// Hyperbolic Rogue -- Field Quotient geometry // Copyright (C) 2011-2018 Zeno Rogue, see 'hyper.cpp' for details /** \file fieldpattern.cpp * \brief Field Quotient geometry */ #if CAP_FIELD namespace hr { EX namespace fieldpattern { #if HDR #define currfp fieldpattern::getcurrfp() struct primeinfo { int p; int cells; bool squared; }; struct fgeomextra { eGeometry base; vector<primeinfo> primes; int current_prime_id; fgeomextra(eGeometry b, int i) : base(b), current_prime_id(i) {} }; #endif extern int subpathid; extern int subpathorder; #define MWDIM (WDIM+1) bool isprime(int n) { for(int k=2; k<n; k++) if(n%k == 0) return false; return true; } struct matrix { int a[MAXMDIM][MAXMDIM]; int* operator [] (int k) { return a[k]; } const int* operator [] (int k) const { return a[k]; } }; bool operator == (const matrix& A, const matrix& B) { for(int i=0; i<MWDIM; i++) for(int j=0; j<MWDIM; j++) if(A[i][j] != B[i][j]) return false; return true; } bool operator != (const matrix& A, const matrix& B) { for(int i=0; i<MWDIM; i++) for(int j=0; j<MWDIM; j++) if(A[i][j] != B[i][j]) return true; return false; } bool operator < (const matrix& A, const matrix& B) { for(int i=0; i<MWDIM; i++) for(int j=0; j<MWDIM; j++) if(A[i][j] != B[i][j]) return A[i][j] < B[i][j]; return false; } int btspin(int id, int d) { return S7*(id/S7) + (id + d) % S7; } struct fpattern { int Prime, wsquare, Field; // we perform our computations in the field Z_Prime[w] where w^2 equals wsquare // (or simply Z_Prime for wsquare == 0) #define EASY // 'easy' assumes that all elements of the field actually used // are of form n or mw (not n+mw), and cs and ch are both of form n // by experimentation, such cs and ch always exist // many computations are much simpler under that assumption #ifndef EASY static int neasy; int m(int x) { x %= Prime; if(x<0) x+= Prime; return x; } #endif int sub(int a, int b) { #ifdef EASY return (a + b * (Prime-1)) % Prime; #else return m(a%Prime-b%Prime) + Prime * m(a/Prime-b/Prime); #endif } int add(int a, int b) { #ifdef EASY return (a+b)%Prime; #else return m(a%Prime+b%Prime) + Prime * m(a/Prime+b/Prime); #endif } int mul(int tx, int ty) { #ifdef EASY return (tx*ty*((tx<0&&ty<0)?wsquare:1)) % Prime; #else if(tx >= Prime && tx % Prime) neasy++; if(ty >= Prime && ty % Prime) neasy++; int x[2], y[2], z[3]; for(int i=0; i<3; i++) z[i] = 0; for(int i=0; i<2; i++) x[i] = tx%Prime, tx /= Prime; for(int i=0; i<2; i++) y[i] = ty%Prime, ty /= Prime; for(int i=0; i<2; i++) for(int j=0; j<2; j++) z[i+j] = (z[i+j] + x[i] * y[j]) % Prime; z[0] += z[2] * wsquare; return m(z[0]) + Prime * m(z[1]); #endif } int sqr(int x) { return mul(x,x); } matrix mmul(const matrix& A, const matrix& B) { matrix res; for(int i=0; i<MWDIM; i++) for(int k=0; k<MWDIM; k++) { int t = 0; #ifdef EASY for(int j=0; j<MWDIM; j++) t += mul(A[i][j], B[j][k]); t %= Prime; #else for(int j=0; j<MWDIM; j++) t = add(t, mul(A[i][j], B[j][k])); #endif res[i][k] = t; } return res; } map<matrix, int> matcode; vector<matrix> matrices; vector<string> qpaths; vector<matrix> qcoords; // S7 in 2D, but e.g. 4 for a 3D cube int rotations; // S7 in 2D, but e.g. 24 for a 3D cube int local_group; // Id: Identity // R : rotate by 1/rotations of the full circle // P : make a step and turn backwards // X : in 3-dim, turn by 90 degrees matrix Id, R, P, X; matrix strtomatrix(string s) { matrix res = Id; matrix m = Id; for(int i=isize(s)-1; i>=0; i--) if(s[i] == 'R') res = mmul(R, res); else if (s[i] == 'P') res = mmul(P, res); else if (s[i] == 'x') { m[0][0] = -1; res = mmul(m, res); m[0][0] = +1; } else if (s[i] == 'y') { m[1][1] = -1; res = mmul(m, res); m[1][1] = +1; } else if (s[i] == 'z') { m[2][2] = -1; res = mmul(m, res); m[2][2] = +1; } return res; } void addas(const matrix& M, int i) { if(!matcode.count(M)) { matcode[M] = i; for(int j=0; j<isize(qcoords); j++) addas(mmul(M, qcoords[j]), i); } } void add(const matrix& M) { if(!matcode.count(M)) { int i = matrices.size(); matcode[M] = i, matrices.push_back(M); for(int j=0; j<isize(qcoords); j++) addas(mmul(M, qcoords[j]), i); if(WDIM == 3) add(mmul(X, M)); add(mmul(R, M)); } } #define MXF 1000000 vector<int> connections; vector<int> inverses; // NYI in 3D // 2D only vector<int> rrf; // rrf[i] equals gmul(i, rotations-1) vector<int> rpf; // rpf[i] equals gmul(i, rotations) matrix mpow(matrix M, int N) { while((N&1) == 0) N >>= 1, M = mmul(M, M); matrix res = M; N >>= 1; while(N) { M = mmul(M,M); if(N&1) res = mmul(res, M); N >>= 1; } return res; } int gmul(int a, int b) { return matcode[mmul(matrices[a], matrices[b])]; } int gpow(int a, int N) { return matcode[mpow(matrices[a], N)]; } pair<int,bool> gmul(pair<int, bool> a, int b) { return make_pair(gmul(a.first,b), a.second); } int order(const matrix& M) { int cnt = 1; matrix Po = M; while(Po != Id) Po = mmul(Po, M), cnt++; return cnt; } string decodepath(int i) { string s; while(i) { if(i % S7) i--, s += 'R'; else i = connections[i], s += 'P'; } return s; } int orderstats(); int cs, sn, ch, sh; int solve() { for(int a=0; a<MWDIM; a++) for(int b=0; b<MWDIM; b++) Id[a][b] = a==b?1:0; if(!isprime(Prime)) { return 1; } rotations = WDIM == 2 ? S7 : 4; local_group = WDIM == 2 ? S7 : 24; for(int pw=1; pw<3; pw++) { if(pw>3) break; Field = pw==1? Prime : Prime*Prime; if(pw == 2) { for(wsquare=1; wsquare<Prime; wsquare++) { int roots = 0; for(int a=0; a<Prime; a++) if((a*a)%Prime == wsquare) roots++; if(!roots) break; } } else wsquare = 0; #ifdef EASY std::vector<int> sqrts(Prime, 0); for(int k=1-Prime; k<Prime; k++) sqrts[sqr(k)] = k; int fmax = Prime; #else std::vector<int> sqrts(Field); for(int k=0; k<Field; k++) sqrts[sqr(k)] = k; int fmax = Field; #endif if(Prime == 13 && wsquare && false) { for(int i=0; i<Prime; i++) printf("%3d", sqrts[i]); printf("\n"); } R = P = X = Id; X[1][1] = 0; X[2][2] = 0; X[1][2] = 1; X[2][1] = Prime-1; for(cs=0; cs<fmax; cs++) { int sb = sub(1, sqr(cs)); sn = sqrts[sb]; R[0][0] = cs; R[1][1] = cs; R[0][1] = sn; R[1][0] = sub(0, sn); matrix Z = R; for(int i=1; i<rotations; i++) { if(Z == Id) goto nextcs; Z = mmul(Z, R); } if(Z != Id) continue; if(R[0][0] == 1) continue; for(ch=2; ch<fmax; ch++) { int chx = sub(mul(ch,ch), 1); sh = sqrts[chx]; P[0][0] = sub(0, ch); P[0][WDIM] = sub(0, sh); P[1][1] = Prime-1; P[WDIM][0] = sh; P[WDIM][WDIM] = ch; matrix Z1 = mmul(P, R); matrix Z = Z1; for(int i=1; i<S3; i++) { if(Z == Id) goto nextch; Z = mmul(Z, Z1); } if(Z == Id) return 0; nextch: ; } nextcs: ; } } return 2; } void build() { for(int i=0; i<isize(qpaths); i++) { matrix M = strtomatrix(qpaths[i]); qcoords.push_back(M); printf("Solved %s as matrix of order %d\n", qpaths[i].c_str(), order(M)); } matcode.clear(); matrices.clear(); add(Id); if(isize(matrices) != local_group) { printf("Error: rotation crash #1 (%d)\n", isize(matrices)); exit(1); } connections.clear(); for(int i=0; i<(int)matrices.size(); i++) { matrix M = matrices[i]; matrix PM = mmul(P, M); add(PM); if(isize(matrices) % local_group) { printf("Error: rotation crash (%d)\n", isize(matrices)); exit(1); } if(!matcode.count(PM)) { printf("Error: not marked\n"); exit(1); } connections.push_back(matcode[PM]); } DEBB(DF_FIELD, ("Computing inverses...\n")); int N = isize(matrices); DEBB(DF_FIELD, ("Number of heptagons: %d\n", N)); if(WDIM == 3) return; rrf.resize(N); rrf[0] = S7-1; for(int i=0; i<N; i++) rrf[btspin(i,1)] = btspin(rrf[i], 1), rrf[connections[i]] = connections[rrf[i]]; rpf.resize(N); rpf[0] = S7; for(int i=0; i<N; i++) rpf[btspin(i,1)] = btspin(rpf[i], 1), rpf[connections[i]] = connections[rpf[i]]; inverses.resize(N); inverses[0] = 0; for(int i=0; i<N; i++) // inverses[i] = gpow(i, N-1); inverses[btspin(i,1)] = rrf[inverses[i]], // btspin(inverses[i],6), inverses[connections[i]] = rpf[inverses[i]]; int errs = 0; for(int i=0; i<N; i++) if(gmul(i, inverses[i])) errs++; if(errs) printf("errs = %d\n", errs); if(0) for(int i=0; i<isize(matrices); i++) { printf("%5d/%4d", connections[i], inverses[i]); if(i%S7 == S7-1) printf("\n"); } DEBB(DF_FIELD, ("Built.\n")); } static const int MAXDIST = 120; vector<char> disthep; vector<char> disthex; vector<char> distwall, distriver, distwall2, distriverleft, distriverright, distflower; int distflower0; vector<eItem> markers; int getdist(pair<int,bool> a, vector<char>& dists) { if(!a.second) return dists[a.first]; int m = MAXDIST; int ma = dists[a.first]; int mb = dists[connections[btspin(a.first, 3)]]; int mc = dists[connections[btspin(a.first, 4)]]; m = min(m, 1 + ma); m = min(m, 1 + mb); m = min(m, 1 + mc); if(m <= 2 && ma+mb+mc <= m*3-2) return m-1; // special case m = min(m, 2 + dists[connections[btspin(a.first, 2)]]); m = min(m, 2 + dists[connections[btspin(a.first, 5)]]); m = min(m, 2 + dists[connections[btspin(connections[btspin(a.first, 3)], 5)]]); return m; } int getdist(pair<int,bool> a, pair<int,bool> b) { if(a.first == b.first) return a.second == b.second ? 0 : 1; if(b.first) a.first = gmul(a.first, inverses[b.first]), b.first = 0; return getdist(a, b.second ? disthex : disthep); } int maxdist, otherpole, circrad, wallid, wallorder, riverid; int dijkstra(vector<char>& dists, vector<int> indist[MAXDIST]) { int N = connections.size(); dists.resize(N); for(int i=0; i<N; i++) dists[i] = MAXDIST-1; int maxd = 0; for(int i=0; i<MAXDIST; i++) while(!indist[i].empty()) { int at = indist[i].back(); indist[i].pop_back(); if(dists[at] <= i) continue; maxd = i; dists[at] = i; for(int q=0; q<S7; q++) { dists[at] = i; if(PURE) // todo-variation: PURE here? indist[i+1].push_back(connections[at]); else { indist[i+2].push_back(connections[at]); indist[i+3].push_back(connections[btspin(connections[at], 2)]); } at = btspin(at, 1); } } return maxd; } void analyze() { if(WDIM == 3) return; DEBB(DF_FIELD, ("variation = %d\n", int(variation))); int N = connections.size(); markers.resize(N); vector<int> indist[MAXDIST]; indist[0].push_back(0); int md0 = dijkstra(disthep, indist); indist[1].push_back(0); indist[1].push_back(connections[3]); indist[1].push_back(connections[4]); indist[2].push_back(connections[btspin(connections[3], 5)]); indist[2].push_back(connections[2]); indist[2].push_back(connections[5]); int md1 = dijkstra(disthex, indist); maxdist = max(md0, md1); otherpole = 0; for(int i=0; i<N; i+=S7) { int mp = 0; for(int q=0; q<S7; q++) if(disthep[connections[i+q]] < disthep[i]) mp++; if(mp == S7) { bool eq = true; for(int q=0; q<S7; q++) if(disthep[connections[i+q]] != disthep[connections[i]]) eq = false; if(eq) { // for(int q=0; q<S7; q++) printf("%3d", disthep[connections[i+q]]); // printf(" (%2d) at %d\n", disthep[i], i); if(disthep[i] > disthep[otherpole]) otherpole = i; // for(int r=0; r<S7; r++) { // printf("Matrix: "); for(int a=0; a<3; a++) for(int b=0; b<3; b++) // printf("%4d", matrices[i+r][a][b]); printf("\n"); // } } } } circrad = 99; for(int i=0; i<N; i++) for(int u=2; u<4; u++) if(disthep[i] < circrad) if(disthep[connections[i]] < disthep[i] && disthep[connections[btspin(i,u)]] < disthep[i]) circrad = disthep[i]; DEBB(DF_FIELD, ("maxdist = %d otherpole = %d circrad = %d\n", maxdist, otherpole, circrad)); matrix PRRR = strtomatrix("PRRR"); matrix PRRPRRRRR = strtomatrix("PRRPRRRRR"); matrix PRRRP = strtomatrix("PRRRP"); matrix PRP = strtomatrix("PRP"); matrix PR = strtomatrix("PR"); matrix Wall = strtomatrix("RRRPRRRRRPRRRP"); wallorder = order(Wall); wallid = matcode[Wall]; DEBB(DF_FIELD, ("wall order = %d\n", wallorder)); #define SETDIST(X, d, it) {int c = matcode[X]; indist[d].push_back(c); if(it == itNone) ; else if(markers[c] && markers[c] != it) markers[c] = itBuggy; else markers[c] = it; } matrix W = Id; for(int i=0; i<wallorder; i++) { SETDIST(W, 0, itAmethyst) W = mmul(W, Wall); } W = P; for(int i=0; i<wallorder; i++) { SETDIST(W, 0, itEmerald) W = mmul(W, Wall); } int walldist = dijkstra(distwall, indist); DEBB(DF_FIELD, ("wall dist = %d\n", walldist)); W = strtomatrix("RRRRPR"); for(int j=0; j<wallorder; j++) { W = mmul(W, Wall); for(int i=0; i<wallorder; i++) { SETDIST(W, 0, itNone) SETDIST(mmul(PRRR, W), 1, itNone) W = mmul(Wall, W); } } dijkstra(distwall2, indist); int rpushid = matcode[PRRPRRRRR]; riverid = 0; for(int i=0; i<N; i++) { int j = i; int ipush = gmul(rpushid, i); for(int k=0; k<wallorder; k++) { if(ipush == j) { DEBB(DF_FIELD, ("River found at %d:%d\n", i, k)); riverid = i; goto riveridfound; } j = gmul(j, wallid); } } riveridfound: ; W = strtomatrix("RRRRPR"); for(int j=0; j<wallorder; j++) { W = mmul(W, Wall); for(int i=0; i<wallorder; i++) { if(i == 7) SETDIST(W, 0, itCoast) if(i == 3) SETDIST(mmul(PRRRP, W), 0, itWhirlpool) W = mmul(Wall, W); } } dijkstra(PURE ? distriver : distflower, indist); W = matrices[riverid]; for(int i=0; i<wallorder; i++) { SETDIST(W, 0, itStatue) W = mmul(W, Wall); } W = mmul(P, W); for(int i=0; i<wallorder; i++) { SETDIST(W, 0, itSapphire) W = mmul(W, Wall); } W = mmul(PRP, matrices[riverid]); for(int i=0; i<wallorder; i++) { SETDIST(W, 1, itShard) W = mmul(W, Wall); } W = mmul(PR, matrices[riverid]); for(int i=0; i<wallorder; i++) { SETDIST(W, 1, itGold) W = mmul(W, Wall); } int riverdist = dijkstra(PURE ? distflower : distriver, indist); DEBB(DF_FIELD, ("river dist = %d\n", riverdist)); for(int i=0; i<isize(currfp.matrices); i++) if(currfp.distflower[i] == 0) { distflower0 = currfp.inverses[i]+1; break; } if(!PURE) { W = matrices[riverid]; for(int i=0; i<wallorder; i++) { SETDIST(W, 0, itStatue) W = mmul(W, Wall); } W = mmul(PR, matrices[riverid]); for(int i=0; i<wallorder; i++) { SETDIST(W, 0, itGold) W = mmul(W, Wall); } W = mmul(P, matrices[riverid]); for(int i=0; i<wallorder; i++) { SETDIST(W, 1, itSapphire) W = mmul(W, Wall); } dijkstra(distriverleft, indist); W = mmul(PRP, matrices[riverid]); for(int i=0; i<wallorder; i++) { SETDIST(W, 0, itShard) W = mmul(W, Wall); } W = mmul(P, matrices[riverid]); for(int i=0; i<wallorder; i++) { SETDIST(W, 0, itSapphire) W = mmul(W, Wall); } W = matrices[riverid]; for(int i=0; i<wallorder; i++) { SETDIST(W, 1, itStatue) W = mmul(W, Wall); } dijkstra(distriverright, indist); } else { W = strtomatrix("RRRRPR"); for(int j=0; j<wallorder; j++) { W = mmul(W, Wall); for(int i=0; i<wallorder; i++) { if(i == 7) SETDIST(W, 0, itCoast) W = mmul(Wall, W); } } dijkstra(distriverleft, indist); W = strtomatrix("RRRRPR"); for(int j=0; j<wallorder; j++) { W = mmul(W, Wall); for(int i=0; i<wallorder; i++) { if(i == 3) SETDIST(mmul(PRRRP, W), 0, itWhirlpool) W = mmul(Wall, W); } } dijkstra(distriverright, indist); } DEBB(DF_FIELD, ("wall-river distance = %d\n", distwall[riverid])); DEBB(DF_FIELD, ("river-wall distance = %d\n", distriver[0])); } bool easy(int i) { return i < Prime || !(i % Prime); } // 11 * 25 // (1+z+z^3) * (1+z^3+z^4) == // 1+z+z^7 == 1+z+z^2(z^5) == 1+z+z^2(1+z^2) = 1+z+z^2+z^4 void init(int p) { Prime = p; if(solve()) { printf("error: could not solve the fieldpattern\n"); exit(1); } build(); } fpattern(int p) { if(!p) return; init(p); } void findsubpath() { int N = isize(matrices); for(int i=1; i<N; i++) if(gpow(i, Prime) == 0) { subpathid = i; subpathorder = Prime; DEBB(DF_FIELD, ("Subpath found: %s\n", decodepath(i).c_str())); return; } } }; int fpattern::orderstats() { int N = isize(matrices); #define MAXORD 10000 int ordcount[MAXORD]; int ordsample[MAXORD]; for(int i=0; i<MAXORD; i++) ordcount[i] = 0; for(int i=0; i<N; i++) { int cnt = order(matrices[i]); if(cnt < MAXORD) { if(!ordcount[cnt]) ordsample[cnt] = i; ordcount[cnt]++; } } printf("Listing:\n"); for(int i=0; i<MAXORD; i++) if(ordcount[i]) printf("Found %4d matrices of order %3d: %s\n", ordcount[i], i, decodepath(ordsample[i]).c_str()); return ordsample[Prime]; } fpattern fp43(43); void info() { fpattern fp(0); int cases = 0, hard = 0; for(int p=0; p<500; p++) { fp.Prime = p; if(fp.solve() == 0) { printf("%4d: wsquare=%d cs=%d sn=%d ch=%d sh=%d\n", p, fp.wsquare, fp.cs, fp.sn, fp.ch, fp.sh); cases++; if(!fp.easy(fp.cs) || !fp.easy(fp.sn) || !fp.easy(fp.ch) || !fp.easy(fp.sn)) hard++; #ifndef EASY neasy = 0; #endif fp.build(); #ifndef EASY printf("Not easy: %d\n", neasy); #endif int N = isize(fp.matrices); int left = N / fp.Prime; printf("Prime decomposition: %d = %d", N, fp.Prime); for(int p=2; p<=left; p++) while(left%p == 0) printf("*%d", p), left /= p; printf("\n"); printf("Order of RRP is: %d\n", fp.order(fp.strtomatrix("RRP"))); printf("Order of RRRP is: %d\n", fp.order(fp.strtomatrix("RRRP"))); printf("Order of RRRPRRRRRPRRRP is: %d\n", fp.order(fp.strtomatrix("RRRPRRRRRPRRRP"))); } } printf("cases found = %d (%d hard)\n", cases, hard); } fpattern current_quotient_field(0), fp_invalid(0); bool quotient_field_changed; EX struct fpattern& getcurrfp() { if(geometry == gFieldQuotient && quotient_field_changed) return current_quotient_field; if(WDIM == 3) { dynamicval<eGeometry> g(geometry, gSpace435); static fpattern fp(5); return fp; } if(S7 == 8 && S3 == 3) { static fpattern fp(17); return fp; } if(S7 == 5 && S3 == 4) { static fpattern fp(11); return fp; } if(S7 == 6 && S3 == 4) { static fpattern fp(13); return fp; } if(S7 == 7 && S3 == 4) { static fpattern fp(13); return fp; } if(sphere || euclid) return fp_invalid; if(S7 == 7 && S3 == 3) return fp43; return fp_invalid; } // extra information for field quotient extra configuration EX vector<fgeomextra> fgeomextras = { fgeomextra(gNormal, 3), fgeomextra(gOctagon, 1), fgeomextra(g45, 0), fgeomextra(g46, 3), fgeomextra(g47, 0), /* fgeomextra(gSphere, 0), fgeomextra(gSmallSphere, 0), -> does not find the prime fgeomextra(gEuclid, 0), fgeomextra(gEuclidSquare, 0), fgeomextra(gTinySphere, 0) */ }; EX int current_extra = 0; void nextPrime(fgeomextra& ex) { dynamicval<eGeometry> g(geometry, ex.base); int nextprime; if(isize(ex.primes)) nextprime = ex.primes.back().p + 1; else nextprime = 2; while(true) { fieldpattern::fpattern fp(0); fp.Prime = nextprime; if(fp.solve() == 0) { fp.build(); int cells = fp.matrices.size() / S7; ex.primes.emplace_back(primeinfo{nextprime, cells, (bool) fp.wsquare}); break; } nextprime++; } } void nextPrimes(fgeomextra& ex) { while(isize(ex.primes) < 4) nextPrime(ex); } EX void enableFieldChange() { fgeomextra& gxcur = fgeomextras[current_extra]; fieldpattern::quotient_field_changed = true; nextPrimes(gxcur); dynamicval<eGeometry> g(geometry, gFieldQuotient); ginf[geometry].sides = ginf[gxcur.base].sides; ginf[geometry].vertex = ginf[gxcur.base].vertex; ginf[geometry].distlimit = ginf[gxcur.base].distlimit; ginf[geometry].tiling_name = ginf[gxcur.base].tiling_name; fieldpattern::current_quotient_field.init(gxcur.primes[gxcur.current_prime_id].p); } } #define currfp fieldpattern::getcurrfp() EX int currfp_gmul(int a, int b) { return currfp.gmul(a,b); } EX int currfp_inverses(int i) { return currfp.inverses[i]; } EX int currfp_distwall(int i) { return currfp.distwall[i]; } EX int currfp_n() { return isize(currfp.matrices); } EX int currfp_get_R() { return currfp.matcode[currfp.R]; } EX int currfp_get_P() { return currfp.matcode[currfp.P]; } EX int currfp_get_X() { return currfp.matcode[currfp.X]; } } #endif