// Hyperbolic Rogue -- Goldberg-Coxeter construction // Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details /** \file goldberg.cpp * \brief Goldberg-Coxeter construction * * This is generally not used for standard pure and bitruncated tilings, even though they are technically Goldberg too. */ #include "hyper.h" namespace hr { #if HDR struct hrmap; extern hrmap *currentmap; #endif EX namespace gp { #if HDR struct loc : pair<int, int> { loc() {} loc(int x, int y) : pair<int,int> (x,y) {} loc operator+(loc e2) { return loc(first+e2.first, second+e2.second); } loc operator-(loc e2) { return loc(first-e2.first, second-e2.second); } loc operator*(loc e2) { return loc(first*e2.first-second*e2.second, first*e2.second + e2.first*second + (S3 == 3 ? second*e2.second : 0)); } loc operator*(int i) { return loc(first*i, second*i); } int operator %(int i) { return gmod(first, i) + gmod(second, i); } loc operator /(int i) { return loc(first/i, second/i); } loc conj() { if(S3 == 4) return loc(first, -second); return loc(first+second, -second); } }; struct local_info { int last_dir; loc relative; int first_dir; int total_dir; }; #endif EX local_info current_li; EX cell *li_for; EX loc eudir(int d) { if(S3 == 3) { d %= 6; if (d < 0) d += 6; switch(d) { case 0: return loc(1, 0); case 1: return loc(0, 1); case 2: return loc(-1, 1); case 3: return loc(-1, 0); case 4: return loc(0, -1); case 5: return loc(1, -1); default: return loc(0, 0); } } else switch(d&3) { case 0: return loc(1, 0); case 1: return loc(0, 1); case 2: return loc(-1, 0); case 3: return loc(0, -1); default: return loc(0, 0); } } EX int length(loc p) { return euc::dist(p.first, p.second); } #if CAP_GP EX loc param = loc(1, 0); EX hyperpoint next; struct goldberg_mapping_t { cellwalker cw; signed char rdir; signed char mindir; loc start; transmatrix adjm; }; EX int fixg6(int x) { return gmod(x, SG6); } const int GOLDBERG_LIMIT_HALF = GOLDBERG_LIMIT/2; const int GOLDBERG_MASK_HALF = GOLDBERG_MASK/2; EX int get_code(const local_info& li) { return ((li.relative.first & GOLDBERG_MASK_HALF) << 0) + ((li.relative.second & GOLDBERG_MASK_HALF) << (GOLDBERG_BITS-1)) + ((fixg6(li.total_dir)) << (2*GOLDBERG_BITS-2)) + ((li.last_dir & 15) << (2*GOLDBERG_BITS+2)); } EX local_info get_local_info(cell *c) { if(INVERSE) { c = get_mapped(c); return UIU(get_local_info(c)); } local_info li; if(c == c->master->c7) { li.relative = loc(0,0); li.first_dir = -1; li.last_dir = -1; li.total_dir = -1; } else { vector<int> dirs; while(c != c->master->c7) { dirs.push_back(c->c.spin(0)); c = c->move(0); } li.first_dir = dirs[0]; li.last_dir = dirs.back(); loc at(0,0); int dir = 0; at = at + eudir(dir); dirs.pop_back(); while(dirs.size()) { dir += dirs.back() + SG3; dirs.pop_back(); at = at + eudir(dir); } li.relative = at; li.total_dir = dir + SG3; } return li; } EX int last_dir(cell *c) { return get_local_info(c).last_dir; } EX loc get_coord(cell *c) { return get_local_info(c).relative; } EX int pseudohept_val(cell *c) { loc v = get_coord(c); return gmod(v.first - v.second, 3); } // mapping of the local equilateral triangle // goldberg_map[y][x].cw is the cellwalker in this triangle at position (x,y) // facing local direction 0 goldberg_mapping_t goldberg_map[GOLDBERG_LIMIT][GOLDBERG_LIMIT]; void clear_mapping() { for(int y=0; y<GOLDBERG_LIMIT; y++) for(int x=0; x<GOLDBERG_LIMIT; x++) { goldberg_map[y][x].cw.at = NULL; goldberg_map[y][x].rdir = -1; goldberg_map[y][x].mindir = 0; } } goldberg_mapping_t& get_mapping(loc c) { return goldberg_map[c.second&GOLDBERG_MASK][c.first&GOLDBERG_MASK]; } int spawn; cell*& peek(cellwalker cw) { return cw.at->move(cw.spin); } cellwalker get_localwalk(const goldberg_mapping_t& wc, int dir) { if(dir < wc.mindir) dir += SG6; if(dir >= wc.mindir + SG6) dir -= SG6; return wc.cw + dir; } void set_localwalk(goldberg_mapping_t& wc, int dir, const cellwalker& cw) { if(dir < wc.mindir) dir += SG6; if(dir >= wc.mindir + SG6) dir -= SG6; wc.cw = cw - dir; } bool pull(loc at, int dir) { auto& wc = get_mapping(at); auto at1 = at + eudir(dir); int dir1 = fixg6(dir+SG3); cellwalker wcw = get_localwalk(wc, dir); auto& wc1= get_mapping(at1); if(wc1.cw.at) { if(peek(wcw)) { auto wcw1 = get_localwalk(wc1, dir1); if(wcw + wstep != wcw1) { DEBB(DF_GP, (at1, " : ", (wcw+wstep), " / ", wcw1, " (pull error from ", at, " :: ", wcw, ")") ); exit(1); } if(do_adjm) wc1.adjm = wc.adjm * get_adj(wcw.at, wcw.spin); } return false; } if(peek(wcw)) { set_localwalk(wc1, dir1, wcw + wstep); DEBB(DF_GP, (at1, " :", wcw+wstep, " (pulled from ", at, " :: ", wcw, ")")); if(do_adjm) wc1.adjm = wc.adjm * get_adj(wcw.at, wcw.spin); return true; } return false; } EX bool do_adjm; void conn1(loc at, int dir, int dir1) { auto& wc = get_mapping(at); auto wcw = get_localwalk(wc, dir); auto& wc1 = get_mapping(at + eudir(dir)); DEBB0(DF_GP, (format(" md:%02d s:%d", wc.mindir, wc.cw.spin)); ) DEBB0(DF_GP, (" connection ", at, "/", dir, " ", wc.cw+dir, "=", wcw, " ~ ", at+eudir(dir), "/", dir1, " "); ) if(!wc1.cw.at) { wc1.start = wc.start; if(peek(wcw)) { DEBB0(DF_GP, (" (pulled) "); ) set_localwalk(wc1, dir1, wcw + wstep); if(do_adjm) wc1.adjm = wc.adjm * get_adj(wcw.at, wcw.spin); } else { peek(wcw) = newCell(SG6, wc.cw.at->master); wcw.at->c.setspin(wcw.spin, 0, false); set_localwalk(wc1, dir1, wcw + wstep); if(do_adjm) wc1.adjm = wc.adjm; spawn++; DEBB0(DF_GP, (" (created) "); ) } } DEBB0(DF_GP, (wc1.cw+dir1, " ")); auto wcw1 = get_localwalk(wc1, dir1); if(peek(wcw)) { if(wcw+wstep != wcw1) { DEBB(DF_GP, ("FAIL: ", wcw, " connected to ", wcw+wstep, " not to ", wcw1); exit(1); ) } else { DEBB(DF_GP, ("(was there)")); } } else { DEBB(DF_GP, ("ok")); peek(wcw) = wcw1.at; wcw.at->c.setspin(wcw.spin, wcw1.spin, wcw.mirrored != wcw1.mirrored); if(wcw+wstep != wcw1) { DEBB(DF_GP | DF_ERROR, ("assertion failed")); exit(1); } } if(do_adjm) { get_adj(wcw.at, wcw.spin) = inverse(wc.adjm) * wc1.adjm; get_adj(wcw1.at, wcw1.spin) = inverse(wc1.adjm) * wc.adjm; if(geom3::flipped) gp_swapped.emplace(wcw.at, wcw.spin); if(geom3::flipped) gp_swapped.emplace(wcw1.at, wcw1.spin); } } void conn(loc at, int dir) { conn1(at, fixg6(dir), fixg6(dir+SG3)); conn1(at + eudir(dir), fixg6(dir+SG3), fixg6(dir)); } EX map<pair<cell*, int>, transmatrix> gp_adj; EX set<pair<cell*, int>> gp_swapped; EX transmatrix& get_adj(cell *c, int i) { return gp_adj[make_pair(c,i)]; } goldberg_mapping_t& set_heptspin(loc at, heptspin hs) { auto& ac0 = get_mapping(at); ac0.cw = cellwalker(hs.at->c7, hs.spin, hs.mirrored); ac0.start = at; DEBB(DF_GP, (at, " : ", ac0.cw)); return ac0; } EX void extend_map(cell *c, int d) { DEBB(DF_GP, ("EXTEND ",c, " ", d)); indenter ind(2); if(c->master->c7 != c) { auto c1 = c; auto d1 = d; while(c->master->c7 != c) { DEBB(DF_GP, (c, " direction 0 corresponds to ", c->move(0), " direction ", c->c.spin(0)); ) d = c->c.spin(0); c = c->move(0); } // c move 0 equals c' move spin(0) extend_map(c, d); extend_map(c, c->c.fix(d-1)); extend_map(c, c->c.fix(d+1)); if(S3 == 4 && !c1->move(d1)) { for(int i=0; i<S7; i++) for(int j=0; j<S7; j++) extend_map(createStep(c->master, i)->c7, j); } if(S3 == 4 && !c1->move(d1)) { for(int i=0; i<S7; i++) for(int i1=0; i1<S7; i1++) for(int j=0; j<S7; j++) extend_map(createStep(createStep(c->master, i), i1)->c7, j); } return; } if(S3 == 4 && param.first <= param.second) { d--; if(d<0) d += S7; } clear_mapping(); // we generate a local map from an Euclidean grid to the // hyperbolic grid we build. // we fill the equilateral triangle with the following vertices: loc vc[4]; vc[0] = loc(0,0); vc[1] = param; if(S3 == 3) vc[2] = param * loc(0,1); else vc[2] = param * loc(1,1), vc[3] = param * loc(0,1); heptspin hs(c->master, d, false); auto& ac0 = set_heptspin(vc[0], hs); ac0.mindir = -1; auto& ac1 = set_heptspin(vc[1], hs + wstep - SG3); ac1.mindir = 0; auto& ac2 = set_heptspin(vc[S3-1], S3 == 3 ? hs + 1 + wstep - 4 : hs + 1 + wstep + 1); ac2.mindir = S3 == 3 ? 1 : -2; if(S3 == 4) { set_heptspin(vc[2], hs + wstep - 1 + wstep + 1).mindir = -3; } do_adjm = quotient || sphere; if(do_adjm) { auto m = (hrmap_standard*)currentmap; get_mapping(vc[0]).adjm = Id; get_mapping(vc[1]).adjm = m->adj(c->master, d); get_mapping(vc[S3-1]).adjm = m->adj(c->master, (d+1)%c->master->type); if(S3 == 4) { heptspin hs1 = hs + wstep - 1; get_mapping(vc[2]).adjm = m->adj(c->master, d) * m->adj(hs1.at, hs1.spin); } } auto fix_mirrors = [&] { if(ac1.cw.mirrored != hs.mirrored) ac1.cw--; if(ac2.cw.mirrored != hs.mirrored) ac2.cw--; if(S3 == 4) { auto& ac3 = get_mapping(vc[2]); if(ac3.cw.mirrored != hs.mirrored) ac3.cw--; } }; if(S3 == 4 && param == loc(1,1)) { fix_mirrors(); conn(loc(0,0), 1); conn(loc(0,1), 0); conn(loc(0,1), 1); conn(loc(0,1), 2); conn(loc(0,1), 3); return; } if(S3 == 4 && param.first == param.second && nonorientable) { fix_mirrors(); int size = param.first; // go along the boundary of the 'diamond' for(int dir=0; dir<4; dir++) { int dir_orth = (dir+1) & 3; loc at = vc[dir]; for(int i=0; i<size; i++) { if(!pull(at, dir)) break; at = at + eudir(dir); if(!pull(at, dir_orth)) break; at = at + eudir(dir_orth); } } // build the skeleton for(int dir=0; dir<4; dir++) { int dir_orth = (dir+1) & 3; for(int i=0; i<size; i++) { conn(vc[dir] + eudir(dir_orth) * i, dir_orth); } } // fill everything for(int y=0; y<2*size; y++) { int xdist = min(y, 2*size-y); for(int x=0; x<xdist; x++) for(int d=0; d<4; d++) { conn(loc(x, y), d); conn(loc(-x, y), d); } } return; } if(nonorientable && param.first == param.second) { int x = param.first; fix_mirrors(); for(int d=0; d<3; d++) for(int k=0; k<3; k++) for(int i=0; i<x; i++) { int dd = (2*d+k); loc cx = vc[d] + eudir(dd) * i; if(!pull(cx, dd)) break; } for(int i=0; i<=2*x; i++) for(int d=0; d<3; d++) { loc cx = vc[d] + eudir(1+2*d) * i; if(i < 2*x) conn(cx, 1+2*d); int jmax = x-i, drev = 2*d; if(jmax < 0) drev += 3, jmax = -jmax; for(int j=0; j<jmax; j++) { loc cy = cx + eudir(drev) * j; conn(cy, drev); conn(cy, drev+1); conn(cy, drev+2); } } return; } // then we set the edges of our big equilateral triangle (in a symmetric way) for(int i=0; i<S3; i++) { loc start = vc[i]; loc end = vc[(i+1)%S3]; DEBB(DF_GP, ("from ", start, " to ", end); ) loc rel = param; auto build = [&] (loc& at, int dx, bool forward) { int dx1 = dx + SG2*i; DEBB(DF_GP, (at, " .. ", make_pair(at + eudir(dx1), fixg6(dx1+SG3)))); conn(at, dx1); if(forward) get_mapping(at).rdir = fixg6(dx1); else get_mapping(at+eudir(dx1)).rdir = fixg6(dx1+SG3); at = at + eudir(dx1); }; while(rel.first >= 2 && (S3 == 3 ? rel.first >= 2 - rel.second : true)) { build(start, 0, true); build(end, SG3, false); rel.first -= 2; } while(rel.second >= 2) { build(start, 1, true); build(end, 1+SG3, false); rel.second -= 2; } while(rel.second <= -2 && S3 == 3) { build(start, 5, true); build(end, 2, false); rel.second += 2; rel.first -= 2; } if(S3 == 3) while((rel.first>0 && rel.second > 0) | (rel.first > 1 && rel.second < 0)) { build(start, 0, true); build(end, 3, false); rel.first -= 2; } if(S3 == 4 && rel == loc(1,1)) { if(param == loc(3,1) || param == loc(5,1)) { build(start, 1, true); build(end, 2, false); rel.first--; rel.second--; } else { build(start, 0, true); build(end, 3, false); rel.first--; rel.second--; } } for(int k=0; k<SG6; k++) if(start + eudir(k+SG2*i) == end) build(start, k, true); if(start != end) { DEBB(DF_GP | DF_ERROR, ("assertion failed: start ", start, " == end ", end)); exit(1); } } // now we can fill the interior of our big equilateral triangle loc at = vc[0]; int maxstep = 3000; while(true) { maxstep--; if(maxstep < 0) { DEBB(DF_GP | DF_ERROR, ("maxstep exceeded")); exit(1); } auto& wc = get_mapping(at); int dx = wc.rdir; auto at1 = at + eudir(dx); auto& wc1 = get_mapping(at1); DEBB(DF_GP, (make_pair(at, dx), " ", make_pair(at1, wc1.rdir))); int df = wc1.rdir - dx; if(df < 0) df += SG6; if(df == SG3) break; if(S3 == 3) switch(df) { case 0: case 4: case 5: at = at1; continue; case 2: { conn(at, dx+1); wc.rdir = (dx+1) % 6; break; } case 1: { auto at2 = at + eudir(dx+1); auto& wc2 = get_mapping(at2); if(wc2.cw.at) { at = at1; continue; } wc.rdir = (dx+1) % 6; conn(at, (dx+1) % 6); conn(at1, (dx+2) % 6); conn(at2, (dx+0) % 6); wc1.rdir = -1; wc2.rdir = dx; break; } default: println(hlog, "case unhandled ", df); exit(1); } else switch(df) { case 0: case 3: at = at1; continue; case 1: auto at2 = at + eudir(dx+1); auto& wc2 = get_mapping(at2); if(wc2.cw.at) { auto at3 = at1 + eudir(wc1.rdir); auto& wc3 = get_mapping(at3); auto at4 = at3 + eudir(wc3.rdir); if(at4 == at2) { wc.rdir = (dx+1)%4; wc1.rdir = -1; wc3.rdir = -1; conn(at, (dx+1)%4); } else { at = at1; } } else { wc.rdir = (dx+1)%4; wc1.rdir = -1; wc2.rdir = dx%4; int bdir = -1; int bdist = 100; for(int d=0; d<4; d++) { auto &wcm = get_mapping(at2 + eudir(d)); if(wcm.cw.at && length(wcm.start - at2) < bdist) bdist = length(wcm.start - at2), bdir = d; } if(bdir != -1) conn(at2 + eudir(bdir), bdir ^ 2); conn(at, (dx+1)%4); conn(at2, dx%4); at = param * loc(1,0) + at * loc(0, 1); } break; } } DEBB(DF_GP, ("DONE")) } EX hyperpoint loctoh_ort(loc at) { return point3(at.first, at.second, 1); } hyperpoint corner_coords6[7] = { point3(2, -1, 0), point3(1, 1, 0), point3(-1, 2, 0), point3(-2, 1, 0), point3(-1, -1, 0), point3(1, -2, 0), point3(0, 0, 0) // center, not a corner }; hyperpoint corner_coords4[7] = { point3(1.5, -1.5, 0), // point3(1, 0, 0), point3(1.5, 1.5, 0), // point3(0, 1, 0), point3(-1.5, 1.5, 0), // point3(-1, 0, 0), point3(-1.5, -1.5, 0), // point3(0, -1, 0), point3(0, 0, 0), point3(0, 0, 0), point3(0, 0, 0) }; #define corner_coords (S3==3 ? corner_coords6 : corner_coords4) hyperpoint cornmul(const transmatrix& corners, const hyperpoint& c) { if(sphere && S3 == 3) { ld cmin = c[0] * c[1] * c[2] * (6 - S7); return corners * point3(c[0] + cmin, c[1] + cmin, c[2] + cmin); } else return corners * c; } hyperpoint atz(const transmatrix& T, const transmatrix& corners, loc at, int cornerid = 6, ld cf = 3) { int sp = 0; again: auto corner = corners * (loctoh_ort(at) + (corner_coords[cornerid] / cf)); if(corner[1] < -1e-6 || corner[2] < -1e-6) { at = at * eudir(1); if(cornerid < SG6) cornerid = (1 + cornerid) % SG6; sp++; goto again; } if(sp>SG3) sp -= SG6; return normalize(spin(TAU*sp/S7) * cornmul(T, corner)); } transmatrix dir_matrix(int i) { auto ddspin = [] (int d) -> transmatrix { return spin(M_PI - d * TAU / S7 - cgi.hexshift); }; return spin(-cgi.gpdata->alpha) * build_matrix( geom3::flipped ? C02 : tile_center(), geom3::flipped ? ddspin(i) * xpush0(cgi.tessf) : ddspin(i) * lxpush0(cgi.tessf), geom3::flipped ? ddspin(i+1) * xpush0(cgi.tessf) : ddspin(i+1) * lxpush0(cgi.tessf), C03 ); } EX void prepare_matrices(bool inv) { if(!(GOLDBERG_INV || inv)) return; if(embedded_plane) geom3::light_flip(true); cgi.gpdata->corners = inverse(build_matrix( loctoh_ort(loc(0,0)), loctoh_ort(param), loctoh_ort(param * loc(0,1)), C03 )); cgi.gpdata->Tf.resize(S7); /* should work directly without flipping but it does not... flipping for now */ for(int i=0; i<S7; i++) { transmatrix T = dir_matrix(i); for(int x=-GOLDBERG_LIMIT_HALF; x<GOLDBERG_LIMIT_HALF; x++) for(int y=-GOLDBERG_LIMIT_HALF; y<GOLDBERG_LIMIT_HALF; y++) for(int d=0; d<(S3==3?6:4); d++) { loc at = loc(x, y); hyperpoint h = atz(T, cgi.gpdata->corners, at, 6); hyperpoint hl = atz(T, cgi.gpdata->corners, at + eudir(d), 6); auto& res = cgi.gpdata->Tf[i][x&GOLDBERG_MASK][y&GOLDBERG_MASK][d]; res = rgpushxto0(h) * rspintox(gpushxto0(h) * hl) * spin180(); } } if(geom3::flipped) { geom3::light_flip(false); for(int i=0; i<S7; i++) { for(int x=-GOLDBERG_LIMIT_HALF; x<GOLDBERG_LIMIT_HALF; x++) for(int y=-GOLDBERG_LIMIT_HALF; y<GOLDBERG_LIMIT_HALF; y++) for(int d=0; d<(S3==3?6:4); d++) { auto& T = cgi.gpdata->Tf[i][x&GOLDBERG_MASK][y&GOLDBERG_MASK][d]; T = cgi.emb->base_to_actual(T); } } } } EX hyperpoint get_corner_position(const local_info& li, int cid, ld cf IS(3)) { int i = li.last_dir; if(i == -1) return atz(dir_matrix(cid), cgi.gpdata->corners, li.relative, 0, cf); else { auto& cellmatrix = cgi.gpdata->Tf[i][li.relative.first&GOLDBERG_MASK][li.relative.second&GOLDBERG_MASK][fixg6(li.total_dir)]; return inverse(cellmatrix) * atz(dir_matrix(i), cgi.gpdata->corners, li.relative, fixg6(cid + li.total_dir), cf); } } EX hyperpoint get_corner_position(cell *c, int cid, ld cf IS(3)) { return get_corner_position(get_local_info(c), cid, cf); } map<pair<int, int>, loc> center_locs; EX void compute_geometry(bool inv) { center_locs.clear(); if(GOLDBERG_INV || inv) { if(!cgi.gpdata) cgi.gpdata = make_shared<geometry_information::gpdata_t>(); gp::clear_plainshapes(); int x = param.first; int y = param.second; if(S3 == 3) cgi.gpdata->area = ((2*x+y) * (2*x+y) + y*y*3) / 4; else cgi.gpdata->area = x * x + y * y; next = point3(x+y/2., -y * sqrt(3) / 2, 0); ld scale = 1 / hypot_d(2, next); if(!GOLDBERG) scale = 1; cgi.crossf *= scale; cgi.hepvdist *= scale; cgi.hexhexdist *= scale; cgi.hexvdist *= scale; cgi.rhexf *= scale; // spin = spintox(next); // ispin = rspintox(next); cgi.gpdata->alpha = -atan2(next[1], next[0]) * 6 / S7; if(S3 == 3) cgi.base_distlimit = (cgi.base_distlimit + log(scale) / log(2.618)) / scale; else cgi.base_distlimit = 3 * max(param.first, param.second) + 2 * min(param.first, param.second); if(S7 == 12) cgi.base_distlimit = 2 * param.first + 2 * param.second + 1; if(cgi.base_distlimit > SEE_ALL) cgi.base_distlimit = SEE_ALL; DEBB(DF_GEOM | DF_POLY, ("scale = ", scale)); } } loc config; EX bool rotate_and_check_limits(loc& v) { int& x = v.first, &y = v.second; while(x < 0 || y < 0 || (x == 0 && y > 0)) v = v * loc(0, 1); return 2*(x+y) < (1<<GOLDBERG_BITS); } EX bool check_limits(loc v) { return rotate_and_check_limits(v); } loc internal_representation(loc v) { int& x = v.first, &y = v.second; while(!rotate_and_check_limits(v)) { if(x > y) x--; else y--; } if(S3 == 3 && y > x) v = v * loc(1, -1); return v; } EX loc human_representation(loc v) { int& x = v.first, &y = v.second; if(S3 == 3) while(x < 0 || y < 0 || (x == 0 && y > 0)) v = v * loc(0, 1); return v; } EX eVariation variation_for(loc xy) { if(xy.first == 1 && xy.second == 0) return eVariation::pure; if(xy.first == 1 && xy.second == 1 && S3 == 3) return eVariation::bitruncated; return eVariation::goldberg; } EX void whirl_set(loc xy) { xy = internal_representation(xy); if(xy.second && xy.second != xy.first && nonorientable) { addMessage(XLAT("This does not work in non-orientable geometries")); xy.second = 0; } config = human_representation(xy); auto g = screens; if(xy.first == 0 && xy.second == 0) xy.first = 1; stop_game(); param = xy; if(xy.first == 1 && xy.second == 0) { set_variation(eVariation::pure); } else if(xy.first == 1 && xy.second == 1 && S3 == 3) { set_variation(eVariation::bitruncated); } else set_variation(eVariation::goldberg); start_game(); screens = g; } string helptext() { return XLAT( "Goldberg polyhedra are obtained by adding extra hexagons to a dodecahedron. " "GP(x,y) means that, to get to a nearest non-hex from any non-hex, you should move x " "cells in any direction, turn right 60 degrees, and move y cells. " "HyperRogue generalizes this to any tesselation with 3 faces per vertex. " "By default HyperRogue uses bitruncation, which corresponds to GP(1,1)." ); } void show() { cmode = sm::SIDE | sm::MAYDARK; gamescreen(); dialog::init(XLAT("variations")); int min_quality_chess = 0; int min_quality = 0; #if CAP_TEXTURE if((texture::config.tstate == texture::tsActive) && (S7 % 2 == 1)) { if(texture::cgroup == cpFootball || texture::cgroup == cpThree) min_quality = 1; } if((texture::config.tstate == texture::tsActive) && (S7 % 2 == 1) && (S3 == 4)) { if(texture::cgroup == cpChess) min_quality = 1; } #endif if(min_quality == 0 && min_quality_chess == 0) { dialog::addBoolItem(XLAT("pure"), PURE || (GOLDBERG && univ_param() == loc(1,0)), 'a'); dialog::lastItem().value = "GP(1,0)"; dialog::add_action_confirmed([] { whirl_set(loc(1, 0)); }); } if(min_quality_chess == 0) { dialog::addBoolItem(XLAT("bitruncated"), BITRUNCATED, 'b'); dialog::add_action_confirmed([] { if(S3 == 4) { if(!BITRUNCATED) { stop_game(); set_variation(eVariation::bitruncated); start_game(); } } else whirl_set(loc(1, 1)); }); } dialog::lastItem().value = S3 == 3 ? "GP(1,1)" : ONOFF(BITRUNCATED); if(min_quality == 0 || min_quality_chess) { dialog::addBoolItem(S3 == 3 ? XLAT("chamfered") : XLAT("expanded"), univ_param() == loc(2,0) && GOLDBERG, 'c'); dialog::lastItem().value = "GP(2,0)"; dialog::add_action_confirmed([] { whirl_set(loc(2, 0)); }); } if(S3 == 3) { dialog::addBoolItem(XLAT("2x bitruncated"), GOLDBERG && univ_param() == loc(3,0), 'd'); dialog::lastItem().value = "GP(3,0)"; dialog::add_action_confirmed([] { whirl_set(loc(3, 0)); }); } else { dialog::addBoolItem(XLAT("rectified"), param == loc(1,1) && GOLDBERG, 'd'); dialog::lastItem().value = "GP(1,1)"; dialog::add_action_confirmed([] { whirl_set(loc(1, 1)); }); } dialog::addBreak(100); dialog::addSelItem("x", its(config.first), 'x'); dialog::add_action([] { dialog::editNumber(config.first, 0, 8, 1, 1, "x", helptext()); }); dialog::addSelItem("y", its(config.second), 'y'); dialog::add_action([] { dialog::editNumber(config.second, 0, 8, 1, 1, "y", helptext()); }); if(!check_limits(config)) dialog::addInfo(XLAT("Outside of the supported limits")); if(config.second && config.second != config.first && nonorientable) { dialog::addInfo(XLAT("This does not work in non-orientable geometries")); } else if((config.first-config.second)%3 && min_quality) dialog::addInfo(XLAT("This pattern needs x-y divisible by 3")); else if((config.first-config.second)%2 && min_quality_chess) dialog::addInfo(XLAT("This pattern needs x-y divisible by 2")); else { dialog::addBoolItem(XLAT("select"), param == internal_representation(config) && !IRREGULAR && !INVERSE, 'f'); dialog::lastItem().value = "GP(x,y)"; } dialog::add_action_confirmed([] { whirl_set(config); }); dialog::addBreak(100); #if CAP_IRR if(irr::supports(geometry)) { dialog::addBoolItem(XLAT("irregular"), IRREGULAR, 'i'); dialog::add_action(dialog::add_confirmation([=] () { if(min_quality && !irr::bitruncations_requested) irr::bitruncations_requested++; if(euclid && (!closed_manifold || nonorientable)) { println(hlog, XLAT("To create Euclidean irregular tesselations, first enable a torus")); return; } if(!IRREGULAR) irr::visual_creator(); })); } #endif dialog::addBreak(100); int style = 0; auto v0 = variation_for(param); bool bad_bi = BITRUNCATED && a4; if(!bad_bi) { dynamicval<eVariation> v(variation, v0); if(geosupport_football() == 2) style = 3; if(geosupport_chessboard()) style = 2; } if(style == 2) { dialog::addBoolItem(XLAT("inverse rectify"), UNRECTIFIED, 'r'); dialog::add_action_confirmed([v0] { param = univ_param(); if(UNRECTIFIED) set_variation(v0); else set_variation(eVariation::unrectified); start_game(); config = human_representation(univ_param()); }); } else if(style == 3) { dialog::addBoolItem(XLAT("inverse truncate"), UNTRUNCATED, 't'); dialog::add_action_confirmed([v0] { param = univ_param(); if(UNTRUNCATED) set_variation(v0); else set_variation(eVariation::untruncated); start_game(); }); dialog::addBoolItem(XLAT("warped version"), WARPED, 'w'); dialog::add_action_confirmed([v0] { param = univ_param(); if(WARPED) set_variation(v0); else set_variation(eVariation::warped); start_game(); }); } dialog::addBreak(100); dialog::addItem(XLAT("swap x and y"), 'z'); dialog::add_action([] { swap(config.first, config.second); }); bool have_dual = !bad_bi && !IRREGULAR && !WARPED; if(S3 == 3 && UNTRUNCATED && (univ_param()*loc(1,1)) % 3) have_dual = false; if(S3 == 4 && UNRECTIFIED && (univ_param()*loc(1,1)) % 2) have_dual = false; if(have_dual) { dialog::addItem(XLAT("dual of current"), 'D'); dialog::add_action([] { auto p = univ_param(); if(S3 == 3 && !UNTRUNCATED) { println(hlog, "set param to ", p * loc(1,1)); whirl_set(p * loc(1, 1)); set_variation(eVariation::untruncated); start_game(); config = human_representation(univ_param()); } else if(S3 == 4 && !UNRECTIFIED) { whirl_set(p * loc(1, 1)); set_variation(eVariation::unrectified); start_game(); config = human_representation(univ_param()); } else if(S3 == 3 && UNTRUNCATED) { println(hlog, "whirl_set to ", (p * loc(1,1)) / 3); whirl_set((p * loc(1,1)) / 3); config = human_representation(univ_param()); } else if(S3 == 4 && UNRECTIFIED) { whirl_set((p * loc(1,1)) / 2); config = human_representation(univ_param()); } }); } dialog::addBreak(100); dialog::addHelp(); dialog::add_action([] { gotoHelp(helptext()); }); dialog::addBack(); dialog::display(); } EX loc univ_param() { if(GOLDBERG_INV) return param; else if(PURE) return loc(1,0); else return loc(1,1); } EX void configure() { auto l = univ_param(); param = l; config = human_representation(l); pushScreen(gp::show); } EX void be_in_triangle(local_info& li) { int sp = 0; auto& at = li.relative; again: auto corner = cgi.gpdata->corners * loctoh_ort(at); if(corner[1] < -1e-6 || corner[2] < -1e-6) { at = at * eudir(1); sp++; goto again; } if(sp>SG3) sp -= SG6; li.last_dir = gmod(li.last_dir - sp, S7); } // from some point X, (0,0) is in distance dmain, param is in distance d0, and param*z is in distance d1 // what is the distance of at from X? EX int solve_triangle(int dmain, int d0, int d1, loc at) { loc centerloc(0, 0); auto rel = make_pair(d0-dmain, d1-dmain); if(center_locs.count(rel)) centerloc = center_locs[rel]; else { bool found = false; for(int y=-20; y<=20; y++) for(int x=-20; x<=20; x++) { loc c(x, y); int cc = length(c); int c0 = length(c - param); int c1 = length(c - param*loc(0,1)); if(c0-cc == d0-dmain && c1-cc == d1-dmain) found = true, centerloc = c; } if(!found && !quotient) { println(hlog, "Warning: centerloc not found: ", make_tuple(dmain, d0, d1)); } center_locs[rel] = centerloc; } return dmain + length(centerloc-at) - length(centerloc); } int solve_quad(int dmain, int d0, int d1, int dx, loc at) { loc centerloc(0, 0); auto rel = make_pair(d0-dmain, (d1-dmain) + 1000 * (dx-dmain) + 1000000); if(center_locs.count(rel)) centerloc = center_locs[rel]; else { bool found = false; for(int y=-20; y<=20; y++) for(int x=-20; x<=20; x++) { loc c(x, y); int cc = length(c); int c0 = length(c - param); int c1 = length(c - param*loc(0,1)); int c2 = length(c - param*loc(1,1)); if(c0-cc == d0-dmain && c1-cc == d1-dmain && c2-cc == dx-dmain) found = true, centerloc = c; } if(!found && !quotient) { println(hlog, "Warning: centerloc not found: ", make_tuple(dmain, d0, d1, dx)); } center_locs[rel] = centerloc; } return dmain + length(centerloc-at) - length(centerloc); } EX hyperpoint get_master_coordinates(cell *c) { auto li = get_local_info(c); be_in_triangle(li); return cgi.gpdata->corners * loctoh_ort(li.relative); } EX int compute_dist(cell *c, int master_function(cell*)) { if(!GOLDBERG) return master_function(c); auto li = get_local_info(c); be_in_triangle(li); cell *cm = c->master->c7; int i = li.last_dir; auto at = li.relative; auto dmain = master_function(cm); auto d0 = master_function(createStep(cm->master, i)->c7); auto d1 = master_function(createStep(cm->master, cm->c.fix(i+1))->c7); if(S3 == 4) { heptspin hs(cm->master, i); hs += wstep; hs+=-1; hs += wstep; auto d2 = master_function(hs.at->c7); return solve_quad(dmain, d0, d1, d2, at); } return solve_triangle(dmain, d0, d1, at); } EX int dist_2() { return length(univ_param()); } EX int dist_3() { return length(univ_param() * loc(1,1)); } EX int dist_1() { return dist_3() - dist_2(); } #else EX int dist_1() { return 1; } EX int dist_2() { return BITRUNCATED ? 2 : 1; } EX int dist_3() { return BITRUNCATED ? 3 : 2; } #endif EX array<heptagon*, 3> get_masters(cell *c) { if(0); #if CAP_GP else if(INVERSE) { c = get_mapped(c); return UIU(get_masters(c)); } else if(GOLDBERG) { auto li = get_local_info(c); be_in_triangle(li); auto cm = c->master; int i = li.last_dir; return make_array(cm, cm->cmove(i), cm->cmodmove(i+1)); } #endif #if CAP_IRR else if(IRREGULAR) return irr::get_masters(c); #endif else return make_array(c->cmove(0)->master, c->cmove(2)->master, c->cmove(4)->master); } EX string operation_name() { if(0); #if CAP_IRR else if(IRREGULAR) return XLAT("irregular"); #endif else if(DUAL) return XLAT("dual"); else if(PURE) return XLAT("pure"); else if(BITRUNCATED) return XLAT("bitruncated"); #if CAP_GP else if(GOLDBERG && param == loc(1, 0)) return XLAT("pure"); else if(GOLDBERG && param == loc(1, 1) && S3 == 3) return XLAT("bitruncated"); else if(GOLDBERG && param == loc(1, 1) && S3 == 4) return XLAT("rectified"); else if(UNRECTIFIED && param == loc(1, 1) && S3 == 4) return XLAT("dual"); else if(UNTRUNCATED && param == loc(1, 1) && S3 == 3) return XLAT("dual"); else if(GOLDBERG && param == loc(2, 0)) return S3 == 3 ? XLAT("chamfered") : XLAT("expanded"); else if(GOLDBERG && param == loc(3, 0) && S3 == 3) return XLAT("2x bitruncated"); #if MAXMDIM >= 4 else if(variation == eVariation::subcubes) return XLAT("subcubed") + "(" + its(reg3::subcube_count) + ")"; else if(variation == eVariation::dual_subcubes) return XLAT("dual-subcubed") + "(" + its(reg3::subcube_count) + ")"; else if(variation == eVariation::bch) return XLAT("bitruncated-subcubed") + "(" + its(reg3::subcube_count) + ")"; else if(variation == eVariation::coxeter) return XLAT("subdivided") + "(" + its(reg3::coxeter_param) + ")"; #endif else { auto p = human_representation(param); string s = "GP(" + its(p.first) + "," + its(p.second) + ")"; if(UNRECTIFIED) return XLAT("unrectified") + " " + s; if(WARPED) return XLAT("warped") + " " + s; if(UNTRUNCATED) return XLAT("untruncated") + " " + s; return s; } #else else return "UNSUPPORTED"; #endif } /* inverse map */ EX hrmap *pmap; // EX geometry_information *underlying_cgip; struct hrmap_inverse : hrmap { hrmap *underlying_map; map<cell*, cell*> mapping; map<cell*, int> shift; template<class T> auto in_underlying(const T& t) -> decltype(t()) { dynamicval<hrmap*> gpm(pmap, this); dynamicval<eVariation> gva(variation, variation_for(param)); dynamicval<hrmap*> gu(currentmap, underlying_map); // dynamicval<geometry_information*> gc(cgip, underlying_cgip); return t(); } cell* get_mapped(cell *underlying_cell, int set_shift) { if(mapping.count(underlying_cell)) return mapping[underlying_cell]; int d = underlying_cell->type; if(UNTRUNCATED) d /= 2; if(WARPED && set_shift < 2) d /= 2; cell *c = newCell(d, underlying_cell->master); mapping[underlying_cell] = c; if(!UNRECTIFIED) shift[c] = set_shift; mapping[c] = underlying_cell; return c; } transmatrix relative_matrixh(heptagon *h2, heptagon *h1, const hyperpoint& hint) override { return in_underlying([&] { return currentmap->relative_matrix(h2, h1, hint); }); } transmatrix relative_matrixc(cell *c2, cell *c1, const hyperpoint& hint) override { c1 = mapping[c1]; c2 = mapping[c2]; return in_underlying([&] { return currentmap->relative_matrix(c2, c1, hint); }); } ~hrmap_inverse() { in_underlying([this] { delete underlying_map; }); } heptagon *getOrigin() override { return in_underlying([this] { return underlying_map->getOrigin(); }); } cell *gs; cell* gamestart() override { return gs; } hrmap_inverse() { if(0) { println(hlog, "making ucgi"); dynamicval<eVariation> gva(variation, variation_for(param)); check_cgi(); cgi.require_basics(); // underlying_cgip = cgip; println(hlog, "done ucgi"); } bool warped = WARPED; in_underlying([&,this] { initcells(); underlying_map = currentmap; gs = currentmap->gamestart(); if(!warped) gs = gs->cmove(0); }); if(UNTRUNCATED) gs = get_mapped(gs, 1); else gs = get_mapped(gs, 2); for(hrmap*& m: allmaps) if(m == underlying_map) m = NULL; } cell *create_move(cell *parent, int d) { if(UNRECTIFIED) { cellwalker cw(mapping[parent], d); bool b = cw.mirrored; in_underlying([&] { cw += wstep; cw --; cw += wstep; cw --; if(cw.mirrored != b) cw++; }); cw.at = get_mapped(cw.at, 0); parent->c.connect(d, cw.at, cw.spin, cw.mirrored); return cw.at; } if(UNTRUNCATED) { cellwalker cw(mapping[parent], 2*d+shift[parent]); in_underlying([&] { cw += wstep; }); cw.at = get_mapped(cw.at, cw.spin & 1); parent->c.connect(d, cw.at, cw.spin / 2, cw.mirrored); return cw.at; } if(WARPED) { int sh = shift[parent]; if(sh == 2) { cellwalker cw(mapping[parent], d); in_underlying([&] { cw += wstep; }); cw.at = get_mapped(cw.at, cw.spin & 1); parent->c.connect(d, cw.at, cw.spin / 2, cw.mirrored); return cw.at; } else { cellwalker cw(mapping[parent], 2*d+sh); in_underlying([&] { cw += wstep; }); cw.at = get_mapped(cw.at, 2); parent->c.connect(d, cw.at, cw.spin, cw.mirrored); return cw.at; } } throw hr_exception("unimplemented"); } transmatrix adj(cell *c, int d) override { transmatrix T; if(UNRECTIFIED) { cellwalker cw(mapping[c], d); in_underlying([&] { T = currentmap->adj(cw.at, cw.spin); cw += wstep; cw --; T = T * currentmap->adj(cw.at, cw.spin); }); } if(UNTRUNCATED) { cellwalker cw(mapping[c], 2*d+shift[c]); in_underlying([&] { T = currentmap->adj(cw.at, cw.spin); }); } if(WARPED) { int sh = shift[c]; if(sh == 2) { auto c1 = mapping[c]; in_underlying([&] { T = currentmap->adj(c1, d); }); } else { cellwalker cw(mapping[c], 2*d+shift[c]); in_underlying([&] { T = currentmap->adj(cw.at, cw.spin); }); } } return T; } void draw_at(cell *at, const shiftmatrix& where) override { dq::clear_all(); auto enqueue = (quotient ? dq::enqueue_by_matrix_c : dq::enqueue_c); enqueue(at, where); while(!dq::drawqueue_c.empty()) { auto& p = dq::drawqueue_c.front(); cell *c = p.first; shiftmatrix V = p.second; auto c1 = get_mapped(c, 0); in_underlying([&] { if(GOLDBERG) { gp::current_li = gp::get_local_info(c1); } else { gp::current_li.relative.first = shvid(c1); gp::current_li.relative.second = shift[c]; } }); dq::drawqueue_c.pop(); if(!do_draw(c, V)) continue; drawcell(c, V); for(int i=0; i<c->type; i++) if(c->cmove(i)) enqueue(c->move(i), optimized_shift(V * adj(c, i))); } } void find_cell_connection(cell *c, int d) override { inverse_move(c, d); } int shvid(cell *c) override { return gp::get_plainshape_id(c); } hyperpoint get_corner(cell *c, int cid, ld cf) override { if(UNTRUNCATED) { cell *c1 = gp::get_mapped(c); cellwalker cw(c1, cid*2); if(!gp::untruncated_shift(c)) cw--; hyperpoint h = UIU(nearcorner(c1, cw.spin)); return mid_at_actual(h, 3/cf); } if(UNRECTIFIED) { cell *c1 = gp::get_mapped(c); hyperpoint h = UIU(nearcorner(c1, cid)); return mid_at_actual(h, 3/cf); } if(WARPED) { int sh = gp::untruncated_shift(c); cell *c1 = gp::get_mapped(c); if(sh == 2) { cellwalker cw(c, cid); hyperpoint h1 = UIU(tC0(currentmap->adj(c1, cid))); cw--; hyperpoint h2 = UIU(tC0(currentmap->adj(c1, cw.spin))); hyperpoint h = mid(h1, h2); return mid_at_actual(h, 3/cf); } else { cellwalker cw(c1, cid*2); if(!gp::untruncated_shift(c)) cw--; hyperpoint h = UIU(nearcorner(c1, cw.spin)); h = mid(h, C0); return mid_at_actual(h, 3/cf); } } return C0; } }; EX hrmap* new_inverse() { return new hrmap_inverse; } hrmap_inverse* inv_map() { return (hrmap_inverse*)currentmap; } EX hrmap* get_underlying_map() { return inv_map()->underlying_map; } EX cell* get_mapped(cell *c) { return inv_map()->get_mapped(c, 0); } EX int untruncated_shift(cell *c) { return inv_map()->shift[c]; } EX void delete_mapped(cell *c) { if(!pmap) return; auto i = (hrmap_inverse*) pmap; if(i->mapping.count(c)) destroy_cell(i->mapping[c]); } EX cell *inverse_move(cell *c, int d) { return inv_map()->create_move(c, d); } #if HDR template<class T> auto in_underlying_geometry(const T& f) -> decltype(f()) { if(!INVERSE) return f(); dynamicval<hrmap*> gpm(pmap, currentmap); dynamicval<eVariation> gva(variation, variation_for(param)); dynamicval<hrmap*> gu(currentmap, get_underlying_map()); // dynamicval<geometry_information*> gc(cgip, underlying_cgip); return f(); } #define UIU(x) hr::gp::in_underlying_geometry([&] { return (x); }) #endif auto hooksw = addHook(hooks_swapdim, 100, [] { for(auto& p: gp_adj) swapmatrix(p.second); }); }}