// This generates the inverse geodesics tables. // Usage: // [executable] -geo sol -build -write solv-geodesics.dat // -geo 3:2 -build -write shyp-geodesics.dat // -geo 3:1/2 -build -write ssol-geodesics.dat // -exit // Loading generated tables and visualization: // [executable] /hyper -fsol [filename] -geo sol -visualize filename-%03d.png // You can also do -geo [...] -build to build and test the table // without writing it. // By default this generates 64x64x64 tables. // Add e.g. '-dim 128 128 128' before -write to generate // a more/less precise table. // # ./hyper -rk-steps 100 -geo Sol -iz-list -sn-unittest -build -write solv-geodesics-a.dat -visualize devmods/san1/solva-%04d.png -improve -write solv-geodesics.dat -visualize devmods/san1/solvb-%04d.png // # ./hyper -dim 32 32 32 -geo 3:1/2 -iz-list -sn-unittest -build -write ssol-geodesics-a.dat -visualize devmods/san1/ssola-%04d.png -improve -write ssol-geodesics.dat -visualize devmods/san1/ssolb-%04d.png // # ./hyper -dim 32 32 32 -geo 3:2 -iz-list -sn-unittest -build -write shyp-geodesics.dat -visualize devmods/san1/shypa-%04d.png #include "../hyper.h" #include <thread> #include <mutex> namespace hr { transmatrix parabolic1(ld u); namespace sn { template<class T> void parallelize(int threads, int Nmin, int Nmax, T action) { std::vector<std::thread> v; for(int k=0; k<threads; k++) v.emplace_back([&,k] () { for(int i=Nmin+k; i < Nmax; i += threads) action(k, i); }); for(std::thread& t:v) t.join(); } ld solerror(hyperpoint ok, hyperpoint chk) { auto zok = point3( x_to_ix(ok[0]), x_to_ix(ok[1]), z_to_iz(ok[2]) ); auto zchk = point3( x_to_ix(chk[0]), x_to_ix(chk[1]), z_to_iz(chk[2]) ); return hypot_d(3, zok - zchk); } int max_iter = 999999; hyperpoint fail(.1, .2, .3, .4); hyperpoint iterative_solve(hyperpoint xp, hyperpoint candidate, ld minerr, bool debug = false) { transmatrix T = Id; T[0][1] = 8; T[2][2] = 5; auto f = [&] (hyperpoint x) { return nisot::numerical_exp(x); }; // T * x; }; auto ver = f(candidate); ld err = solerror(xp, ver); auto at = candidate; ld eps = 1e-6; hyperpoint c[3]; for(int a=0; a<3; a++) c[a] = point3(a==0, a==1, a==2); int iter = 0; while(err > minerr) { iter++; if(iter > max_iter) return fail; if(debug) println(hlog, "\n\nf(", at, "?) = ", ver, " (error ", err, ")"); array<hyperpoint, 3> pnear; for(int a=0; a<3; a++) { auto x = at + c[a] * eps; if(debug) println(hlog, "f(", x, ") = ", f(x), " = y + ", f(x)-ver ); pnear[a] = (f(x) - ver) / eps; // (direct_exp(at + c[a] * eps, prec) - ver) / eps; } transmatrix U = Id; for(int a=0; a<3; a++) for(int b=0; b<3; b++) U[a][b] = pnear[b][a]; hyperpoint diff = (xp - ver); hyperpoint bonus = inverse(U) * diff; if(hypot_d(3, bonus) > 0.1) bonus = bonus * 0.1 / hypot_d(3, bonus); int fixes = 0; if(debug) println(hlog, "\nU = ", U, "\ndiff = ", diff, "\nbonus = ", bonus, "\n"); nextfix: hyperpoint next = at + bonus; hyperpoint nextver = f(next); ld nexterr = solerror(xp, nextver); if(debug) println(hlog, "f(", next, ") = ", nextver, ", error = ", nexterr); if(nexterr < err) { // println(hlog, "reduced error ", err, " to ", nexterr); at = next; ver = nextver; err = nexterr; continue; } else { bonus /= 2; fixes++; if(fixes > 10) { if(err > 999) { for(ld s = 1; abs(s) > 1e-9; s *= 0.5) for(int k=0; k<27; k++) { int kk = k; next = at; for(int i=0; i<3; i++) { if(kk%3 == 1) next[i] += s; if(kk%3 == 2) next[i] -= s; kk /= 3; } // next = at + c[k] * s; nextver = f(next); nexterr = solerror(xp, nextver); // println(hlog, "f(", next, ") = ", nextver, ", error = ", nexterr); if(nexterr < err) { at = next; ver = nextver; err = nexterr; goto nextiter; } } println(hlog, "cannot improve error ", err); exit(1); } return fail; } goto nextfix; } nextiter: ; } // println(hlog, "#it = ", iter); return at; } using ptlow = compressed_point; ptlow operator +(ptlow a, ptlow b) { return make_array<float>(a[0]+b[0], a[1]+b[1], a[2]+b[2]); } ptlow operator -(ptlow a, ptlow b) { return make_array<float>(a[0]-b[0], a[1]-b[1], a[2]-b[2]); } ptlow operator *(ptlow a, ld x) { return make_array<float>(a[0]*x, a[1]*x, a[2]*x); } void fint(FILE *f, int x) { fwrite(&x, sizeof(x), 1, f); } void ffloat(FILE *f, float x) { fwrite(&x, sizeof(x), 1, f); } void write_table(sn::tabled_inverses& tab, const char *fname) { FILE *f = fopen(fname, "wb"); fint(f, tab.PRECX); fint(f, tab.PRECY); fint(f, tab.PRECZ); fwrite(&tab.tab[0], sizeof(ptlow) * tab.PRECX * tab.PRECY * tab.PRECZ, 1, f); fclose(f); } void alloc_table(sn::tabled_inverses& tab, int X, int Y, int Z) { tab.PRECX = X; tab.PRECY = Y; tab.PRECZ = Z; tab.tab.resize(X*Y*Z); } ld ptd(ptlow p) { return p[0]*p[0] + p[1]*p[1] + p[2] * p[2]; } void fix_boundaries(sn::tabled_inverses& tab, int last_x, int last_y, int last_z) { int PRECX = tab.PRECX; int PRECY = tab.PRECY; int PRECZ = tab.PRECZ; for(int x=0; x<last_x; x++) for(int y=0; y<last_y; y++) { for(int z=last_z; z<PRECZ; z++) tab.get_int(x,y,z) = tab.get_int(x,y,z-1) * 2 - tab.get_int(x,y,z-2); if(nih) tab.get_int(x,y,0) = tab.get_int(x,y,1) * 2 - tab.get_int(x,y,2); } for(int x=0; x<last_x; x++) for(int y=last_y; y<PRECY; y++) for(int z=0; z<PRECZ; z++) tab.get_int(x,y,z) = tab.get_int(x,y-1,z) * 2 - tab.get_int(x,y-2,z); for(int x=last_x; x<PRECX; x++) for(int y=0; y<PRECY; y++) for(int z=0; z<PRECZ; z++) tab.get_int(x,y,z) = tab.get_int(x-1,y,z) * 2 - tab.get_int(x-2,y,z); } void build_sols(int PRECX, int PRECY, int PRECZ) { std::mutex file_mutex; ld max_err = 0; auto& tab = sn::get_tabled(); alloc_table(tab, PRECX, PRECY, PRECZ); int last_x = PRECX-1, last_y = PRECY-1, last_z = PRECZ-1; auto act = [&] (int tid, int iz) { if((nih && iz == 0) || iz == PRECZ-1) return; auto solve_at = [&] (int ix, int iy) { // if(ix != 30 || iy <= 50 || iz) return; ld x = ix_to_x(ix / (PRECX-1.)); ld y = ix_to_x(iy / (PRECY-1.)); ld z = iz_to_z(iz / (PRECZ-1.)); auto v = hyperpoint ({x,y,z,1}); vector<hyperpoint> candidates; hyperpoint cand; candidates.push_back(point3(0,0,0)); // sort(candidates.begin(), candidates.end(), [&] (hyperpoint a, hyperpoint b) { return solerror(v, direct_exp(a, prec)) > solerror(v, direct_exp(b, prec)); }); // cand_best = candidates.back(); vector<hyperpoint> solved_candidates; for(auto c: candidates) { auto solt = iterative_solve(v, c, 1e-6, false); solved_candidates.push_back(solt); if(solerror(v, nisot::numerical_exp(solt)) < 1e-9) break; } sort(solved_candidates.begin(), solved_candidates.end(), [&] (hyperpoint a, hyperpoint b) { return solerror(v, nisot::numerical_exp(a)) > solerror(v, nisot::numerical_exp(b)); }); cand = solved_candidates.back(); auto xerr = solerror(v, nisot::numerical_exp(cand)); if(cand == fail) { println(hlog, format("[%2d %2d %2d] FAIL", iz, iy, ix)); } else if(xerr > 1e-3) { println(hlog, format("[%2d %2d %2d] ", iz, iy, ix)); println(hlog, "f(?) = ", v); println(hlog, "f(", cand, ") = ", nisot::numerical_exp(cand)); println(hlog, "error = ", xerr); println(hlog, "canned = ", compress(azeq_to_table(cand))); max_err = xerr; return; } auto& so = tab.get_int(ix, iy, iz); so = compress(azeq_to_table(cand)); for(int z=0; z<3; z++) if(isnan(so[z]) || isinf(so[z])) { println(hlog, cand, "canned to ", so); exit(4); } }; for(int it=0; it<max(last_x, last_y); it++) { for(int a=0; a<it; a++) { if(it < last_x && a < last_y) solve_at(it, a); if(a < last_x && it < last_y) solve_at(a, it); } if(it < last_x && it < last_y) solve_at(it, it); std::lock_guard<std::mutex> fm(file_mutex); if(0) println(hlog, format("%2d: %2d", iz, it)); } }; parallelize(PRECZ, 0, PRECZ, act); fix_boundaries(tab, last_x, last_y, last_z); } std::mutex file_mutex_global; bool deb = false; hyperpoint find_optimal_geodesic(hyperpoint res) { auto p0 = point3(0, 0, 0); hyperpoint h = iterative_solve(res, p0, 100, 1e-9); if(h == fail) return fail; ld d = hypot_d(3, h); auto solve = [&] (hyperpoint m, pair<hyperpoint, hyperpoint> last) { hyperpoint t = // inverse_exp(m, iTable, false); iterative_solve(m, last.first, 100, 1e-9); hyperpoint u = // inverse_exp(inverse(nisot::translate(m)) * res, iTable, false); iterative_solve(inverse(nisot::translate(m)) * res, last.second, 100, 1e-6); return make_pair(t, u); }; auto quality = [&] (pair<hyperpoint, hyperpoint> p) { return hypot_d(3, p.first) + hypot_d(3, p.second); }; auto attempt = [&] (hyperpoint mid) { auto p = solve(mid, {p0, p0}); ld qd = quality(p); if(true) { // println(hlog, "there is something better: ", qd, " vs ", d); bool found; bool failed = false; auto tryit = [&] (hyperpoint h) { auto p2 = solve(h, p); auto qd2 = quality(p2); if(p2.first == fail || p2.second == fail) failed = true; else if(qd2 < qd) { qd = qd2, p = p2, mid = h; found = true; return true; } return false; }; ld delta = 1e-3; /* auto q_x = quality(solve(mid + point3(delta, 0, 0), p)) - qd; auto q_xx = quality(solve(mid + point3(delta+delta, 0, 0), p)) - qd - 2 * q_x; auto q_y = quality(solve(mid + point3(0, delta, 0), p)) - qd; auto q_yy = quality(solve(mid + point3(0, delta+delta, 0), p)) - qd - 2 * q_y; auto q_z = quality(solve(mid + point3(0, 0, delta), p)) - qd; auto q_zz = quality(solve(mid + point3(0, 0, delta+delta), p)) - qd - 2 * q_z; auto q_xy = quality(solve(mid + point3(delta, delta, 0), p)) - qd - q_x - q_y; auto q_xz = quality(solve(mid + point3(delta, 0, delta), p)) - qd - q_x - q_z; auto q_yz = quality(solve(mid + point3(0, delta, delta), p)) - qd - q_y - q_z; transmatrix T = build_matrix( hyperpoint(q_xx, q_xy, q_xz, 0), hyperpoint(q_xy, q_yy, q_yz, 0), hyperpoint(q_xz, q_yz, q_zz, 0), hyperpoint(0, 0, 0, 1) ); hyperpoint q = hyperpoint(q_x, q_y, q_z, 0); */ int itera = 0; while(true) { itera++; if(itera % 1000 == 0) { std::lock_guard<std::mutex> fm(file_mutex_global); println(hlog, "itera = ", itera); if(itera >= 5000) return; } auto q_v = quality(solve(mid + point3(delta, -delta, 0), p)) - qd; auto q_vv = quality(solve(mid + point3(delta+delta, -delta-delta, 0), p)) - qd - 2 * q_v; auto q_z = quality(solve(mid + point3(0, 0, delta), p)) - qd; auto q_zz = quality(solve(mid + point3(0, 0, delta+delta), p)) - qd - 2 * q_z; auto q_vz = quality(solve(mid + point3(delta, -delta, delta), p)) - qd - q_v - q_z; ld d = q_vv * q_zz - q_vz * q_vz; if(d == 0 || isnan(d) || isinf(d)) { std::lock_guard<std::mutex> fm(file_mutex_global); println(hlog, "bad matrix in iteration #", itera); println(hlog, "p = ", p, " mid = ", mid); println(hlog, solve(mid, p)); return; } transmatrix T = build_matrix( hyperpoint(q_vv, 0, q_vz, 0), hyperpoint(0, 1, 0, 0), hyperpoint(q_vz, 0, q_zz, 0), hyperpoint(0, 0, 0, 1) ); hyperpoint q = hyperpoint(q_v, 0, q_z, 0); hyperpoint res = inverse(T) * -q; // println(hlog, "res = ", res); // println(hlog, "check = ", q + T * res); res[1] = -res[0]; res = res * delta; res /= 10.; if(tryit(mid + res)) continue; if(tryit(mid + res/2)) continue; if(tryit(mid + res/4)) continue; break; } // q_x + q_xx * x + q_xy * y + q_xz * z == 0 // q + Txyz == 0 int it = 0; ld qd0 = qd; if(false) while(delta > 1e-6) { it++; // if(it % 1000 == 0) println(hlog, "iterations ", it); if(it > 1000) return; if(failed) return; found = false; while(tryit(mid + point3(delta, -delta, 0))); while(tryit(mid + point3(-delta, +delta, 0))); while(tryit(mid + point3(0, 0, delta))); while(tryit(mid + point3(0, 0, -delta))); // while(tryit(mid + point3(delta, delta, 0))); // while(tryit(mid + point3(-delta, -delta, 0))); if(found) println(hlog, "improved further from ", qd0, " to ", qd); if(!found) delta /= 2; } max_iter = 1000; auto h1 = iterative_solve(res, p.first * quality(p) / hypot_d(3, p.first), 100, 1e-6); if(deb) println(hlog, "h1 returns ", h1, " of length ", hypot_d(3, h1), " and error ", hypot_d(3, nisot::numerical_exp(h1) - res)); if(h1 == fail) return; auto d1 = hypot_d(3, h1); if(d1 < d) h = h1, d = d1; } }; hyperpoint old = h; attempt(point31(res[0], 0, res[2]/2)); attempt(point31(0, res[1], res[2]/2)); std::lock_guard<std::mutex> fm(file_mutex_global); if(h != old && hypot_d(3, h) < hypot_d(3, old) - 1e-5) println(hlog, "new = ", h, " vs old = ", old, " length ", hypot_d(3, h), " vs ", hypot_d(3, old)); else if(deb) println(hlog, " not improved: ", old); return h; } void fix_bugs(sn::tabled_inverses& tab) { auto bug = compress(azeq_to_table(fail)); for(int iz=0; iz<tab.PRECZ; iz++) for(int iy=0; iy<tab.PRECY; iy++) for(int ix=0; ix<tab.PRECX; ix++) { if(tab.get_int(ix, iy, iz) == bug) for(int a=0; a<3; a++) tab.get_int(ix, iy, iz)[a] = (tab.get_int(ix-1, iy, iz)[a]*2 - tab.get_int(ix-2, iy, iz)[a]); } } void visualize_table(sn::tabled_inverses& tab, const string& s) { renderbuffer rb(tab.PRECX, tab.PRECY, false); rb.make_surface(); for(int iz=0; iz<tab.PRECZ; iz++) { println(hlog, "iz=", iz); for(int iy=0; iy<tab.PRECY; iy++) for(int ix=0; ix<tab.PRECX; ix++) { auto& p = qpixel(rb.srf, ix, iy); if(ix == 52 && iy >= 30 && iy <= 40 && iz == 15) println(hlog, "A ", tie(ix,iy,iz), " : ", tab.get_int(ix, iy, iz)); // println(hlog, ix, ", ", iy); p = 0xFFFFFFFF; for(int i=0; i<3; i++) part(p, i) = 0x80 + 0x70 * tab.get_int(ix, iy, iz)[i]; } SDL_SavePNG(rb.srf, format(s.c_str(), iz).c_str()); } } void improve(sn::tabled_inverses& tab) { int PRECX = tab.PRECX; int PRECY = tab.PRECY; int PRECZ = tab.PRECZ; int last_x = PRECX-1, last_y = PRECY-1, last_z = PRECZ-1; max_iter = 1000; auto act = [&] (int tid, int iz) { if((nih && iz == 0) || iz == PRECZ-1) return; for(int iy=0; iy<last_y; iy++) for(int ix=0; ix<last_x; ix++) { if(ix < 32 || iy < 32) continue; if(deb) { if(ix < 50 || ix > 54 || iy != 46 || iz != 6) continue; } if(deb) println(hlog, tie(ix, iy, iz), ":"); ld x = ix_to_x(ix / (PRECX-1.)); ld y = ix_to_x(iy / (PRECY-1.)); ld z = iz_to_z(iz / (PRECZ-1.)); hyperpoint p = point31(x, y, z); // hyperpoint h1 = inverse_exp(p, iTable, false); hyperpoint h2 = find_optimal_geodesic(p); std::lock_guard<std::mutex> fm(file_mutex_global); if(ix == last_x-1) println(hlog, "solved ", tie(ix, iy, iz)); if(h2 != fail) { auto& so = tab.get_int(ix, iy, iz); so = compress(azeq_to_table(h2)); } } }; max_iter = 1000000; parallelize(PRECZ, 0, PRECZ, act); if(deb) exit(7); fix_boundaries(tab, last_x, last_y, last_z); } int dimX=64, dimY=64, dimZ=64; EX hyperpoint recompress(hyperpoint h) { return decompress(compress(h)); } int readArgs() { using namespace arg; if(0) ; else if(argis("-dim")) { PHASEFROM(2); shift(); dimX = argi(); shift(); dimY = argi(); shift(); dimZ = argi(); } else if(argis("-build")) { PHASEFROM(2); build_sols(dimX, dimY, dimZ); } else if(argis("-load-old")) { sn::get_tabled().load(); } else if(argis("-improve")) { sn::get_tabled().load(); improve(sn::get_tabled()); } else if(argis("-write")) { shift(); write_table(sn::get_tabled(), argcs()); } else if(argis("-fix-bugs")) { sn::get_tabled().load(); fix_bugs(sn::get_tabled()); } else if(argis("-iz-list")) { sn::get_tabled().load(); for(int iz=0; iz<dimZ-1; iz++) println(hlog, "iz=", iz, " z=", iz_to_z(iz / (dimZ-1.))); } else if(argis("-visualize")) { shift(); sn::get_tabled().load(); visualize_table(sn::get_tabled(), argcs()); } else if(argis("-sn-unittest")) { println(hlog, "nih = ", (bool)nih); ld maxerr; auto test_result = [&maxerr] (ld a, ld b) { maxerr = max(maxerr, (a-b)); }; auto test_result_p = [&maxerr] (hyperpoint a, hyperpoint b) { maxerr = max(maxerr, hypot_d(3, a-b)); }; auto test = [&maxerr] (string s, reaction_t tester) { maxerr = 0; tester(); println(hlog, "unittest: ", s, " error = ", maxerr); }; test("x_to_ix", [&] { for(ld a=0; a<=20; a+=.1) test_result(a, sn::ix_to_x(sn::x_to_ix(a))); }); test("z_to_iz", [&] { for(ld a=nih?-20:0; a<=20; a+=.1) test_result(a, sn::iz_to_z(sn::z_to_iz(a))); }); test("azeq_to_table", [&] { for(ld a=-5; a<=5; a++) for(ld b=-5; b<=5; b++) for(ld c=-5; c<=5; c++) { hyperpoint h = point3(a,b,c); test_result_p(h, sn::table_to_azeq(sn::azeq_to_table(h))); }}); test("azeq_to_table recompressed", [&] { for(ld a=-5; a<=5; a++) for(ld b=-5; b<=5; b++) for(ld c=-5; c<=5; c++) { hyperpoint h = point3(a,b,c); test_result_p(h, sn::table_to_azeq(recompress(sn::azeq_to_table(h)))); } }); } else return 1; return 0; } auto hook = addHook(hooks_args, 100, readArgs); } }