## just the {7,3} h2. # we compute the edge length of the Archimedean tessellation we are using distunit(arcmedge(7,7,7)) # note: subsequent esults of arcmedge are given in terms of distunit # regangle(A,B) returns the internal angle of a B-gon with sidelength A let(u7 = regangle(1, 7)) unittile(u7,u7,u7,u7,u7,u7,u7,|0) c(0,0,0,0,0) c(0,1,0,1,0) c(0,2,0,2,0) c(0,3,0,3,0) c(0,4,0,4,0) c(0,5,0,5,0) c(0,6,0,6,0) #/ single heptagon quotient(0,1,6,3,5,4,2) #/ three heptagons quotient(0,7,14,4,3,20,8,1,6,19,11,10,18,15,2,13,17,16,12,9,5) #/ 12 heptagons quotient(7,14,21,28,35,42,49,0,55,31,56,45,63,15,1,13,69,70,52,77,22,2,20,83,38,73,58,29,3,27,57,9,54,75,36,4,34,74,24,82,65,43,5,41,64,11,62,79,50,6,48,78,18,76,32,8,10,30,26,72,67,80,46,12,44,40,81,60,71,16,17,68,59,25,37,33,53,19,51,47,61,66,39,23)