// Hyperbolic Rogue // advanced geometry // Copyright (C) 2011-2018 Zeno Rogue, see 'hyper.cpp' for details namespace hr { transmatrix &ggmatrix(cell *c); void fixelliptic(transmatrix& at) { if(elliptic && at[2][2] < 0) { for(int i=0; i<3; i++) for(int j=0; j<3; j++) at[i][j] = -at[i][j]; } } void fixelliptic(hyperpoint& h) { if(elliptic && h[2] < 0) for(int i=0; i<3; i++) h[i] = -h[i]; } transmatrix master_relative(cell *c, bool get_inverse) { if(IRREGULAR) { int id = irr::cellindex[c]; ld alpha = 2 * M_PI / S7 * irr::periodmap[c->master].base.spin; return get_inverse ? irr::cells[id].rpusher * spin(-alpha-master_to_c7_angle()): spin(alpha + master_to_c7_angle()) * irr::cells[id].pusher; } else if(GOLDBERG) { if(c == c->master->c7) { return spin((get_inverse?-1:1) * master_to_c7_angle()); } else { auto li = gp::get_local_info(c); transmatrix T = spin(master_to_c7_angle()) * gp::Tf[li.last_dir][li.relative.first&31][li.relative.second&31][gp::fixg6(li.total_dir)]; if(get_inverse) T = inverse(T); return T; } } else if(BITRUNCATED && !euclid) { for(int d=0; dmaster->c7->move(d) == c) return (get_inverse?invhexmove:hexmove)[d]; return Id; } else return pispin * Id; } transmatrix calc_relative_matrix(cell *c2, cell *c1, int direction_hint) { return calc_relative_matrix(c2, c1, ddspin(c1, direction_hint) * xpush0(1e-2)); } // target, source, direction from source to target namespace gp { extern gp::local_info draw_li; } transmatrix calc_relative_matrix(cell *c2, cell *c1, const hyperpoint& point_hint) { if(sphere_narcm) { if(!gmatrix0.count(c2) || !gmatrix0.count(c1)) { printf("building gmatrix0 (size=%d)\n", isize(gmatrix0)); auto bak = gp::draw_li; swap(gmatrix, gmatrix0); just_gmatrix = true; drawStandard(); just_gmatrix = false; swap(gmatrix, gmatrix0); gp::draw_li = bak; } if(gmatrix0.count(c2) && gmatrix0.count(c1)) { transmatrix T = inverse(gmatrix0[c1]) * gmatrix0[c2]; if(elliptic && T[2][2] < 0) T = centralsym * T; return T; } else { printf("error: gmatrix0 not known\n"); return Id; } } if(binarytiling) return binary::relative_matrix(c2->master, c1->master); if(archimedean) return arcm::relative_matrix(c2->master, c1->master); if(torus) { transmatrix t = Id; if(whateveri) printf("[%p,%d] ", c2, celldistance(c2, c1)); int mirrors = 0; approach: int d = celldistance(c2, c1); forCellIdEx(c3, i, c2) { if(celldistance(c3, c1) < d) { if(whateveri) printf(" %d [%p,%d]", i, c3, celldistance(c3, c1)); if(c2->type < 8) t = eumovedir(i+(euclid6?3:2)) * t; else if(i&1) t = eumovedir(2+i/2) * eumovedir(2+(i+1)/2) * t; else t = eumovedir(2+i/2) * t; if(c2->c.mirror(i)) mirrors++; c2 = c3; goto approach; } } if(d != 0) printf("ERROR not reached\n"); if(mirrors&1) t = Mirror * t * Mirror; if(whateveri) printf(" => %p\n", c1); return t; } if(euclid) return eumove(cell_to_vec(c2) - cell_to_vec(c1)); heptagon *h1 = c1->master; transmatrix gm = master_relative(c1, true); heptagon *h2 = c2->master; transmatrix where = master_relative(c2); // always add to last! //bool hsol = false; //transmatrix sol; while(h1 != h2) { if(quotient & qSMALL) { transmatrix T; ld bestdist = 1e9; for(int d=0; dmove(d)) { int sp = h2->c.spin(d); transmatrix S = heptmove[sp] * spin(2*M_PI*d/S7); if(h2->c.mirror(d)) S = heptmove[sp] * Mirror * spin(2*M_PI*d/S7); if(h2->move(d) == h1) { transmatrix T1 = gm * S * where; auto curdist = hdist(tC0(T1), point_hint); if(curdist < bestdist) T = T1, bestdist = curdist; } if(geometry != gMinimal) for(int e=0; emove(d)->move(e) == h1) { int sp2 = h2->move(d)->c.spin(e); transmatrix T1 = gm * heptmove[sp2] * spin(2*M_PI*e/S7) * S * where; auto curdist = hdist(tC0(T1), point_hint); if(curdist < bestdist) T = T1, bestdist = curdist; } } if(bestdist < 1e8) return T; } for(int d=0; dmove(d) == h1) { int sp = h2->c.spin(d); return gm * heptmove[sp] * spin(2*M_PI*d/S7) * where; } if(among(geometry, gFieldQuotient, gBring, gMacbeath)) { int bestdist = 1000, bestd = 0; for(int d=0; dmove(d)->c7, c1); if(dist < bestdist) bestdist = dist, bestd = d; } int sp = h2->c.spin(bestd); where = heptmove[sp] * spin(2*M_PI*bestd/S7) * where; h2 = h2->move(bestd); } else if(h1->distance < h2->distance) { int sp = h2->c.spin(0); h2 = h2->move(0); where = heptmove[sp] * where; } else { int sp = h1->c.spin(0); h1 = h1->move(0); gm = gm * invheptmove[sp]; } } /*if(hsol) { transmatrix sol2 = gm * where; for(int i=0; i<3; i++) for(int j=0; j<3; j++) if(fabs(sol2[i][j]-sol[i][j] > 1e-3)) { printf("ERROR\n"); display(sol); display(sol2); exit(1); } } */ return gm * where; } transmatrix &ggmatrix(cell *c) { transmatrix& t = gmatrix[c]; if(t[2][2] == 0) { if(torus && centerover.at) t = calc_relative_matrix(c, centerover.at, C0); else if(euclid) { if(!centerover.at) centerover = cwt; t = View * eumove(cell_to_vec(c) - cellwalker_to_vec(centerover)); } else t = actualV(viewctr, cview()) * calc_relative_matrix(c, viewctr.at->c7, C0); } return t; } transmatrix calc_relative_matrix_help(cell *c, heptagon *h1) { transmatrix gm = Id; heptagon *h2 = c->master; transmatrix where = Id; if(GOLDBERG && c != c->master->c7) { auto li = gp::get_local_info(c); where = gp::Tf[li.last_dir][li.relative.first&31][li.relative.second&31][fix6(li.total_dir)]; } else if(BITRUNCATED) for(int d=0; dc7->move(d) == c) where = hexmove[d]; // always add to last! while(h1 != h2) { for(int d=0; dmove(d) == h2) printf("(adj) "); if(h1->distance < h2->distance) { int sp = h2->c.spin(0); printf("A%d ", sp); h2 = h2->move(0); where = heptmove[sp] * where; } else { int sp = h1->c.spin(0); printf("B%d ", sp); h1 = h1->move(0); gm = gm * invheptmove[sp]; } } printf("OK\n"); display(gm * where); return gm * where; } template void virtualRebase(cell*& base, T& at, bool tohex, const U& check) { if(euclid || sphere) { again: if(torus) for(int i=0; i<6; i++) { auto newat = eumovedir(3+i) * at; if(hdist0(check(newat)) < hdist0(check(at))) { at = newat; base = createMov(base, i); goto again; } } else forCellCM(c2, base) { auto newat = inverse(ggmatrix(c2)) * ggmatrix(base) * at; if(hypot(check(newat)[0], check(newat)[1]) < hypot(check(at)[0], check(at)[1])) { at = newat; base = c2; goto again; } } fixelliptic(at); return; } at = master_relative(base) * at; base = base->master->c7; while(true) { double currz = check(at)[2]; heptagon *h = base->master; cell *newbase = NULL; transmatrix bestV; if(!binarytiling) for(int d=0; dc7; } } if(newbase) { base = newbase; at = bestV * at; } else { if(tohex && BITRUNCATED) for(int d=0; dc.spin(d)*2*M_PI/S6) * invhexmove[d]; double newz = check(V2 *at) [2]; if(newz < currz) { currz = newz; bestV = V2; newbase = c; } } if(newbase) { base = newbase; at = bestV * at; } else at = master_relative(base, true) * at; if(binarytiling || (tohex && (GOLDBERG || IRREGULAR))) { while(true) { newbase = NULL; forCellCM(c2, base) { transmatrix V2 = calc_relative_matrix(base, c2, C0); double newz = check(V2 * at) [2]; if(newz < currz) { currz = newz; bestV = V2; newbase = c2; } } if(!newbase) break; base = newbase; at = bestV * at; } } break; } } } void virtualRebase(cell*& base, transmatrix& at, bool tohex) { virtualRebase(base, at, tohex, tC0); } void virtualRebase(cell*& base, hyperpoint& h, bool tohex) { // we perform fixing in check, so that it works with larger range virtualRebase(base, h, tohex, [] (const hyperpoint& h) { return hyperbolic ? hpxy(h[0], h[1]) :h; }); } // works only in geometries similar to the standard one, and only on heptagons void virtualRebaseSimple(heptagon*& base, transmatrix& at) { while(true) { double currz = at[2][2]; heptagon *h = base; heptagon *newbase = NULL; transmatrix bestV; for(int d=0; dmove(i), c, i))); return !BITRUNCATED ? tessf : (c->type == 6 && (i&1)) ? hexhexdist : crossf; } transmatrix cellrelmatrix(cell *c, int i) { if(NONSTDVAR || archimedean) return calc_relative_matrix(c->move(i), c, i); double d = cellgfxdist(c, i); return ddspin(c, i) * xpush(d) * iddspin(c->move(i), c->c.spin(i), euclid ? 0 : M_PI); } double randd() { return (rand() + .5) / (RAND_MAX + 1.); } hyperpoint randomPointIn(int t) { if(NONSTDVAR || archimedean) { // Let these geometries be less confusing. // Also easier to implement ;) return xspinpush0(2 * M_PI * randd(), asinh(randd() / 20)); } while(true) { hyperpoint h = xspinpush0(2*M_PI*(randd()-.5)/t, asinh(randd())); double d = PURE ? tessf : t == 6 ? hexhexdist : crossf; if(hdist0(h) < hdist0(xpush(-d) * h)) return spin(2*M_PI/t * (rand() % t)) * h; } } hyperpoint get_horopoint(ld y, ld x) { return xpush(-y) * binary::parabolic(x) * C0; } hyperpoint get_corner_position(cell *c, int cid, ld cf) { if(GOLDBERG) return gp::get_corner_position(c, cid, cf); if(IRREGULAR) { auto& vs = irr::cells[irr::cellindex[c]]; return mid_at_actual(vs.vertices[cid], 3/cf); } if(binarytiling) { ld yx = log(2) / 2; ld yy = yx; ld xx = 1 / sqrt(2)/2; hyperpoint vertices[7]; vertices[0] = get_horopoint(-yy, xx); vertices[1] = get_horopoint(yy, 2*xx); vertices[2] = get_horopoint(yy, xx); vertices[3] = get_horopoint(yy, -xx); vertices[4] = get_horopoint(yy, -2*xx); vertices[5] = get_horopoint(-yy, -xx); vertices[6] = get_horopoint(-yy, 0); return mid_at_actual(vertices[cid], 3/cf); } if(archimedean) { auto &ac = arcm::current; if(PURE) { if(arcm::id_of(c->master) >= ac.N*2) return C0; auto& t = ac.get_triangle(c->master, cid-1); return xspinpush0(-t.first, t.second * 3 / cf * (ac.real_faces == 0 ? 0.999 : 1)); } if(BITRUNCATED) { auto& t0 = ac.get_triangle(c->master, cid-1); auto& t1 = ac.get_triangle(c->master, cid); hyperpoint h0 = xspinpush0(-t0.first, t0.second * 3 / cf * (ac.real_faces == 0 ? 0.999 : 1)); hyperpoint h1 = xspinpush0(-t1.first, t1.second * 3 / cf * (ac.real_faces == 0 ? 0.999 : 1)); return mid3(C0, h0, h1); } if(DUAL) { auto& t0 = ac.get_triangle(c->master, 2*cid-1); return xspinpush0(-t0.first, t0.second * 3 / cf * (ac.real_faces == 0 ? 0.999 : 1)); } } if(PURE) { return ddspin(c,cid,M_PI/S7) * xpush0(hcrossf * 3 / cf); } if(BITRUNCATED) { if(!ishept(c)) return ddspin(c,cid,M_PI/S6) * xpush0(hexvdist * 3 / cf); else return ddspin(c,cid,M_PI/S7) * xpush0(rhexf * 3 / cf); } return C0; } hyperpoint nearcorner(cell *c, int i) { if(GOLDBERG) { cellwalker cw(c, i); cw += wstep; transmatrix cwm = calc_relative_matrix(cw.at, c, i); if(elliptic && cwm[2][2] < 0) cwm = centralsym * cwm; return cwm * C0; } if(IRREGULAR) { auto& vs = irr::cells[irr::cellindex[c]]; hyperpoint nc = vs.jpoints[vs.neid[i]]; return mid_at(C0, nc, .94); } if(archimedean) { if(PURE) { auto &ac = arcm::current; auto& t = ac.get_triangle(c->master, i-1); int id = arcm::id_of(c->master); int id1 = ac.get_adj(ac.get_adj(c->master, i-1), -2).first; return xspinpush0(-t.first - M_PI / c->type, ac.inradius[id/2] + ac.inradius[id1/2] + (ac.real_faces == 0 ? 2 * M_PI / (ac.N == 2 ? 2.1 : ac.N) : 0)); } if(BITRUNCATED) { auto &ac = arcm::current; auto& t = ac.get_triangle(c->master, i); return xspinpush0(-t.first, t.second); } if(DUAL) { auto &ac = arcm::current; auto& t = ac.get_triangle(c->master, i * 2); return xspinpush0(-t.first, t.second); } } if(binarytiling) { ld yx = log(2) / 2; ld yy = yx; // ld xx = 1 / sqrt(2)/2; hyperpoint neis[7]; neis[0] = get_horopoint(0, 1); neis[1] = get_horopoint(yy*2, 1); neis[2] = get_horopoint(yy*2, 0); neis[3] = get_horopoint(yy*2, -1); neis[4] = get_horopoint(0, -1); if(c->type == 7) neis[5] = get_horopoint(-yy*2, -.5), neis[6] = get_horopoint(-yy*2, +.5); else neis[5] = get_horopoint(-yy*2, 0); return neis[i]; } double d = cellgfxdist(c, i); return ddspin(c, i) * xpush0(d); } hyperpoint farcorner(cell *c, int i, int which) { if(GOLDBERG) { cellwalker cw(c, i); int hint = cw.spin; cw += wstep; transmatrix cwm = calc_relative_matrix(cw.at, c, hint); if(elliptic && cwm[2][2] < 0) cwm = centralsym * cwm; // hyperpoint nfar = cwm*C0; auto li1 = gp::get_local_info(cw.at); if(which == 0) return cwm * get_corner_position(li1, (cw+2).spin); if(which == 1) return cwm * get_corner_position(li1, (cw-1).spin); } if(IRREGULAR) { auto& vs = irr::cells[irr::cellindex[c]]; int neid = vs.neid[i]; int spin = vs.spin[i]; auto &vs2 = irr::cells[neid]; int cor2 = isize(vs2.vertices); transmatrix rel = vs.rpusher * vs.relmatrices[vs2.owner] * vs2.pusher; if(which == 0) return rel * vs2.vertices[(spin+2)%cor2]; if(which == 1) return rel * vs2.vertices[(spin+cor2-1)%cor2]; } if(binarytiling) return nearcorner(c, (i+which) % c->type); // lazy if(archimedean) { if(PURE) { auto &ac = arcm::current; auto& t = ac.get_triangle(c->master, i-1); int id = arcm::id_of(c->master); auto id1 = ac.get_adj(ac.get_adj(c->master, i-1), -2).first; int n1 = isize(ac.adjacent[id1]); return spin(-t.first - M_PI / c->type) * xpush(ac.inradius[id/2] + ac.inradius[id1/2]) * xspinpush0(M_PI + M_PI/n1*(which?3:-3), ac.circumradius[id1/2]); } if(BITRUNCATED || DUAL) { int mul = DUALMUL; auto &ac = arcm::current; auto adj = ac.get_adj(c->master, i * mul); heptagon h; cell cx; cx.master = &h; arcm::id_of(&h) = adj.first; arcm::parent_index_of(&h) = adj.second; auto& t1 = arcm::current.get_triangle(c->master, i); auto& t2 = arcm::current.get_triangle(adj); return spin(-t1.first) * xpush(t1.second) * spin(M_PI + t2.first) * get_corner_position(&cx, which ? -mul : 2*mul); } } return cellrelmatrix(c, i) * get_corner_position(c->move(i), (cellwalker(c, i) + wstep + (which?-1:2)).spin); } hyperpoint midcorner(cell *c, int i, ld v) { auto hcor = farcorner(c, i, 0); auto tcor = get_corner_position(c, i, 3); return mid_at(tcor, hcor, v); } hyperpoint get_warp_corner(cell *c, int cid) { // midcorner(c, cid, .5) but sometimes easier versions exist if(GOLDBERG) return gp::get_corner_position(c, cid, 2); if(IRREGULAR || archimedean) return midcorner(c, cid, .5); return ddspin(c,cid,M_PI/S7) * xpush0(tessf/2); } }