, false); dodecahedron[i+1]->move(3) = dodecahedron[7+(9-i)%5]; dodecahedron[i+1]->c.setspin(3, 3, false); dodecahedron[7+(9-i)%5]->move(3) = dodecahedron[i+1]; dodecahedron[7+(9-i)%5]->c.setspin(3, 3, false); } if(S7 == 4) { dodecahedron[5]->move(3-i) = dodecahedron[i+1]; dodecahedron[5]->c.setspin(3-i, 2, false); dodecahedron[i+1]->move(2) = dodecahedron[5]; dodecahedron[i+1]->c.setspin(2, 3-i, false); } } if(irr::on) { irr::link_start(dodecahedron[0]); for(int i=0; i ph(nonbitrunc, isnonbitrunc); for(int i=0; i (currentmap); if(!s) return NULL; return s->dodecahedron[i]; } // --- euclidean geometry --- // NOTE: patterns assume that pair_to_vec(0,1) % 3 == 2! // Thus, pair_to_vec(0,1) must not be e.g. a power of four int pair_to_vec(int x, int y) { return x + (y << 15); } pair vec_to_pair(int vec) { int x = vec & ((1<<15)-1); int y = (vec >> 15); if(x >= (1<<14)) x -= (1<<15), y++; return {x, y}; } namespace torusconfig { // the configuration of the torus topology. // torus cells are indexed [0..qty), // where the cell to the right from i is indexed i+dx, // and the cell to the down-right is numbered i+dy // Changed with command line option: -tpar ,, // Ideally, qty, dx, and dy should have the same "modulo 3" // values as the default -- otherwise the three-color // pattern breaks. Also, they should have no common // prime divisor. int def_qty = 127*3, dx = 1, def_dy = -11*2; int qty = def_qty, dy = def_dy; int sdx = 12, sdy = 12; // new values to change int newqty, newdy, newsdx, newsdy; int torus_cx, torus_cy; vector tmodes = { {"single row (hex)", TF_SINGLE | TF_HEX}, {"single row (squares)", TF_SINGLE | TF_SQUARE}, {"parallelogram (hex)", TF_SIMPLE | TF_HEX}, {"rectangle (squares)", TF_SIMPLE | TF_SQUARE}, {"rectangle (hex)", TF_WEIRD | TF_HEX}, {"Klein bottle (squares)", TF_SIMPLE | TF_KLEIN | TF_SQUARE}, {"Klein bottle (hex)", TF_WEIRD | TF_KLEIN | TF_HEX}, }; eTorusMode torus_mode, newmode; flagtype tmflags() { return tmodes[torus_mode].flags; } int getqty() { if(tmflags() & TF_SINGLE) return qty; else return sdx * sdy; } int getvec(int x, int y) { if(tmflags() & TF_SINGLE) return x * dx + y * dy; else if(tmflags() & TF_SIMPLE) return pair_to_vec(x, y); else return pair_to_vec(-y - 2 * x, 3 * y); } int id_to_vec(int id, bool mirrored = false) { if(tmflags() & TF_SINGLE) return id; else { int dx = id % sdx; int dy = id / sdx; if(mirrored) dy = -dy, dx += sdx; if(tmflags() & TF_SIMPLE) return pair_to_vec(dx, dy); else return pair_to_vec(- 2 * dx - (dy & 1), 3 * dy); } } pair vec_to_id_mirror(int vec) { if(tmflags() & TF_SINGLE) { return {gmod(vec, qty), false}; } else { int x, y; tie(x,y) = vec_to_pair(vec); bool mirror = false; if(tmflags() & TF_KLEIN) { if(tmflags() & TF_WEIRD) { x = gmod(x, 4 * sdx); mirror = x > 0 && x <= 2 * sdx; } else { x = gmod(x, 2 * sdx); mirror = x >= sdx; } if(mirror) y = -y; } if(tmflags() & TF_WEIRD) { y /= 3; x = (x + (y&1)) / -2; } x = gmod(x, sdx), y = gmod(y, sdy); return {y * sdx + x, mirror}; } } int vec_to_id(int vec) { return vec_to_id_mirror(vec).first; } void torus_test() { printf("Testing torus vec_to_pair/pair_to_vec...\n"); for(int x=-10; x<=10; x++) for(int y=-10; y<=10; y++) { auto p = vec_to_pair(pair_to_vec(x, y)); if(p.first != x || p.second != y) printf("Failed for (%d,%d) -> [%d] -> (%d,%d)\n", x, y, pair_to_vec(x,y), p.first, p.second); } printf("Testing id_to_vec / vec_to_id...\n"); for(int i=0; i < getqty(); i++) for(int m=0; m< (torus_mode == tmKlein ? 2 : 1); m++) if(vec_to_id_mirror(id_to_vec(i, m)) != pair (i,m)) printf("Failed for id %d.%d [%d] (%d.%d)\n", i, m, id_to_vec(i,m), vec_to_id(id_to_vec(i,m)), vec_to_id_mirror(id_to_vec(i,m)).second); } int tester = addHook(hooks_tests, 0, torus_test); void activate() { if(tmflags() & TF_HEX) ginf[gTorus].vertex = 3, ginf[gTorus].sides = 6; else ginf[gTorus].vertex = 4, ginf[gTorus].sides = 4; } } int decodeId(heptagon* h); heptagon* encodeId(int id); int euclid_getvec(int dx, int dy) { if(torus) return torusconfig::getvec(dx, dy); else return pair_to_vec(dx, dy); } template void build_euclidean_moves(cell *c, int vec, const T& builder) { int x, y; tie(x,y) = vec_to_pair(vec); c->type = a4 ? (nonbitrunc || ((x^y^1) & 1) ? 4 : 8) : 6; if(c->type == 4) { int m = nonbitrunc ? 1 : 2; builder(euclid_getvec(+1,+0), 0, 2 * m); builder(euclid_getvec(+0,+1), 1, 3 * m); builder(euclid_getvec(-1,+0), 2, 0 * m); builder(euclid_getvec(+0,-1), 3, 1 * m); } else if(c->type == 8) { builder(euclid_getvec(+1,+0), 0, 2); builder(euclid_getvec(+1,+1), 1, 5); builder(euclid_getvec(+0,+1), 2, 3); builder(euclid_getvec(-1,+1), 3, 7); builder(euclid_getvec(-1,+0), 4, 0); builder(euclid_getvec(-1,-1), 5, 1); builder(euclid_getvec(+0,-1), 6, 1); builder(euclid_getvec(+1,-1), 7, 3); } else /* 6 */ { builder(euclid_getvec(+1,+0), 0, 3); builder(euclid_getvec(+0,+1), 1, 4); builder(euclid_getvec(-1,+1), 2, 5); builder(euclid_getvec(-1,+0), 3, 0); builder(euclid_getvec(+0,-1), 4, 1); builder(euclid_getvec(+1,-1), 5, 2); } } struct hrmap_torus : hrmap { vector all; vector dists; virtual vector& allcells() { return all; } cell *gamestart() { return all[0]; } hrmap_torus() { using namespace torusconfig; int q = getqty(); all.resize(q); for(int i=0; imove(d) = all[im.first]; all[i]->c.setspin(d, im.second, false); }); } for(cell *c: all) for(int d=0; dtype; d++) { cell *c2 = c->move(d); for(int d2=0; d2type; d2++) if(c2->move(d2) == c) c->c.setspin(d, d2, c->c.spin(d)); } celllister cl(gamestart(), 100, 100000000, NULL); dists.resize(q); for(int i=0; imaster)] = cl.dists[i]; } ~hrmap_torus() { for(cell *c: all) delete c; } }; hrmap_torus *torusmap() { return dynamic_cast (currentmap); } /* cell *getTorusId(int id) { hrmap_torus *cur = torusmap(); if(!cur) return NULL; return cur->all[id]; } */ struct hrmap_euclidean : hrmap { cell *gamestart() { return euclideanAtCreate(0); } struct euclideanSlab { cell* a[256][256]; euclideanSlab() { for(int y=0; y<256; y++) for(int x=0; x<256; x++) a[y][x] = NULL; } ~euclideanSlab() { for(int y=0; y<256; y++) for(int x=0; x<256; x++) if(a[y][x]) delete a[y][x]; } }; static const int slabs = max_vec / 256; euclideanSlab* euclidean[slabs][slabs]; hrmap_euclidean() { for(int y=0; y>8)&(slabs-1)][(x>>8)&(slabs-1)]; if(!slab) slab = new hrmap_euclidean::euclideanSlab; return slab->a[y&255][x&255]; } map eucdata; ~hrmap_euclidean() { for(int y=0; yall[p.first], 0, p.second); } } int cellwalker_to_vec(cellwalker cw) { int id = decodeId(cw.at->master); if(!torus) return id; return torusconfig::id_to_vec(id, cw.mirrored); } int cell_to_vec(cell *c) { int id = decodeId(c->master); if(!torus) return id; return torusconfig::id_to_vec(id, false); } pair cell_to_pair(cell *c) { return vec_to_pair(cell_to_vec(c)); } union heptacoder { heptagon *h; int id; }; int decodeId(heptagon* h) { heptacoder u; u.h = h; return u.id; } heptagon* encodeId(int id) { heptacoder u; u.id = id; return u.h; } // --- quotient geometry --- namespace quotientspace { struct code { int c[MAX_EDGE+1]; }; bool operator == (const code& c1, const code &c2) { for(int i=0; i<=S7; i++) if(c1.c[i] != c2.c[i]) return false; return true; } bool operator < (const code& c1, const code &c2) { for(int i=0; i<=S7; i++) if(c1.c[i] != c2.c[i]) return c1.c[i] < c2.c[i]; return false; } int cod(heptagon *h) { return zebra40(h->c7); } code get(heptspin hs) { code res; res.c[0] = cod(hs.at); for(int i=1; i<=S7; i++) { res.c[i] = cod((hs + wstep).at); hs += 1; } return res; } int rvadd = 0, rvdir = 1; int rv(int x) { return (rvadd+x*rvdir) % S7; } struct hrmap_quotient : hrmap { hrmap_hyperbolic base; vector celllist; cell *origin; map reachable; vector bfsq; vector connections; void add(const heptspin& hs) { code g = get(hs); if(!reachable.count(g)) { reachable[g] = bfsq.size(); bfsq.push_back(hs); add(hs + 1); } } vector allh; hrmap_quotient() { static int symmask = (1<<30); connections.clear(); switch(geometry) { case gFieldQuotient: { connections = currfp.connections; break; } case gZebraQuotient: { heptspin hs(base.origin); reachable.clear(); bfsq.clear(); add(hs); for(int i=0; i<(int)bfsq.size(); i++) { hs = bfsq[i] + wstep; add(hs); connections.push_back(reachable[get(hs)]); } break; } case gMinimal: { int altzebra[6][7] = { { 16,125,111, 45, 32, 56, 20 }, { 26,102,146,152, 35,124, 00 }, { 06, 55,143,134,115,101, 10 }, { 41, 50, 04, 44,123, 14,153 }, { 51, 30,154,122, 33, 03,112 }, { 31, 40,113,136,142, 21, 05 } }; // int ok = 0; for(int a=0; a<6; a++) { for(int b=0; b<7; b++) { int s = altzebra[a][b]; int mirr = s/100; s %= 100; int which = s/10; s %= 10; int shouldbe = a*10+b+mirr*100; if(altzebra[which][s] != shouldbe) { printf("error at %d:%d (is=%d shouldbe=%d)\n", a, b, altzebra[which][s], shouldbe); } connections.push_back(which * 7 + s + (mirr ? symmask : 0) ); } } break; } case gKleinQuartic: { connections = { /* 000 */ 7, 14, 21, 28, 35, 42, 49, /* 001 */ 0, 55, 56, 63, 70, 77, 15, /* 002 */ 1, 13, 83, 84, 91, 98, 22, /* 003 */ 2, 20, 104, 105, 112, 119, 29, /* 004 */ 3, 27, 125, 74, 126, 133, 36, /* 005 */ 4, 34, 139, 95, 66, 140, 43, /* 006 */ 5, 41, 146, 116, 87, 147, 50, /* 007 */ 6, 48, 153, 130, 108, 57, 8, /* 008 */ 9, 54, 107, 102, 154, 142, 64, /* 009 */ 10, 62, 141, 39, 94, 161, 71, /* 010 */ 11, 69, 167, 127, 31, 124, 78, /* 011 */ 12, 76, 123, 158, 149, 85, 16, /* 012 */ 17, 82, 148, 46, 115, 163, 92, /* 013 */ 18, 90, 162, 67, 38, 138, 99, /* 014 */ 19, 97, 137, 155, 59, 106, 23, /* 015 */ 24, 103, 58, 53, 129, 165, 113, /* 016 */ 25, 111, 164, 88, 45, 145, 120, /* 017 */ 26, 118, 144, 159, 79, 75, 30, /* 018 */ 32, 73, 166, 109, 52, 152, 134, /* 019 */ 33, 132, 151, 156, 100, 96, 37, /* 020 */ 40, 65, 61, 160, 121, 117, 44, /* 021 */ 47, 86, 81, 157, 135, 131, 51, /* 022 */ 60, 101, 136, 150, 80, 122, 143, /* 023 */ 68, 93, 89, 114, 110, 128, 72, }; break; } case gBolza: { connections = { /* 000 */ 8, 16, 24, 32, 12, 20, 28, 36, /* 001 */ 0, 35, 47, 21, 4, 39, 43, 17, /* 002 */ 1, 15, 42, 29, 5, 11, 46, 25, /* 003 */ 2, 23, 45, 37, 6, 19, 41, 33, /* 004 */ 3, 31, 40, 9, 7, 27, 44, 13, /* 005 */ 34, 30, 18, 14, 38, 26, 22, 10, }; break; } case gBolza2: { connections = { /* 000 */ 16, 32, 48, 64, 24, 40, 56, 72, /* 001 */ 20, 44, 52, 76, 28, 36, 60, 68, /* 002 */ 0, 79, 83, 45, 8, 67, 95, 33, /* 003 */ 4, 71, 87, 37, 12, 75, 91, 41, /* 004 */ 1, 23, 94, 61, 13, 27, 86, 49, /* 005 */ 5, 31, 90, 53, 9, 19, 82, 57, /* 006 */ 2, 39, 85, 77, 10, 43, 89, 65, /* 007 */ 6, 47, 81, 69, 14, 35, 93, 73, /* 008 */ 3, 55, 88, 21, 15, 59, 80, 25, /* 009 */ 7, 63, 92, 29, 11, 51, 84, 17, /* 010 */ 70, 58, 46, 18, 78, 50, 38, 26, /* 011 */ 66, 54, 42, 30, 74, 62, 34, 22, }; break; } default: break; } int TOT = connections.size() / S7; // printf("heptagons = %d\n", TOT); // printf("all cells = %d\n", TOT*(S7+S3)/S3); if(!TOT) exit(1); allh.resize(TOT); for(int i=0; ialt = base.origin; for(int i=0; ialt = NULL; } if(true) { h->s = hsOrigin; h->emeraldval = 0; h->zebraval = 0; h->fiftyval = 0; h->fieldval = S7*i; h->rval0 = h->rval1 = 0; h->cdata = NULL; h->distance = 0; if(!irr::on) h->c7 = newCell(S7, h); } for(int j=0; jmove(rv(j)) = allh[co/S7]; h->c.setspin(rv(j), rv(co%S7), swapped); } } for(int i=0; iemeraldval = allh[i]->alt->emeraldval; allh[i]->zebraval = allh[i]->alt->zebraval; allh[i]->fiftyval = allh[i]->alt->fiftyval; allh[i]->distance = allh[i]->alt->distance; /* for(int j=0; j<7; j++) allh[i]->move[j]->alt = createStep(allh[i]->alt, j); */ } if(irr::on) { irr::link_start(allh[0]); for(int i=0; i& allcells() { return celllist; } }; }; // --- general --- // very similar to createMove in heptagon.cpp cell *createMov(cell *c, int d) { if(d<0 || d>= c->type) { printf("ERROR createmov\n"); } if(masterless && !c->move(d)) { int id = decodeId(c->master); for(int dx=-1; dx<=1; dx++) for(int dy=-1; dy<=1; dy++) euclideanAtCreate(id + pair_to_vec(dx, dy)); if(!c->move(d)) { printf("fail!\n"); } } if(c->move(d)) return c->move(d); else if(irr::on) { irr::link_cell(c, d); } else if(nonbitrunc && gp::on) { gp::extend_map(c, d); if(!c->move(d)) { printf("extend failed to create for %p/%d\n", c, d); exit(1); } } else if(nonbitrunc && syntetic) { if(synt::id_of(c->master) <= synt::N * 2) { heptspin hs = heptspin(c->master, d) + wstep + 2 + wstep + 1; c->c.connect(d, hs.at->c7, hs.spin, hs.mirrored); } else c->c.connect(d, c, d, false); } else if(nonbitrunc || syntetic) { heptagon *h2 = createStep(c->master, d); c->c.connect(d, h2->c7,c->master->c.spin(d),false); } else if(c == c->master->c7) { cell *n = newCell(S6, c->master); heptspin hs(c->master, d, false); int alt3 = c->type/2; int alt4 = alt3+1; for(int u=0; uc7->c.connect(hs.spin, n, u, hs.mirrored); if(hs.mirrored && geometry == gSmallElliptic) hs+=-1; hs = hs + alt3 + wstep - alt4; } extern void verifycell(cell *c); verifycell(n); } else { cellwalker cw(c, d, false); cellwalker cw2 = cw - 1 + wstep - 1 + wstep - 1; c->c.connect(d, cw2); } return c->move(d); } cell *createMovR(cell *c, int d) { d %= MODFIXER; d += MODFIXER; d %= c->type; return createMov(c, d); } cell *getMovR(cell *c, int d) { d %= MODFIXER; d += MODFIXER; d %= c->type; return c->move(d); } void eumerge(cell* c1, cell *c2, int s1, int s2) { if(!c2) return; c1->move(s1) = c2; c1->c.setspin(s1, s2, false); c2->move(s2) = c1; c2->c.setspin(s2, s1, false); } // map, cell*> euclidean; cell*& euclideanAt(int vec) { if(torus) { printf("euclideanAt called\n"); exit(1); } hrmap_euclidean* euc = dynamic_cast (currentmap); return euc->at(vec); } cell*& euclideanAtCreate(int vec) { cell*& c = euclideanAt(vec); if(!c) { c = newCell(8, encodeId(vec)); euclideanAt(vec) = c; build_euclidean_moves(c, vec, [c,vec] (int delta, int d, int d2) { eumerge(c, euclideanAt(vec + delta), d, d2); }); } return c; } // initializer (also inits origin from heptagon.cpp) void initcells() { DEBB(DF_INIT, (debugfile,"initcells\n")); if(syntetic) currentmap = new hrmap_hyperbolic; else if(torus) currentmap = new hrmap_torus; else if(euclid) currentmap = new hrmap_euclidean; else if(sphere) currentmap = new hrmap_spherical; else if(quotient) currentmap = new quotientspace::hrmap_quotient; else currentmap = new hrmap_hyperbolic; allmaps.push_back(currentmap); windmap::create(); // origin->emeraldval = } void clearcell(cell *c) { if(!c) return; DEBMEM ( printf("c%d %p\n", c->type, c); ) for(int t=0; ttype; t++) if(c->move(t)) { DEBMEM ( printf("mov %p [%p] S%d\n", c->move(t), c->move(t)->move(c->c.spin(t)), c->c.spin(t)); ) if(c->move(t)->move(c->c.spin(t)) != NULL && c->move(t)->move(c->c.spin(t)) != c) { printf("type = %d %d -> %d\n", c->type, t, c->c.spin(t)); printf("cell error\n"); exit(1); } c->move(t)->move(c->c.spin(t)) = NULL; } DEBMEM ( printf("DEL %p\n", c); ) delete c; } heptagon deletion_marker; template void subcell(cell *c, const T& t) { if(gp::on) { forCellEx(c2, c) if(c2->move(0) == c && c2 != c2->master->c7) { subcell(c2, t); } } else if(!nonbitrunc && !syntetic && !binarytiling) forCellEx(c2, c) t(c2); t(c); } void clearHexes(heptagon *at) { if(at->c7 && at->cdata) { delete at->cdata; at->cdata = NULL; } if(irr::on) irr::clear_links(at); else if(at->c7) subcell(at->c7, clearcell); } void unlink_cdata(heptagon *h) { if(h->alt && h->c7) { if(h->alt->cdata == (cdata*) h) h->alt->cdata = NULL; } } void clearfrom(heptagon *at) { queue q; unlink_cdata(at); q.push(at); at->alt = &deletion_marker; //int maxq = 0; while(!q.empty()) { at = q.front(); // if(q.size() > maxq) maxq = q.size(); q.pop(); DEBMEM ( printf("from %p\n", at); ) if(!at->c7) { heptagon *h = (heptagon*) at->cdata; if(h) { if(h->alt != at) printf("alt error :: h->alt = %p\n", h->alt); cell *c = h->c7; subcell(c, destroycellcontents); h->alt = NULL; at->cdata = NULL; } } int edges = S7; if(binarytiling) edges = at->c7->type; for(int i=0; imove(i)) { if(at->move(i)->alt != &deletion_marker) q.push(at->move(i)); unlink_cdata(at->move(i)); at->move(i)->alt = &deletion_marker; DEBMEM ( printf("!mov %p [%p]\n", at->move(i), at->move(i)->move[at->c.spin(i)]); ) if(at->move(i)->move(at->c.spin(i)) != NULL && at->move(i)->move(at->c.spin(i)) != at) { printf("hept error\n"); exit(1); } at->move(i)->move(at->c.spin(i)) = NULL; at->move(i) = NULL; } clearHexes(at); delete at; } //printf("maxq = %d\n", maxq); } void verifycell(cell *c) { int t = c->type; for(int i=0; imove(i); if(c2) { if(!masterless && !nonbitrunc && c == c->master->c7) verifycell(c2); if(c2->move(c->c.spin(i)) && c2->move(c->c.spin(i)) != c) { printf("cell error %p:%d [%d] %p:%d [%d]\n", c, i, c->type, c2, c->c.spin(i), c2->type); exit(1); } } } } void verifycells(heptagon *at) { if(gp::on || irr::on || syntetic) return; for(int i=0; imove(i) && at->move(i)->move(at->c.spin(i)) && at->move(i)->move(at->c.spin(i)) != at) { printf("hexmix error %p [%d s=%d] %p %p\n", at, i, at->c.spin(i), at->move(i), at->move(i)->move(at->c.spin(i))); } if(!sphere && !quotient) for(int i=0; imove(i) && at->c.spin(i) == 0 && at->s != hsOrigin) verifycells(at->move(i)); verifycell(at->c7); } int eudist(int sx, int sy) { int z0 = abs(sx); int z1 = abs(sy); if(a4) return z0 + z1; int z2 = abs(sx+sy); return max(max(z0,z1), z2); } int eudist(int vec) { auto p = vec_to_pair(vec); return eudist(p.first, p.second); } int compdist(int dx[]) { int mi = dx[0]; for(int u=0; u mi+2) return -1; // { printf("cycle error!\n"); exit(1); } for(int u=0; udists[decodeId(c->master)]; if(masterless) return eudist(decodeId(c->master)); if(sphere) return celldistance(c, currentmap->gamestart()); if(irr::on) return irr::celldist(c, false); if(binarytiling || syntetic || ctof(c)) return c->master->distance; if(gp::on) return gp::compute_dist(c, celldist); int dx[MAX_S3]; for(int u=0; umaster->distance; return compdist(dx); } #define ALTDIST_BOUNDARY 99999 #define ALTDIST_UNKNOWN 99998 #define ALTDIST_ERROR 90000 // defined in 'game' int euclidAlt(short x, short y); int celldistAlt(cell *c) { if(masterless) { if(torus) return celldist(c); int x, y; tie(x,y) = vec_to_pair(decodeId(c->master)); return euclidAlt(x, y); } if(binarytiling) return celldist(c) + (specialland == laCamelot && !tactic::on? 30 : 0); if(sphere || quotient) { return celldist(c) - 3; } if(!c->master->alt) return 0; if(irr::on) return irr::celldist(c, true); if(ctof(c)) return c->master->alt->distance; if(gp::on) return gp::compute_dist(c, celldistAlt); int dx[MAX_S3]; dx[0] = 0; for(int u=0; umaster->alt == NULL) return ALTDIST_UNKNOWN; for(int u=0; umaster->alt->distance; // return compdist(dx); -> not OK because of boundary conditions int mi = dx[0]; for(int i=1; i mi+2) return ALTDIST_BOUNDARY; // { printf("cycle error!\n"); exit(1); } for(int i=0; itype; i++) if(cfrom->move(i) == cto) return i; return -1; } #define RPV_MODULO 5 #define RPV_RAND 0 #define RPV_ZEBRA 1 #define RPV_EMERALD 2 #define RPV_PALACE 3 #define RPV_CYCLE 4 int getCdata(cell *c, int j); // x mod 5 = pattern type // x mod (powers of 2) = pattern type specific // (x/5) mod 15 = picture for drawing floors // x mod 7 = chance of pattern-specific pic // whole = randomization bool randpattern(cell *c, int rval) { int i, sw=0; switch(rval%5) { case 0: if(rval&1) { return hrandpos() < rval; } else { int cd = getCdata(c, 0); return !((cd/(((rval/2)&15)+1))&1); } case 1: i = zebra40(c); if(i&1) { if(rval&4) sw^=1; i &= ~1; } if(i&2) { if(rval&8) sw^=1; i &= ~2; } i >>= 2; i--; i /= 3; if(rval & (16<>= 2; i--; if(rval & (16<>2)&3)+"/"+its((rval>>4)&15); case 2: return "E/"+its((rval>>2)&3)+"/"+its((rval>>4)&2047); case 3: return "P/"+its((rval>>2)&3)+"/"+its((rval>>4)&255); case 4: return "C/"+its(rval&3)+"/"+its((rval>>2)&65535); } return "?"; } int randpatternCode(cell *c, int rval) { switch(rval % RPV_MODULO) { case 1: return zebra40(c); case 2: return emeraldval(c); case 3: return fiftyval049(c) + (polara50(c)?50:0) + (polarb50(c)?1000:0); case 4: return towerval(c, celldist) * 6 + celldist(c) % 6; } return 0; } #define RANDITER 31 char rpm_memoize[3][256][RANDITER+1]; void clearMemoRPM() { for(int a=0; a<3; a++) for(int b=0; b<256; b++) for(int i=0; itype; i++) { if(randpatternMajority(createMov(c,i), ival, iterations-1)) z++; else z--; } if(z!=0) memo = (z>0); else memo = randpattern(c, rval); // printf("%p] rval = %X code = %d iterations = %d result = %d\n", c, rval, code, iterations, memo); return memo; } map spins; #define RVAL_MASK 0x10000000 #define DATA_MASK 0x20000000 cdata orig_cdata; void affect(cdata& d, short rv, signed char signum) { if(rv&1) d.val[0]+=signum; else d.val[0]-=signum; if(rv&2) d.val[1]+=signum; else d.val[1]-=signum; if(rv&4) d.val[2]+=signum; else d.val[2]-=signum; if(rv&8) d.val[3]+=signum; else d.val[3]-=signum; int id = (rv>>4) & 63; if(id < 32) d.bits ^= (1 << id); } void setHeptagonRval(heptagon *h) { if(!(h->rval0 || h->rval1)) { h->rval0 = hrand(0x10000); h->rval1 = hrand(0x10000); } } cdata *getHeptagonCdata(heptagon *h) { if(h->cdata) return h->cdata; if(sphere || quotient) h = currentmap->gamestart()->master; if(h == currentmap->gamestart()->master) { return h->cdata = new cdata(orig_cdata); } cdata mydata = *getHeptagonCdata(h->move(0)); for(int di=3; di<5; di++) { heptspin hs; hs.at = h; hs.spin = di; int signum = +1; while(true) { heptspin hstab[15]; hstab[7] = hs; for(int i=8; i<12; i++) { hstab[i] = hstab[i-1]; hstab[i] += ((i&1) ? 4 : 3); hstab[i] += wstep; hstab[i] += ((i&1) ? 3 : 4); } for(int i=6; i>=3; i--) { hstab[i] = hstab[i+1]; hstab[i] += ((i&1) ? 3 : 4); hstab[i] += wstep; hstab[i] += ((i&1) ? 4 : 3); } if(hstab[3].at->distance < hstab[7].at->distance) { hs = hstab[3]; continue; } if(hstab[11].at->distance < hstab[7].at->distance) { hs = hstab[11]; continue; } int jj = 7; for(int k=3; k<12; k++) if(hstab[k].at->distance < hstab[jj].at->distance) jj = k; int ties = 0, tiespos = 0; for(int k=3; k<12; k++) if(hstab[k].at->distance == hstab[jj].at->distance) ties++, tiespos += (k-jj); // printf("ties=%d tiespos=%d jj=%d\n", ties, tiespos, jj); if(ties == 2) jj += tiespos/2; if(jj&1) signum = -1; hs = hstab[jj]; break; } hs = hs + 3 + wstep; setHeptagonRval(hs.at); affect(mydata, hs.spin ? hs.at->rval0 : hs.at->rval1, signum); /* if(!(spins[hs.at] & hs.spin)) { spins[hs.at] |= (1<cdata = new cdata(mydata); } cdata *getEuclidCdata(int h) { if(torus) { static cdata xx; return &xx; } int x, y; hrmap_euclidean* euc = dynamic_cast (currentmap); if(euc->eucdata.count(h)) return &(euc->eucdata[h]); tie(x,y) = vec_to_pair(h); if(x == 0 && y == 0) { cdata xx; for(int i=0; i<4; i++) xx.val[i] = 0; xx.bits = 0; return &(euc->eucdata[h] = xx); } int ord = 1, bid = 0; while(!((x|y)&ord)) ord <<= 1, bid++; for(int k=0; k<3; k++) { int x1 = x + (k<2 ? ord : 0); int y1 = y - (k>0 ? ord : 0); if((x1&ord) || (y1&ord)) continue; int x2 = x - (k<2 ? ord : 0); int y2 = y + (k>0 ? ord : 0); cdata *d1 = getEuclidCdata(pair_to_vec(x1,y1)); cdata *d2 = getEuclidCdata(pair_to_vec(x2,y2)); cdata xx; double disp = pow(2, bid/2.) * 6; for(int i=0; i<4; i++) { double dv = (d1->val[i] + d2->val[i])/2 + (hrand(1000) - hrand(1000))/1000. * disp; xx.val[i] = floor(dv); if(hrand(1000) / 1000. < dv - floor(dv)) xx.val[i]++; } xx.bits = 0; for(int b=0; b<32; b++) { bool gbit = ((hrand(2)?d1:d2)->bits >> b) & 1; int flipchance = (1< 512) flipchance = 512; if(hrand(1024) < flipchance) gbit = !gbit; if(gbit) xx.bits |= (1<eucdata[h] = xx); } // impossible! return NULL; } int getCdata(cell *c, int j) { if(masterless) return getEuclidCdata(decodeId(c->master))->val[j]; else if(geometry) return 0; else if(ctof(c)) return getHeptagonCdata(c->master)->val[j]*3; else { int jj = 0; auto ar = gp::get_masters(c); for(int k=0; k<3; k++) jj += getHeptagonCdata(ar[k])->val[j]; return jj; } } int getBits(cell *c) { if(masterless) return getEuclidCdata(decodeId(c->master))->bits; else if(geometry) return 0; else if(c->type != 6) return getHeptagonCdata(c->master)->bits; else { auto ar = gp::get_masters(c); int b0 = getHeptagonCdata(ar[0])->bits; int b1 = getHeptagonCdata(ar[1])->bits; int b2 = getHeptagonCdata(ar[2])->bits; return (b0 & b1) | (b1 & b2) | (b2 & b0); } } cell *heptatdir(cell *c, int d) { if(d&1) { cell *c2 = createMov(c, d); int s = c->c.spin(d); s += 3; s %= 6; return createMov(c2, s); } else return createMov(c, d); } int heptdistance(heptagon *h1, heptagon *h2) { // very rough distance int d = 0; while(true) { if(h1 == h2) return d; for(int i=0; imove(i) == h2) return d + 1; int d1 = h1->distance, d2 = h2->distance; if(d1 >= d2) d++, h1 = createStep(h1, binarytiling ? 5 : 0); if(d2 > d1) d++, h2 = createStep(h2, binarytiling ? 5 : 0); } } int heptdistance(cell *c1, cell *c2) { if(!hyperbolic || quotient) return celldistance(c1, c2); else return heptdistance(c1->master, c2->master); } map, int> saved_distances; int celldistance(cell *c1, cell *c2) { int d = 0; if((masterless) && (euclid6 || (euclid4 && nonbitrunc))) { if(!torus) return eudist(decodeId(c1->master) - decodeId(c2->master)); else if(torus && torusconfig::torus_mode == 0) return torusmap()->dists[torusconfig::vec_to_id(decodeId(c1->master)-decodeId(c2->master))]; } if(geometry == gFieldQuotient && !gp::on) return currfp.getdist(fieldpattern::fieldval(c1), fieldpattern::fieldval(c2)); if(sphere || quotient || torus) { if(saved_distances.count(make_pair(c1,c2))) return saved_distances[make_pair(c1,c2)]; celllister cl(c1, 100, 100000000, NULL); for(int i=0; i 1000000) saved_distances.clear(); celllister cl(c1, 64, 1000, c2); for(int i=0; i= d2) { cl1 = chosenDown(cl1, -1, 0, celldist); // cl1->item = eItem(rand() % 10); cr1 = chosenDown(cr1, 1, 0, celldist); // cr1->item = eItem(rand() % 10); d++; d1--; } if(d1 < d2) { cl2 = chosenDown(cl2, -1, 0, celldist); // cl2->item = eItem(rand() % 10); cr2 = chosenDown(cr2, 1, 0, celldist); // cr2->item = eItem(rand() % 10); d++; d2--; } } } void clearCellMemory() { for(int i=0; i