// Hyperbolic Rogue -- raycaster // Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details /** \file raycaster.cpp * \brief A raycaster to draw walls. */ #include "hyper.h" namespace hr { /** \brief raycaster */ EX namespace ray { #if CAP_RAY /** texture IDs */ GLuint txConnections = 0, txWallcolor = 0, txTextureMap = 0, txVolumetric = 0, txM = 0, txWall = 0, txPortalConnections = 0, txStart = 0; EX bool in_use; EX bool comparison_mode; /** 0 - never use, 2 - always use, 1 = smart selection */ EX int want_use = 1; /** generate the map for raycasting just once */ EX bool fixed_map = false; EX ld exp_start = 1; EX ld exp_decay_exp = 4; EX ld exp_decay_poly = 10; #ifdef GLES_ONLY const int gms_limit = 16; /* enough for Bringris -- need to do better */ #else const int gms_limit = 110; #endif EX int gms_array_size = 16; EX ld maxstep_sol = .05; EX ld maxstep_nil = .1; EX ld maxstep_pro = .5; EX ld maxstep_intra = .05; EX ld minstep = .001; EX ld reflect_val = 0; static constexpr int NO_LIMIT = 999999; EX ld hard_limit = NO_LIMIT; EX int max_iter_intra = 600; EX int max_iter_sol = 600; EX int max_iter_iso = 60; EX int max_iter_eyes = 200; EX int max_cells = 2048; EX bool rays_generate = true; EX ld& exp_decay_current() { if(intra::in) return exp_decay_exp; if(fake::in()) return *FPIU(&exp_decay_current()); return (sn::in() || hyperbolic || sl2) ? exp_decay_exp : exp_decay_poly; } EX int& max_iter_current() { if(intra::in) return max_iter_intra; if(nonisotropic || stretch::in()) return max_iter_sol; else if(is_eyes()) return max_iter_eyes; else return max_iter_iso; } EX bool is_eyes() { #if CAP_VR return vrhr::active() && vrhr::eyes == vrhr::eEyes::equidistant; #else return false; #endif } EX bool is_stepbased() { return nonisotropic || stretch::in() || is_eyes(); } EX bool horos() { return (hyperbolic || in_h2xe()) && bt::in(); } ld& maxstep_current() { if(intra::in) return maxstep_intra; if(sn::in() || stretch::in()) return maxstep_sol; #if CAP_VR if(vrhr::active() && vrhr::eyes == vrhr::eEyes::equidistant) return maxstep_pro; #endif return maxstep_nil; } eGeometry last_geometry; vector> used_sample_list() { if(intra::in) return intra::full_sample_list; return hybrid::gen_sample_list(); } bool need_many_cell_types() { return isize(used_sample_list()) > 2; } /** is the raycaster available? */ EX bool available() { #if CAP_VR /* would need a completely different implementation */ if(vrhr::active() && vrhr::eyes == vrhr::eEyes::equidistant) { if(reflect_val) return false; if(sol || stretch::in() || sl2) return false; } #endif if(noGUI) return false; if(!vid.usingGL) return false; if(GDIM == 2) return false; if(WDIM == 2 && (aperiodic || bt::in())) return false; #ifdef GLES_ONLY if(need_many_cell_types()) return false; if(!euclid && !gproduct && !nil) return false; #endif if(hyperbolic && pmodel == mdPerspective && !kite::in()) return true; if(sphere && pmodel == mdPerspective && !rotspace) return true; if(nil && S7 == 8) return false; if((sn::in() || nil || sl2) && pmodel == mdGeodesic) return true; if(euclid && pmodel == mdPerspective && !bt::in()) return true; if(gproduct) return true; if(pmodel == mdPerspective && stretch::in()) return true; return false; } /** do we want to use the raycaster? */ EX bool requested() { if(cgflags & qRAYONLY) return true; if(!want_use) return false; if(intra::in) return true; if(stretch::in() && sphere) return true; #if CAP_TEXTURE if(texture::config.tstate == texture::tsActive) return false; #endif if(!available()) return false; if(want_use == 2) return true; if(rotspace) return false; // not very good if(WDIM == 2) return false; // not very good return racing::on || quotient || fake::in(); } #if HDR struct raycaster : glhr::GLprogram { GLint uStart, uStartid, uM, uLength; GLint uWallstart, uWallX, uWallY; GLint tConnections, tWallcolor, tTextureMap, tVolumetric, tStart; GLint uBinaryWidth, uPLevel, uLP, uStraighten, uReflectX, uReflectY; GLint uLinearSightRange, uExpStart, uExpDecay; GLint uBLevel; GLint uWallOffset, uSides; GLint uITOA, uATOI; GLint uToOrig, uFromOrig; GLint uProjection; GLint uEyeShift, uAbsUnit; GLint uMirrorShift; GLint tM, uInvLengthM; GLint tWall, uInvLengthWall; GLint tPortalConnections; raycaster(string vsh, string fsh); }; #endif #ifdef GLES_ONLY bool m_via_texture = false; bool wall_via_texture = false; static constexpr bool can_via_texture = false; /* textures are not precise enough ): */ #else bool m_via_texture = true; bool wall_via_texture = true; static constexpr bool can_via_texture = true; #endif raycaster::raycaster(string vsh, string fsh) : GLprogram(vsh, fsh) { /* need to set shader_flags to 0 so that attributes are not enabled */ shader_flags = 0; uStart = glGetUniformLocation(_program, "uStart"); uStartid = glGetUniformLocation(_program, "uStartid"); uM = glGetUniformLocation(_program, "uM"); uLength = glGetUniformLocation(_program, "uLength"); uProjection = glGetUniformLocation(_program, "uProjection"); uWallstart = glGetUniformLocation(_program, "uWallstart"); uWallX = glGetUniformLocation(_program, "uWallX"); uWallY = glGetUniformLocation(_program, "uWallY"); uBinaryWidth = glGetUniformLocation(_program, "uBinaryWidth"); uStraighten = glGetUniformLocation(_program, "uStraighten"); uPLevel = glGetUniformLocation(_program, "uPLevel"); uLP = glGetUniformLocation(_program, "uLP"); uReflectX = glGetUniformLocation(_program, "uReflectX"); uReflectY = glGetUniformLocation(_program, "uReflectY"); uMirrorShift = glGetUniformLocation(_program, "uMirrorShift"); uLinearSightRange = glGetUniformLocation(_program, "uLinearSightRange"); uExpDecay = glGetUniformLocation(_program, "uExpDecay"); uExpStart = glGetUniformLocation(_program, "uExpStart"); uBLevel = glGetUniformLocation(_program, "uBLevel"); tConnections = glGetUniformLocation(_program, "tConnections"); tWallcolor = glGetUniformLocation(_program, "tWallcolor"); tTextureMap = glGetUniformLocation(_program, "tTextureMap"); tVolumetric = glGetUniformLocation(_program, "tVolumetric"); tStart = glGetUniformLocation(_program, "tStart"); tPortalConnections = glGetUniformLocation(_program, "tPortalConnections"); tM = glGetUniformLocation(_program, "tM"); uInvLengthM = glGetUniformLocation(_program, "uInvLengthM"); tWall = glGetUniformLocation(_program, "tWall"); uInvLengthWall = glGetUniformLocation(_program, "uInvLengthWall"); uWallOffset = glGetUniformLocation(_program, "uWallOffset"); uSides = glGetUniformLocation(_program, "uSides"); uITOA = glGetUniformLocation(_program, "uITOA"); uATOI = glGetUniformLocation(_program, "uATOI"); uToOrig = glGetUniformLocation(_program, "uToOrig"); uFromOrig = glGetUniformLocation(_program, "uFromOrig"); uEyeShift = glGetUniformLocation(_program, "uEyeShift"); uAbsUnit = glGetUniformLocation(_program, "uAbsUnit"); } shared_ptr our_raycaster; #ifdef GLES_ONLY void add(string& tgt, string type, string name, int min_index, int max_index) { if(min_index >= max_index) ; else if(min_index + 1 == max_index) tgt += "{ return " + name + "[" + its(min_index) + "]; }"; else { int mid = (min_index + max_index) / 2; tgt += "{ if(i<" + its(mid) + ") "; add(tgt, type, name, min_index, mid); tgt += " else "; add(tgt, type, name, mid, max_index); tgt += " }"; } } string build_getter(string type, string name, int index) { string s = type + " get_" + name + "(int i) \n"; add(s, type, name, 0, index); return s + "\n"; } #define GET(array, index) "get_" array "(" index ")" #else #define GET(array, index) array "[" index "]" #endif EX hookset hooks_rayshader; EX hookset)> hooks_rayset; tuple< #if CAP_VR int, vrhr::eEyes, #endif string > raycaster_state() { return make_tuple( #if CAP_VR vrhr::state, vrhr::eyes, #endif intra::in ? "INTRA" : cgi_string() ); } decltype(raycaster_state()) saved_state; ld ray_scale = 8; int max_wall_offset = 512; int max_celltype = 64; struct raygen { string fsh, vsh, fmain; void add_if(const string& seek, const string& function); int deg, irays; bool asonov; bool use_reflect; bool many_cell_types; bool eyes; string getM(string s) { if(m_via_texture) return "getM(" + s + ")"; else return "uM[" + s + "]"; }; string getWall(string s, int coord) { if(wall_via_texture) return "getWall(" + s + "," + its(coord) + ")"; else return "uWall" + string(coord?"Y" : "X") + "[" + s + "]"; }; string getWallstart(string s) { if(wall_via_texture) return "getWallstart(" + s + ")"; else return "uWallstart[" + s + "]"; }; void compute_which_and_dist(int flat1, int flat2); void apply_reflect(int flat1, int flat2); void move_forward(); void emit_intra_portal(int gid1, int gid2); void emit_iterate(int gid1); void emit_raystarter(); void create(); string f_xpush() { return hyperbolic ? "xpush_h3" : "xpush_s3"; } string f_len() { return hyperbolic ? "len_h3" : (sphere && rotspace) ? "len_sr" : sl2 ? "len_sl2" : sphere ? "len_s3" : "len_x"; } string f_len_prod() { return in_h2xe() ? "len_h2" : in_s2xe() ? "len_s2" : "len_e2"; } void add_functions(); }; raygen our_raygen; void raygen::add_if(const string& seek, const string& function) { if(fsh.find(seek) != string::npos || fmain.find(seek) != string::npos) fsh = function + fsh; } void raygen::compute_which_and_dist(int flat1, int flat2) { using glhr::to_glsl; if(!is_stepbased()) { fmain += " if(which == -1) {\n"; if(in_h2xe() && hybrid::underlying == gBinary4) fmain += "for(int i=2; i<=4; i+=2) {"; else if(in_h2xe() && hybrid::underlying == gTernary) fmain += "for(int i=3; i<=5; i+=2) {"; else if(in_h2xe() && hybrid::underlying == gBinaryTiling) fmain += "for(int i=0; i<=4; i++) if(i == 0 || i == 4) {"; else fmain += "for(int i="+its(flat1)+"; i<"+(gproduct ? "sides-2" : ((WDIM == 2 || is_subcube_based(variation) || intra::in) && !bt::in()) ? "sides" : its(flat2))+"; i++) {\n"; fmain += " mediump mat4 m = " + getM("walloffset+i") + ";\n"; if(in_h2xe()) fmain += " mediump float v = ((position - m * position)[2] / (m * tangent - tangent)[2]);\n" " if(v > 1. || v < -1.) continue;\n" " mediump float d = atanh(v);\n" " mediump vec4 next_tangent = position * sinh(d) + tangent * cosh(d);\n" " if(next_tangent[2] < (m * next_tangent)[2]) continue;\n" " d /= xspeed;\n"; else if(in_s2xe()) fmain += " mediump float v = ((position - m * position)[2] / (m * tangent - tangent)[2]);\n" " mediump float d = atan(v);\n" " mediump vec4 next_tangent = tangent * cos(d) - position * sin(d);\n" " if(next_tangent[2] > (m * next_tangent)[2]) continue;\n" " d /= xspeed;\n"; else if(in_e2xe()) fmain += " mediump float deno = dot(position, tangent) - dot(m*position, m*tangent);\n" " if(deno < 1e-6 && deno > -1e-6) continue;\n" " mediump float d = (dot(m*position, m*position) - dot(position, position)) / 2. / deno;\n" " if(d < 0.) continue;\n" " mediump vec4 next_position = position + d * tangent;\n" " if(dot(next_position, tangent) < dot(m*next_position, m*tangent)) continue;\n" " d /= xspeed;\n"; else if(cgi.emb->is_sph_in_low() && hyperbolic) fmain += " mediump float v = ((zpush_h3(-1.) * (position - m * position))[3] / (zpush_h3(-1.) * (m * tangent - tangent))[3]);\n" " if(v > 1. || v < -1.) continue;\n" " mediump float d = atanh(v);\n" " mediump vec4 next_tangent = position * sinh(d) + tangent * cosh(d);\n" " if((zpush_h3(-1.) * next_tangent)[3] < (zpush_h3(-1.) * (m * next_tangent))[3]) continue;\n"; else if(hyperbolic) fmain += " mediump float v = ((position - m * position)[3] / (m * tangent - tangent)[3]);\n" " if(v > 1. || v < -1.) continue;\n" " mediump float d = atanh(v);\n" " mediump vec4 next_tangent = position * sinh(d) + tangent * cosh(d);\n" " if(next_tangent[3] < (m * next_tangent)[3]) continue;\n"; else if(sphere) fmain += " mediump float v = ((position - m * position)[3] / (m * tangent - tangent)[3]);\n" " mediump float d = atan(v);\n" " mediump vec4 next_tangent = -position * sin(d) + tangent * cos(d);\n" " if(next_tangent[3] > (m * next_tangent)[3]) continue;\n"; else if(cgi.emb->is_sph_in_low() && euclid) fmain += " vec4 tctr = vec4(0, 0, 1, 0);\n" " mediump float deno = dot(position-tctr, tangent) - dot(m*position-tctr, m*tangent);\n" " if(deno < 1e-6 && deno > -1e-6) continue;\n" " mediump float d = (dot(m*position-tctr, m*position-tctr) - dot(position-tctr, position-tctr)) / 2. / deno;\n" " if(d < 0.) continue;\n" " mediump vec4 next_position = position + d * tangent;\n" " if(dot(next_position - tctr, tangent) < dot(m*next_position - tctr, m*tangent)) continue;\n"; else fmain += " mediump float deno = dot(position, tangent) - dot(m*position, m*tangent);\n" " if(deno < 1e-6 && deno > -1e-6) continue;\n" " mediump float d = (dot(m*position, m*position) - dot(position, position)) / 2. / deno;\n" " if(d < 0.) continue;\n" " mediump vec4 next_position = position + d * tangent;\n" " if(dot(next_position, tangent) < dot(m*next_position, m*tangent)) continue;\n"; fmain += " if(d < dist) { dist = d; which = i; }\n" "}\n"; if(hyperbolic && reg3::ultra_mirror_in()) { fmain += "for(int i="+its(S7*2)+"; i<"+its(S7*2+isize(cgi.heptshape->vertices_only))+"; i++) {\n"; fmain += "mat4 uMi = " + getM("i") + ";"; fmain += " mediump float v = ((position - uMi * position)[3] / (uMi * tangent - tangent)[3]);\n" " if(v > 1. || v < -1.) continue;\n" " mediump float d = atanh(v);\n" " mediump vec4 next_tangent = position * sinh(d) + tangent * cosh(d);\n" " if(next_tangent[3] < (uMi * next_tangent)[3]) continue;\n" " if(d < dist) { dist = d; which = i; }\n" "}\n"; } // 20: get to horosphere +uBLevel (take smaller root) // 21: get to horosphere -uBLevel (take larger root) if(horos()) { string push = hyperbolic ? "xpush_h3" : "xpush_h2"; string w = hyperbolic ? "w" : "z"; fmain += "for(int i=20; i<22; i++) {\n" "mediump float sgn = i == 20 ? -1. : 1.;\n" "mediump vec4 zpos = "+push+"(uBLevel*sgn) * position;\n" "mediump vec4 ztan = "+push+"(uBLevel*sgn) * tangent;\n" "mediump float Mp = zpos."+w+" - zpos.x;\n" "mediump float Mt = ztan."+w+" - ztan.x;\n" "mediump float a = (Mp*Mp-Mt*Mt);\n" "mediump float b = Mp/a;\n" "mediump float c = (1.+Mt*Mt) / a;\n" "if(b*b < c) continue;\n" "if(sgn < 0. && Mt > 0.) continue;\n" "mediump float zsgn = (Mt > 0. ? -sgn : sgn);\n" "mediump float u = sqrt(b*b-c)*zsgn + b;\n" "mediump float v = -(Mp*u-1.) / Mt;\n" "if(a < 1e-5) v = (1.-Mp*Mp) / (2. * Mt);\n" "mediump float d = asinh(v);\n"; if(gproduct) fmain += "d /= xspeed;\n"; fmain += "if(d < 0. && abs(log(position."+w+"*position."+w+"-position.x*position.x)) < uBLevel) continue;\n" "if(d < dist) { dist = d; which = i; }\n" "}\n"; } if(gproduct) fmain += "if(zspeed > 0.) { mediump float d = (uPLevel - zpos) / zspeed; if(d < dist) { dist = d; which = sides-1; }}\n" "if(zspeed < 0.) { mediump float d = (-uPLevel - zpos) / zspeed; if(d < dist) { dist = d; which = sides-2; }}\n"; fmain += "}\n"; fmain += " if(dist < 0.) { dist = 0.; }\n"; fmain += " if(which == -1 && dist == 0.) return;\n"; } } void raygen::move_forward() { using glhr::to_glsl; string find_which; if(in_h2xe() && !is_stepbased()) fmain += " mediump float ch = cosh(dist*xspeed); mediump float sh = sinh(dist*xspeed);\n" " mediump vec4 v = position * ch + tangent * sh;\n" " tangent = tangent * ch + position * sh;\n" " position = v;\n" " zpos += dist * zspeed;\n"; else if(in_s2xe() && !is_stepbased()) fmain += " mediump float ch = cos(dist*xspeed); mediump float sh = sin(dist*xspeed);\n" " mediump vec4 v = position * ch + tangent * sh;\n" " tangent = tangent * ch - position * sh;\n" " position = v;\n" " zpos += dist * zspeed;\n"; else if(in_e2xe() && !is_stepbased()) fmain += " position = position + tangent * dist * xspeed;\n" " zpos += dist * zspeed;\n"; else if(hyperbolic && !is_stepbased()) fmain += " mediump float ch = cosh(dist); mediump float sh = sinh(dist);\n" " mediump vec4 v = position * ch + tangent * sh;\n" " tangent = tangent * ch + position * sh;\n" " position = v;\n"; else if(sphere && !is_stepbased()) fmain += " mediump float ch = cos(dist); mediump float sh = sin(dist);\n" " mediump vec4 v = position * ch + tangent * sh;\n" " tangent = tangent * ch - position * sh;\n" " position = v;\n"; else if(is_stepbased()) { bool use_christoffel = true; if(sol && nih) fsh += "mediump vec4 christoffel(mediump vec4 pos, mediump vec4 vel, mediump vec4 tra) {\n" " return vec4(-(vel.z*tra.x + vel.x*tra.z)*log(2.), (vel.z*tra.y + vel.y * tra.z)*log(3.), vel.x*tra.x * exp(2.*log(2.)*pos.z)*log(2.) - vel.y * tra.y * exp(-2.*log(3.)*pos.z)*log(3.), 0.);\n" " }\n"; else if(nih) fsh += "mediump vec4 christoffel(mediump vec4 pos, mediump vec4 vel, mediump vec4 tra) {\n" " return vec4((vel.z*tra.x + vel.x*tra.z)*log(2.), (vel.z*tra.y + vel.y * tra.z)*log(3.), -vel.x*tra.x * exp(-2.*log(2.)*pos.z)*log(2.) - vel.y * tra.y * exp(-2.*log(3.)*pos.z)*log(3.), 0.);\n" " }\n"; else if(sol) fsh += "mediump vec4 christoffel(mediump vec4 pos, mediump vec4 vel, mediump vec4 tra) {\n" " return vec4(-vel.z*tra.x - vel.x*tra.z, vel.z*tra.y + vel.y * tra.z, vel.x*tra.x * exp(2.*pos.z) - vel.y * tra.y * exp(-2.*pos.z), 0.);\n" " }\n"; else if(nil) { fsh += "mediump vec4 christoffel(mediump vec4 pos, mediump vec4 vel, mediump vec4 tra) {\n" " mediump float x = pos.x;\n" " const float mu = " + to_glsl((1-nilv::model_used)/2) + ";\n" " pos[2] += pos[0] * pos[1] * mu;\n" " vel[2] += (pos[0] * vel[1] + pos[1] * vel[0]) * mu;\n" " tra[2] += (pos[0] * tra[1] + pos[1] * tra[0]) * mu;\n" " vec4 res = vec4(x*vel.y*tra.y - 0.5*dot(vel.yz,tra.zy), -.5*x*dot(vel.yx,tra.xy) + .5 * dot(vel.zx,tra.xz), -.5*(x*x-1.)*dot(vel.yx,tra.xy)+.5*x*dot(vel.zx,tra.xz), 0.);\n" " res[2] -= (pos[0] * res[1] + vel[0] * vel[1] + pos[2] * res[0]) * mu;\n" " return res;\n" " }\n"; use_christoffel = false; } else if(sl2 || stretch::in()) { if(sl2) { fsh += "mediump mat4 s_translate(vec4 h) {\n" "return mat4(h.w,h.z,h.y,h.x,-h.z,h.w,-h.x,h.y,h.y,-h.x,h.w,-h.z,h.x,h.y,h.z,h.w);\n" "}\n"; } else { fsh += "mediump mat4 s_translate(vec4 h) {\n" "return mat4(h.w,h.z,-h.y,-h.x,-h.z,h.w,h.x,-h.y,h.y,-h.x,h.w,-h.z,h.x,h.y,h.z,h.w);\n" "}\n"; } fsh += "mediump mat4 s_itranslate(vec4 h) {\n" "h.xyz = -h.xyz; return s_translate(h);\n" "}\n"; if(stretch::mstretch) { fsh += "mediump vec4 christoffel(mediump vec4 pos, mediump vec4 vel, mediump vec4 tra) {\n" "vel = s_itranslate(toOrig * pos) * toOrig * vel;\n" "tra = s_itranslate(toOrig * pos) * toOrig * tra;\n" "return fromOrig * s_translate(toOrig * pos) * vec4(\n"; for(int i=0; i<3; i++) { auto &c = stretch::ms_christoffel; fsh += " 0."; for(int j=0; j<3; j++) for(int k=0; k<3; k++) if(c[i][j][k]) fsh += " + vel["+its(j)+"]*tra["+its(k)+"]*" + to_glsl(c[i][j][k]); fsh += " ,\n"; } fsh += " 0);\n" "}\n"; } else use_christoffel = false; } else use_christoffel = false; if(use_christoffel) fsh += "mediump vec4 get_acc(mediump vec4 pos, mediump vec4 vel) {\n" " return christoffel(pos, vel, vel);\n" " }\n"; if(sn::in() && !asonov && !embedded_plane) fsh += "uniform mediump float uBinaryWidth;\n"; fmain += " dist = next < minstep ? 2.*next : next;\n"; if(nil && !use_christoffel) fsh += "mediump vec4 translate(mediump vec4 a, mediump vec4 b) {\n" "return vec4(a[0] + b[0], a[1] + b[1], a[2] + b[2] + a[0] * b[1], b[3]);\n" "}\n" "mediump vec4 translatev(mediump vec4 a, mediump vec4 t) {\n" "return vec4(t[0], t[1], t[2] + a[0] * t[1], 0.);\n" "}\n" "mediump vec4 itranslate(mediump vec4 a, mediump vec4 b) {\n" "return vec4(-a[0] + b[0], -a[1] + b[1], -a[2] + b[2] - a[0] * (b[1]-a[1]), b[3]);\n" "}\n" "mediump vec4 itranslatev(mediump vec4 a, mediump vec4 t) {\n" "return vec4(t[0], t[1], t[2] - a[0] * t[1], 0.);\n" "}\n"; // if(nil) fmain += "tangent = translate(position, itranslate(position, tangent));\n"; if(use_christoffel) fmain += "mediump vec4 vel = tangent * dist;\n" "mediump vec4 acc1 = get_acc(position, vel);\n" "mediump vec4 acc2 = get_acc(position + vel / 2., vel + acc1/2.);\n" "mediump vec4 acc3 = get_acc(position + vel / 2. + acc1/4., vel + acc2/2.);\n" "mediump vec4 acc4 = get_acc(position + vel + acc2/2., vel + acc3/2.);\n" "mediump vec4 nposition = position + vel + (acc1+acc2+acc3)/6.;\n"; if((sl2 || stretch::in()) && use_christoffel) { if(sl2) fmain += "nposition = nposition / sqrt(dot(position.zw, position.zw) - dot(nposition.xy, nposition.xy));\n"; else if(stretch::in()) fmain += "nposition = nposition / sqrt(dot(nposition, nposition));\n"; } if((sl2 || stretch::in()) && !use_christoffel) { ld SV = stretch::not_squared(); ld mul = (sphere?1:-1)-1/SV/SV; fmain += "vec4 vel = s_itranslate(position) * tangent * dist;\n" "vec4 vel1 = vel; vel1.z *= " + to_glsl(stretch::not_squared()) + ";\n" "mediump float vlen = length(vel1.xyz);\n" "if(vel.z<0.) vlen=-vlen;\n" "float z_part = vel1.z/vlen;\n" "float x_part = sqrt(1.-z_part*z_part);\n" "const float SV = " + to_glsl(SV) + ";\n" "float rparam = x_part / z_part / SV;\n" "float beta = atan2(vel.y,vel.x);\n" "if(vlen<0.) beta += PI;\n" "mediump vec4 nposition, ntangent;\n"; if(sl2) fmain += "if(rparam > 1.) {\n" "float cr = 1./sqrt(rparam*rparam-1.);\n" "float sr = rparam*cr;\n" "float z = cr * " + to_glsl(mul) + ";\n" "float a = vlen / length(vec2(sr, cr/SV));\n" "float k = -a;\n" "float u = z*a;\n" "float xy = sr * sinh(k);\n" "float zw = cr * sinh(k);\n" "nposition = vec4(" "-xy*cos(u+beta)," "-xy*sin(u+beta)," "zw*cos(u)-cosh(k)*sin(u)," "zw*sin(u)+cosh(k)*cos(u)" ");\n" "ntangent = vec4(" "-sr*cosh(k)*k*cos(u+beta) + u*xy*sin(u+beta)," "-sr*cosh(k)*k*sin(u+beta) - u*xy*cos(u+beta)," "k*cr*cosh(k)*cos(u)-zw*sin(u)*u-k*sinh(k)*sin(u)-u*cosh(k)*cos(u)," "k*cr*cosh(k)*sin(u)+u*zw*cos(u)+k*sinh(k)*cos(u)-u*cosh(k)*sin(u)" ");\n" "}\n" "else {\n" "float r = atanh(rparam);\n" "float cr = cosh(r);\n" "float sr = sinh(r);\n" "float z = cr * "+to_glsl(mul)+";\n" "float a = vlen / length(vec2(sr, cr/SV));\n" "float k = -a;\n" "float u = z*a;\n" "float xy = sr * sin(k);\n" "float zw = cr * sin(k);\n" "ntangent = vec4(" "-sr*cos(k)*k*cos(u+beta) + u*xy*sin(u+beta)," "-sr*cos(k)*k*sin(u+beta) - u*xy*cos(u+beta)," "k*cr*cos(k)*cos(u)-zw*sin(u)*u+k*sin(k)*sin(u)-u*cos(k)*cos(u)," "k*cr*cos(k)*sin(u)+zw*cos(u)*u-k*sin(k)*cos(u)-u*cos(k)*sin(u)" ");\n" "nposition = vec4(" "-xy * cos(u+beta)," "-xy * sin(u+beta)," "zw * cos(u) - cos(k) * sin(u)," "zw * sin(u) + cos(k)*cos(u)" ");\n" "}\n"; else fmain += "if(true) {\n" "float r = atan(rparam);\n" "float cr = cos(r);\n" "float sr = sin(r);\n" "float z = cr * "+to_glsl(mul)+";\n" "float a = vlen / length(vec2(sr, cr/SV));\n" "float k = a;\n" "float u = z*a;\n" "float xy = sr * sin(k);\n" "float zw = cr * sin(k);\n" "ntangent = vec4(" "sr*cos(k)*k*cos(u+beta) - u*xy*sin(u+beta)," "sr*cos(k)*k*sin(u+beta) + u*xy*cos(u+beta)," "k*cr*cos(k)*cos(u)-zw*sin(u)*u+k*sin(k)*sin(u)-u*cos(k)*cos(u)," "k*cr*cos(k)*sin(u)+zw*cos(u)*u-k*sin(k)*cos(u)-u*cos(k)*sin(u)" ");\n" "nposition = vec4(" "xy * cos(u+beta)," "xy * sin(u+beta)," "zw * cos(u) - cos(k) * sin(u)," "zw * sin(u) + cos(k)*cos(u)" ");\n" "}\n"; fmain += "ntangent = ntangent / dist;\n" "ntangent = s_translate(position) * ntangent;\n" "nposition = s_translate(position) * nposition;\n"; } if(nil && !use_christoffel && !eyes) { fmain += "mediump vec4 xp, xt;\n" "mediump vec4 back = itranslatev(position, tangent);\n" "if(back.x == 0. && back.y == 0.) {\n" " xp = vec4(0., 0., back.z*dist, 1.);\n" " xt = back;\n" " }\n" "else if(abs(back.z) == 0.) {\n" " xp = vec4(back.x*dist, back.y*dist, back.x*back.y*dist*dist/2., 1.);\n" " xt = vec4(back.x, back.y, dist*back.x*back.y, 0.);\n" " }\n" "else if(abs(back.z) < 1e-1) {\n" // we use the midpoint method here, because the formulas below cause glitches due to mediump float precision " mediump vec4 acc = christoffel(vec4(0,0,0,1), back, back);\n" " mediump vec4 pos2 = back * dist / 2.;\n" " mediump vec4 tan2 = back + acc * dist / 2.;\n" " mediump vec4 acc2 = christoffel(pos2, tan2, tan2);\n" " xp = vec4(0,0,0,1) + back * dist + acc2 / 2. * dist * dist;\n" " xt = back + acc * dist;\n" " }\n" "else {\n" " mediump float alpha = atan2(back.y, back.x);\n" " mediump float w = back.z * dist;\n" " mediump float c = length(back.xy) / back.z;\n" " xp = vec4(2.*c*sin(w/2.) * cos(w/2.+alpha), 2.*c*sin(w/2.)*sin(w/2.+alpha), w*(1.+(c*c/2.)*((1.-sin(w)/w)+(1.-cos(w))/w * sin(w+2.*alpha))), 1.);\n" " xt = back.z * vec4(" "c*cos(alpha+w)," "c*sin(alpha+w)," "1. + c*c*2.*sin(w/2.)*sin(alpha+w)*cos(alpha+w/2.)," "0.);\n" " }\n" "mediump vec4 nposition = translate(position, xp);\n"; } if(asonov) { fsh += "uniform mediump mat4 uStraighten;\n"; fmain += "mediump vec4 sp = uStraighten * nposition;\n"; } if(eyes) { fmain += " mediump float t = go + dist;\n"; fmain += gproduct ? " mediump vec4 v = at1 * t;\n" : " mediump vec4 v = at0 * t;\n"; fmain += " v[3] = 1.;\n" " mediump vec4 azeq = uEyeShift * v;\n"; if(nil) fmain += " mediump float alpha = atan2(azeq.y, azeq.x);\n" " mediump float w = azeq.z;\n" " mediump float c = length(azeq.xy) / azeq.z;\n" " mediump vec4 xp = vec4(2.*c*sin(w/2.) * cos(w/2.+alpha), 2.*c*sin(w/2.)*sin(w/2.+alpha), w*(1.+(c*c/2.)*((1.-sin(w)/w)+(1.-cos(w))/w * sin(w+2.*alpha))), 1.);\n" " mediump vec4 orig_position = vw * vec4(0., 0., 0., 1.);\n" " mediump vec4 nposition = translate(orig_position, xp);\n"; else if(gproduct) { fmain += " mediump float alen_xy = length(azeq.xy);\n"; fmain += " mediump float nzpos = zpos + azeq.z;\n"; if(in_h2xe()) { fmain += " azeq.xy *= sinh(alen_xy) / alen_xy;\n"; fmain += " azeq.z = cosh(alen_xy);\n"; } else if(in_s2xe()) { fmain += " azeq.xy *= sin (alen_xy) / alen_xy;\n"; fmain += " azeq.z = cos(alen_xy);\n"; } else { /* euclid */ fmain += " azeq.z = 1.;\n"; } fmain += "azeq.w = 0.;\n"; fmain += " mediump vec4 nposition = vw * azeq;\n"; } else { fmain += " mediump float alen = length(azeq.xyz);\n"; if(hyperbolic) fmain += " azeq *= sinh(alen) / alen;\n" " azeq[3] = cosh(alen);\n"; else if(sphere) fmain += " azeq *= sin(alen) / alen;\n" " azeq[3] = cos(alen);\n"; else /* euclid */ fmain += " azeq[3] = 1;\n"; fmain += " mediump vec4 nposition = vw * azeq;\n"; } } else if(hyperbolic) { fmain += " mediump float ch = cosh(dist); mediump float sh = sinh(dist);\n" " mediump vec4 v = position * ch + tangent * sh;\n" " mediump vec4 ntangent = tangent * ch + position * sh;\n" " mediump vec4 nposition = v;\n"; } else if(sphere && !stretch::in()) { fmain += " mediump float ch = cos(dist); mediump float sh = sin(dist);\n" " mediump vec4 v = position * ch + tangent * sh;\n" " mediump vec4 ntangent = tangent * ch - position * sh;\n" " mediump vec4 nposition = v;\n"; } bool reg = hyperbolic || sphere || euclid || sl2 || gproduct; if(reg) { string s = (rotspace || gproduct) ? "-2" : ""; fmain += " mediump float best = "+f_len()+"(nposition);\n" " for(int i=0; i cgi.WALL) { if(sol) find_which += " if(nposition[2] < " + to_glsl(cgi.WALL)+") which = sides-1;\n" " if(nposition[2] > " + to_glsl(cgi.FLOOR)+") which = sides-2;\n"; } else { if(sol) find_which += " if(nposition[2] < " + to_glsl(cgi.FLOOR)+") which = sides-2;\n" " if(nposition[2] > " + to_glsl(cgi.WALL)+") which = sides-1;\n"; } fmain += find_which + " if(which != -1) {\n"; } else if(asonov) fmain += "if(abs(sp.x) > 1. || abs(sp.y) > 1. || abs(sp.z) > 1.) {\n"; else if(nih) fmain += "if(abs(nposition.x) > uBinaryWidth || abs(nposition.y) > uBinaryWidth || abs(nposition.z) > .5) {\n"; else if(sol) fmain += "if(abs(nposition.x) > uBinaryWidth || abs(nposition.y) > uBinaryWidth || abs(nposition.z) > log(2.)/2.) {\n"; else fmain += "if(abs(nposition.x) > "+hnilw+" || abs(nposition.y) > "+hnilw+" || abs(rz) > "+hnilw2+") {\n"; fmain += "next = dist / 2.; continue;\n" "}\n" "if(next < maxstep) next = next / 2.;\n" "}\n" "else {\n"; if(embedded_plane) fmain += find_which; else if(sn::in()) { if(asonov) fmain += "if(sp.x > 1.) which = 4;\n" "if(sp.y > 1.) which = 5;\n" "if(sp.x <-1.) which = 10;\n" "if(sp.y <-1.) which = 11;\n" "if(sp.z > 1.) {\n" "mediump float best = 999.;\n" "for(int i=0; i<4; i++) {\n" "mediump float cand = "+f_len()+"(uStraighten * " + getM("i") + " * position);\n" "if(cand < best) { best = cand; which = i;}\n" "}\n" "}\n" "if(sp.z < -1.) {\n" "mediump float best = 999.;\n" "for(int i=6; i<10; i++) {\n" "mediump float cand = "+f_len()+"(uStraighten * " + getM("i") + " * position);\n" "if(cand < best) { best = cand; which = i;}\n" "}\n" "}\n"; else if(sol && !nih) fmain += "if(nposition.x > uBinaryWidth) which = 0;\n" "if(nposition.x <-uBinaryWidth) which = 4;\n" "if(nposition.y > uBinaryWidth) which = 1;\n" "if(nposition.y <-uBinaryWidth) which = 5;\n"; if(nih) fmain += "if(nposition.x > uBinaryWidth) which = 0;\n" "if(nposition.x <-uBinaryWidth) which = 2;\n" "if(nposition.y > uBinaryWidth) which = 1;\n" "if(nposition.y <-uBinaryWidth) which = 3;\n"; if(sol && nih) fmain += "if(nposition.z > .5) which = nposition.x > 0. ? 5 : 4;\n" "if(nposition.z <-.5) which = nposition.y > uBinaryWidth/3. ? 8 : nposition.y < -uBinaryWidth/3. ? 6 : 7;\n"; if(nih && !sol) fmain += "if(nposition.z > .5) which = 4;\n" "if(nposition.z < -.5) which = (nposition.y > uBinaryWidth/3. ? 9 : nposition.y < -uBinaryWidth/3. ? 5 : 7) + (nposition.x>0.?1:0);\n"; if(sol && !nih && !asonov) fmain += "if(nposition.z > log(2.)/2.) which = nposition.x > 0. ? 3 : 2;\n" "if(nposition.z <-log(2.)/2.) which = nposition.y > 0. ? 7 : 6;\n"; } else if(nil) fmain += "if(nposition.x > "+hnilw+") which = 3;\n" "if(nposition.x <-"+hnilw+") which = 0;\n" "if(nposition.y > "+hnilw+") which = 4;\n" "if(nposition.y <-"+hnilw+") which = 1;\n" "if(rz > "+hnilw2+") which = 5;\n" "if(rz <-"+hnilw2+") which = 2;\n"; fmain += "next = maxstep;\n" "}\n"; if(use_christoffel) fmain += "tangent = tangent + (acc1+2.*acc2+2.*acc3+acc4)/(6.*dist);\n"; else if(nil && !eyes) fmain += "tangent = translatev(position, xt);\n"; else if(!eyes) fmain += "tangent = ntangent;\n"; if(!eyes) fmain += "position = nposition;\n"; else fmain += "vec4 position = nposition;\n"; if((stretch::in() || sl2) && use_christoffel) { fmain += "tangent = s_itranslate(toOrig * position) * toOrig * tangent;\n" "tangent[3] = 0.;\n"; if(stretch::mstretch) fmain += "float nvelsquared = dot(tangent.xyz, (uATOI * tangent).xyz);\n"; else fmain += "float nvelsquared = tangent.x * tangent.x + tangent.y * tangent.y + " + to_glsl(stretch::squared()) + " * tangent.z * tangent.z;\n"; fmain += "tangent /= sqrt(nvelsquared);\n" "tangent = fromOrig * s_translate(toOrig * position) * tangent;\n"; } } else fmain += "position = position + tangent * dist;\n"; } void raygen::apply_reflect(int flat1, int flat2) { if(gproduct) fmain += "if(reflect && which >= sides-2) { zspeed = -zspeed; continue; }\n"; if(horos()) { fmain += "if(reflect && (which < "+its(flat1)+" || which >= "+its(flat2)+")) {\n"; if(hyperbolic) fmain += " mediump float x = -log(position.w - position.x);\n" " mediump vec4 xtan = xpush_h3(-x) * tangent;\n" " mediump float diag = (position.y*position.y+position.z*position.z)/2.;\n" " mediump vec4 normal = vec4(1.-diag, -position.y, -position.z, -diag);\n" " mediump float mdot = dot(xtan.xyz, normal.xyz) - xtan.w * normal.w;\n"; else fmain += " mediump float x = -log(position.z - position.x);\n" " mediump vec4 xtan = xpush_h2(-x) * tangent;\n" " mediump float diag = position.y*position.y/2.;\n" " mediump vec4 normal = vec4(1.-diag, -position.y, -diag, 0.);\n" " mediump float mdot = dot(xtan.xy, normal.xy) - xtan.w * normal.w;\n"; fmain += " xtan = xtan - normal * mdot * 2.;\n" " tangent = xpush_h(x) * xtan;\n" " continue;\n" " }\n"; } if(asonov) { fmain += " if(reflect) {\n" " if(which == 4 || which == 10) tangent = refl(tangent, position.z, uReflectX);\n" " else if(which == 5 || which == 11) tangent = refl(tangent, position.z, uReflectY);\n" " else tangent.z = -tangent.z;\n" " }\n"; fsh += "uniform mediump vec4 uReflectX, uReflectY;\n" "mediump vec4 refl(mediump vec4 t, float z, mediump vec4 r) {\n" "t.x *= exp(z); t.y /= exp(z);\n" "t -= dot(t, r) * r;\n" "t.x /= exp(z); t.y *= exp(z);\n" "return t;\n" "}\n"; } else if(sol && !nih && !asonov) fmain += " if(reflect) {\n" " if(which == 0 || which == 4) tangent.x = -tangent.x;\n" " else if(which == 1 || which == 5) tangent.y = -tangent.y;\n" " else tangent.z = -tangent.z;\n" " continue;\n" " }\n"; else if(nih) fmain += " if(reflect) {\n" " if(which == 0 || which == 2) tangent.x = -tangent.x;\n" " else if(which == 1 || which == 3) tangent.y = -tangent.y;\n" " else tangent.z = -tangent.z;\n" " continue;\n" " }\n"; else { fmain += " if(reflect) {\n" " tangent = " + getM("uMirrorShift+walloffset+which") + " * tangent;\n" " continue;\n" " }\n"; if(fsh.find("uMirrorShift") == string::npos) fsh += "uniform int uMirrorShift;\n"; } } void raygen::emit_intra_portal(int gid1, int gid2) { if(1) { intra::resetter ir; intra::switch_to(gid2); } if(gproduct) { fmain += "mediump vec4 nposition;\n"; fmain += "if(pconnection.x != .5) {\n"; // kind != 0 if(1) { string fn = bt::in() ? "to_poco_h2xr_b" : in_h2xe() ? "to_poco_h2xr_h" : "to_poco_s2xr_s"; string tmul = ""; if(!bt::in()) { fmain += " mediump mat4 tkt = " + getM("mid+1") + ";\n"; tmul = "tkt*"; } fmain += " nposition = position + tangent * xspeed * 1e-3;\n" " position = "+fn+"("+tmul+"position);\n" " position.z = 0.;\n" // zpos - uPLevel;\n" " nposition = "+fn+"("+tmul+"nposition);\n" " nposition.z = zspeed * 1e-3;\n" " if(pconnection.y < .5) { nposition.z = -nposition.z; nposition.x = -nposition.x; position.x = -position.x; }\n"; } fmain += " } else {\n"; if(1) { string fn = in_h2xe() ? "to_poco_h2xr_e" : "to_poco_s2xr_e"; fmain += " nposition = position + tangent * xspeed * 1e-3;\n" " mediump mat4 tkt = " + getM("mid+1") + ";\n" " position = "+fn+"(tkt * position);\n" " position.y = zpos;\n" " nposition = "+fn+"(tkt * nposition);\n" " nposition.y = zpos + zspeed * 1e-3;\n"; } fmain += " }\n"; } else if(hyperbolic && bt::in()) { fmain += " mediump vec4 nposition = position + tangent * 1e-3;\n" " mediump mat4 tkt = " + getM("mid+1") + ";\n" " position = deparabolici13(position);\n" " nposition = deparabolici13(nposition);\n" " position = tkt * position;\n" " nposition = tkt * nposition;\n" " position.z *= exp(position.y);\n" " nposition.z *= exp(nposition.y);\n"; } else if(sol) { fmain += " mediump vec4 nposition = position + tangent * 1e-3;\n" " mediump mat4 tkt = " + getM("mid+1") + ";\n" " position = tkt * position;\n" " nposition = tkt * nposition;\n" " position.z *= exp(-position.y);\n" " nposition.z *= exp(-nposition.y);\n"; } else { fmain += " mediump vec4 nposition = position + tangent * 1e-3;\n" " mediump mat4 tkt = " + getM("mid+1") + ";\n"; if(hyperbolic) fmain += " position = to_poco_h3(tkt * position);\n" " nposition = to_poco_h3(tkt * nposition);\n"; else if(sphere) fmain += " position = to_poco_s3(tkt * position);\n" " nposition = to_poco_s3(tkt * nposition);\n"; else fmain += " position = tkt * position;\n" " nposition = tkt * nposition;\n"; } fmain += " mediump mat4 m = " + getM("mid") + ";\n" " position = m * position;\n" " nposition = m * nposition;\n"; intra::resetter ir; intra::switch_to(gid2); if(gproduct) { fmain += "if(pconnection.z != .5) {\n"; // kind != 0 if(1) { string sgn = in_h2xe() ? "-" : "+"; string fn = bt::in() ? "from_poco_h2xr_b" : in_h2xe() ? "itkt*from_poco_h2xr_h" : "itkt*from_poco_s2xr_s"; fmain += " if(pconnection.w < .5) { position.z = -position.z; nposition.z = -nposition.z; nposition.x = -nposition.x; position.x = -position.x; }\n" " zspeed = (nposition.z - position.z) * 1e3;\n" " zpos = position.z + (pconnection.w - .5) * 16.;\n" " mediump mat4 itkt = " + getM("mid+2") + ";\n" " position = "+fn+"(position);\n" " nposition = "+fn+"(nposition);\n" " tangent = (nposition - position) * 1e3;\n" " mediump float pnorm = tangent.z * position.z "+sgn+" tangent.x * position.x "+sgn+" tangent.y * position.y;\n" " tangent -= position * pnorm;\n" " xspeed = sqrt(tangent.x * tangent.x + tangent.y * tangent.y "+sgn+" tangent.z * tangent.z);\n" " tangent /= xspeed;\n"; } fmain += " } else {\n"; if(1) { string sgn = in_h2xe() ? "-" : "+"; string fn = in_h2xe() ? "from_poco_h2xr_e" : "from_poco_s2xr_e"; fmain += " mediump mat4 itkt = " + getM("mid+2") + ";\n"; fmain += " zpos = position.y;\n" " zspeed = (nposition.y - zpos) * 1e3;\n" " position = itkt * "+fn+"(position);\n" " nposition = itkt * "+fn+"(nposition);\n" " tangent = (nposition - position) * 1e3;\n" " mediump float pnorm = tangent.z * position.z "+sgn+" dot(position.xy, tangent.xy);\n" " tangent -= position * pnorm;\n" " xspeed = sqrt(dot(tangent.xy, tangent.xy) "+sgn+" tangent.z * tangent.z);\n" " tangent /= xspeed;\n" " mediump float l = xspeed*xspeed+zspeed*zspeed;\n" " xspeed /= sqrt(l); zspeed /= sqrt(l);\n"; } fmain += "}\n"; } else if(sol) { fmain += " mediump mat4 itkt = " + getM("mid+2") + ";\n"; fmain += " position.z *= exp(position.y);\n" " nposition.z *= exp(nposition.y);\n" " position = itkt * position;\n" " nposition = itkt * nposition;\n" " tangent = (nposition - position) * 1e3;\n" " float next = maxstep;\n"; } else { fmain += " mediump mat4 itkt = " + getM("mid+2") + ";\n"; if(hyperbolic || sphere) { string sgn = hyperbolic ? "-" : "+"; if(hyperbolic && bt::in()) { fmain += " position.z *= exp(-position.y);\n" " nposition.z *= exp(-nposition.y);\n" " position = itkt * position;\n" " nposition = itkt * nposition;\n" " position = enparabolici13(position);\n" " nposition = enparabolici13(nposition);\n"; } else { string he = hyperbolic ? "from_poco_h3" : "from_poco_s3"; fmain += " position = itkt * "+he+"(position);\n" " nposition = itkt * "+he+"(nposition);\n"; } fmain += " tangent = (nposition - position) * 1e3;\n" " mediump float pnorm = position.w * position.w "+sgn+" dot(position.xyz, position.xyz);\n" " position /= sqrt(pnorm);\n" " pnorm = tangent.w * position.w "+sgn+" dot(position.xyz, tangent.xyz);\n" " tangent -= position * pnorm;\n" " mediump float xspeed = sqrt(dot(tangent.xyz, tangent.xyz) "+sgn+" tangent.w * tangent.w);\n" " tangent /= xspeed;\n"; } else fmain += " position = itkt * position;\n" " nposition = itkt * nposition;\n" " tangent = (nposition - position) * 1e3;\n" " tangent /= dot(tangent.xyz, tangent.xyz);\n"; } } void raygen::emit_iterate(int gid1) { using glhr::to_glsl; if(intra::in && gproduct) fmain += " const mediump float uPLevel = " + to_glsl(cgi.plevel/2) + ";\n"; int flat1 = 0, flat2 = deg; if(gproduct || rotspace) flat2 -= 2; #if CAP_BT if(horos()) { if(intra::in) fmain += "mediump float uBLevel = " + to_glsl(log(bt::expansion()) / 2) + ";\n"; else fsh += "uniform mediump float uBLevel;\n"; flat1 = bt::dirs_outer(); flat2 -= bt::dirs_inner(); } #endif fmain += " mediump float dist = 100.;\n"; fmain += " int which = -1;\n"; if(intra::in) { if(hyperbolic) fmain += "iter += 44;\n"; else if(!sol) fmain += "iter += 4;\n"; } if(in_e2xe() && !eyes) fmain += "tangent.w = position.w = 0.;\n"; compute_which_and_dist(flat1, flat2); vid.fixed_yz = false; // shift d units if(use_reflect) fmain += "bool reflect = false;\n"; move_forward(); if(!eyes) { if(hyperbolic) fmain += "position /= sqrt(position.w*position.w - dot(position.xyz, position.xyz));\n" "tangent -= dot(vec4(-position.xyz, position.w), tangent) * position;\n" "tangent /= sqrt(dot(tangent.xyz, tangent.xyz) - tangent.w*tangent.w);\n"; if(in_h2xe()) fmain += "position /= sqrt(position.z*position.z - dot(position.xy, position.xy));\n" "tangent -= dot(vec3(-position.xy, position.z), tangent.xyz) * position;\n" "tangent /= sqrt(dot(tangent.xy, tangent.xy) - tangent.z*tangent.z);\n"; } if(horos()) { string w20, w21; if(in_h2xe() && hybrid::underlying == gBinary4) { w21 = " for(int i=0; i<2; i++) {\n"; w20 = "int i=3; {\n"; } else if(in_h2xe() && hybrid::underlying == gTernary) { w21 = " for(int i=0; i<3; i++) {\n"; w20 = "int i=4; {\n"; } else if(in_h2xe() && hybrid::underlying == gBinaryTiling) { w20 = "int i = sides == 8 ? 5 : position.y < 0. ? 5 : 6; {\n"; w21 = "for(int i=1; i<4; i++) {\n"; } else { w20 = " for(int i="+its(flat2)+"; i<"+its(S7)+"; i++) {\n"; w21 = "for(int i=0; i<"+its(flat1)+"; i++) {\n"; } fmain += "if(which == 20) {\n" " mediump float best = 999.;\n" +w20+ " mediump float cand = "+f_len_prod()+"(" + getM("walloffset+i") + " * position);\n" " if(cand < best) { best = cand; which = i; }\n" " }\n" "}\n" "if(which == 21) {\n" "mediump float best = 999.;\n" +w21+ " mediump float cand = "+f_len_prod()+"(" + getM("walloffset+i") + " * position);\n" " if(cand < best) { best = cand; which = i; }\n" " }\n" "}\n"; } if(volumetric::on) fmain += "if(dist > 0. && go < " + to_glsl(hard_limit) + ") {\n" " if(dist > "+to_glsl(hard_limit)+" - go) dist = "+to_glsl(hard_limit)+" - go;\n" " mediump vec4 col = texture2D(tVolumetric, cid);\n" " mediump float factor = col.w; col.w = 1.;\n" " mediump float frac = exp(-(factor + 1. / uExpDecay) * dist);\n" " gl_FragColor += left * (1.-frac) * col;\n" " left *= frac;\n" " }\n;"; fmain += " go = go + dist;\n"; fmain += "if(which == -1) continue;\n"; if(gproduct && eyes) fmain += "position.w = -nzpos;\n"; else if(gproduct) fmain += "position.w = -zpos;\n"; if(reg3::ultra_mirror_in()) fmain += "if(which >= " + its(S7) + ") {" " tangent = " + getM("which") + " * tangent;\n" " continue;\n" " }\n"; // apply wall color fmain += " mediump vec2 u = cid + vec2(float(which) / float(uLength), 0);\n" " mediump vec4 col = texture2D(tWallcolor, u);\n" " if(col[3] > 0.0) {\n"; if(eyes) fmain += " mediump float gou = go / uAbsUnit;\n"; else fmain += " mediump float gou = go;\n"; if(hard_limit < NO_LIMIT) fmain += " if(gou > " + to_glsl(hard_limit) + ") { gl_FragDepth = 1.; return; }\n"; if(!(levellines && disable_texture)) { fmain += " mediump vec4 pos = position;\n"; if(nil) fmain += "if(which == 2 || which == 5) pos.z = 0.;\n"; else if(hyperbolic && bt::in()) fmain += "pos = deparabolici13(pos);\n" "pos.xyz = pos.zxy;\n"; else if(hyperbolic || sphere) fmain += "pos /= pos.w;\n"; else if(gproduct && bt::in()) fmain += "pos.xy = deparabolic12(pos).xy;\n" "pos.z = -pos.w; pos.w = 0.;\n" ; else if(gproduct) fmain += "pos = vec4(pos.x/pos.z, pos.y/pos.z, -pos.w, 0);\n"; fmain += " mediump vec2 inface = map_texture(pos, which+walloffset);\n" " mediump vec3 tmap = texture2D(tTextureMap, u).rgb;\n" " if(tmap.z == 0.) col.xyz *= min(1., (1.-inface.x)/ tmap.x);\n" " else {\n" " mediump vec2 inface2 = tmap.xy + tmap.z * inface;\n" " col.xyz *= texture2D(tTexture, inface2).rgb;\n" " }\n"; } if(volumetric::on) fmain += " mediump float d = uExpStart * exp(-gou / uExpDecay);\n"; else fmain += " mediump float d = max(1. - gou / uLinearSightRange, uExpStart * exp(-gou / uExpDecay));\n"; if(!volumetric::on) fmain += " col.xyz = col.xyz * d + uFogColor.xyz * (1.-d);\n"; if(nil) fmain += " if(abs(abs(position.x)-abs(position.y)) < .005) col.xyz /= 2.;\n"; if(use_reflect) fmain += " if(col.w == 1.) {\n" " col.w = " + to_glsl(1-reflect_val)+";\n" " reflect = true;\n" " }\n"; ld vnear = glhr::vnear_default; ld vfar = glhr::vfar_default; fmain += " gl_FragColor.xyz += left * col.xyz * col.w;\n"; if(use_reflect) fmain += " if(reflect && depthtoset) {\n"; else fmain += " if(col.w == 1.) {\n"; if(hyperbolic && !eyes && !intra::in) { fmain += " mediump vec4 t = at0 * tanh(go);\n" " t.w = 1.;\n"; fmain += "gl_FragColor.xyz *= 0.9999 + 0.0001 * t.z;\n"; fmain += "gl_FragColor.xyz /= 0.9999 + 0.0001 * t.z;\n"; } else { fmain += " mediump vec4 t = at0 * go;\n" " t.w = 1.;\n"; } if(levellines) { if(hyperbolic && !eyes && !intra::in) fmain += "gl_FragColor.xyz *= 0.5 + 0.5 * cos(t.z * uLevelLines * 2. * PI);\n"; else fmain += "gl_FragColor.xyz *= 0.5 + 0.5 * cos(go * uLevelLines * 2. * PI);\n"; if(fsh.find("uLevelLines") == string::npos) fsh += "uniform mediump float uLevelLines;\n"; } if(vid.stereo_mode == sPanini) fmain += panini_shader(); else if(vid.stereo_mode == sStereographic) fmain += stereo_shader(); #ifndef GLES_ONLY fmain += " gl_FragDepth = (" + to_glsl(-vnear-vfar)+"+t.w*" + to_glsl(2*vnear*vfar)+"/t.z)/" + to_glsl(vnear-vfar)+";\n" " gl_FragDepth = (gl_FragDepth + 1.) / 2.;\n"; #endif if(!use_reflect) fmain += " return;\n"; else fmain += " depthtoset = false;\n"; fmain += " }\n" " left *= (1. - col.w);\n" " }\n"; if(use_reflect) apply_reflect(flat1, flat2); // next cell fmain += " mediump vec4 connection = texture2D(tConnections, u);\n" " cid = connection.xy;\n"; if(many_cell_types) fmain += "int nwalloffset = int(connection.w * " + to_glsl(max_wall_offset) + ");\n"; fmain += " int mid = int(connection.z * 1024.);\n"; string no_intra_portal = ""; no_intra_portal += " mediump mat4 m = " + getM("mid") + " * " + getM("walloffset+which") + ";\n"; if(eyes) no_intra_portal += " vw = m * vw;\n"; else no_intra_portal += " position = m * position;\n" " tangent = m * tangent;\n"; if(gproduct) no_intra_portal = " if(which == sides-2) { zpos += uPLevel+uPLevel; }\n" " else if(which == sides-1) { zpos -= uPLevel+uPLevel; }\n" " else {\n" + no_intra_portal + "}\n"; if(stretch::mstretch) no_intra_portal += " m = s_itranslate(m*vec4(0,0,0,1)) * m;" " fromOrig = m * fromOrig;\n" " m[0][1] = -m[0][1]; m[1][0] = -m[1][0];\n" // inverse " toOrig = toOrig * m;\n"; if(!intra::in) fmain += no_intra_portal; else { if(intra::in) { int q = isize(intra::data); fmain +=" mediump vec4 pconnection = texture2D(tPortalConnections, u);\n"; fmain += "if(pconnection.x == 0.) {\n"; fmain += no_intra_portal; fmain += " } else\n"; for(int gid2=0; gid2 (g.vsh, g.fsh); } full_enable(our_raycaster); } void raygen::add_functions() { add_if("xpush_h3", "mediump mat4 xpush_h3(float x) { return mat4(" "cosh(x), 0., 0., sinh(x),\n" "0., 1., 0., 0.,\n" "0., 0., 1., 0.,\n" "sinh(x), 0., 0., cosh(x)" ");}\n"); add_if("zpush_h3", "mediump mat4 zpush_h3(float x) { return mat4(" "1., 0., 0., 0.,\n" "0., 1., 0., 0.,\n" "0., 0., cosh(x), sinh(x),\n" "0., 0., sinh(x), cosh(x)" ");}\n"); add_if("xpush_h2", "mediump mat4 xpush_h2(float x) { return mat4(" "cosh(x), 0., sinh(x), 0.,\n" "0., 1., 0., 0.,\n" "sinh(x), 0., cosh(x), 0.,\n" "0., 0., 0., 1." ");}\n"); add_if("xpush_s", "mediump mat4 xpush_s(float x) { return mat4(" "cos(x), 0., 0., sin(x),\n" "0., 1., 0., 0.,\n" "0., 0., 1., 0.,\n" "-sin(x), 0., 0., cos(x)" ");}\n" ); add_if("xzspin", "mediump mat4 xzspin(float x) { return mat4(" "cos(x), 0., sin(x), 0.,\n" "0., 1., 0., 0.,\n" "-sin(x), 0., cos(x), 0.,\n" "0., 0., 0., 1." ");}\n"); add_if("yzspin", "mediump mat4 yzspin(float x) { return mat4(" "1., 0., 0., 0.,\n" "0., cos(x), sin(x), 0.,\n" "0., -sin(x), cos(x), 0.,\n" "0., 0., 0., 1." ");}\n" ); /* note: this is called deparabolici13 because it orders the coordinates differently from deparabolic13 */ add_if("deparabolici13", "mediump vec4 deparabolici13(mediump vec4 h) {\n" " h /= (1. + h[3]);\n" " h[0] -= 1.;\n" " h /= h.x*h.x + h.y*h.y + h.z * h.z;\n" " h[0] += .5;\n" " mediump vec4 res;\n" " res.x = h.y * 2.;\n" " res.y = h.z * 2.;\n" " res.z = (log(2.) + log(-h.x));\n" " res.w = 1.;\n" " return res;\n" " }\n\n"); /* note: this is called eeparabolici13 because it orders the coordinates differently from enparabolic13 */ add_if("enparabolici13", "mediump vec4 enparabolici13(mediump vec4 h) {\n" " mediump vec4 res;\n" " float diag = (h.x*h.x + h.y*h.y)/2.;\n" " res.x = sinh(h.z) + diag * exp(-h.z);\n" " res.y = h.x * exp(-h.z);\n" " res.z = h.y * exp(-h.z);\n" " res.w = cosh(h.z) + diag * exp(-h.z);\n" " return res;\n" " }\n\n"); add_if("to_poco_h3", "mediump vec4 to_poco_h3(mediump vec4 pos) {\n" " pos = pos / pos[3];\n" " pos[2] /= sqrt(1.-pos.x*pos.x-pos.y*pos.y);\n" " return pos;\n" " }\n\n"); add_if("from_poco_h3", "mediump vec4 from_poco_h3(mediump vec4 pos) {\n" " pos[2] *= sqrt(1.-pos.x*pos.x-pos.y*pos.y);\n" " float s = 1. - dot(pos.xyz, pos.xyz);\n" " return pos / sqrt(s);\n" " }\n\n"); add_if("to_poco_s3", "mediump vec4 to_poco_s3(mediump vec4 pos) {\n" " pos = pos / pos[3];\n" " pos[2] /= sqrt(1.+pos.x*pos.x+pos.y*pos.y);\n" " return pos;\n" " }\n\n"); add_if("from_poco_s3", "mediump vec4 from_poco_s3(mediump vec4 pos) {\n" " pos[2] *= sqrt(1.+pos.x*pos.x+pos.y*pos.y);\n" " float s = 1. + dot(pos.xyz, pos.xyz);\n" " return pos / sqrt(s);\n" " }\n\n"); add_if("from_poco_h2xr_h", "mediump vec4 from_poco_h2xr_h(mediump vec4 pos) {\n" " float s = 1. - pos.x*pos.x - pos.y * pos.y;\n" " pos.z = 1.;\n" " return pos / sqrt(s);\n" " }\n\n"); add_if("to_poco_h2xr_h", "mediump vec4 to_poco_h2xr_h(mediump vec4 pos) {\n" " pos /= pos[2];\n" " pos.w = 1.;\n" " return pos;\n" " }\n\n"); add_if("from_poco_h2xr_b", "mediump vec4 from_poco_h2xr_b(mediump vec4 pos) {\n" " return enparabolic12(pos);\n" " }\n\n"); add_if("to_poco_h2xr_b", "mediump vec4 to_poco_h2xr_b(mediump vec4 pos) {\n" " pos /= sqrt(pos.z*pos.z-pos.x*pos.x-pos.y*pos.y);\n" " pos = deparabolic12(pos);\n" " return pos;\n" " }\n\n"); add_if("from_poco_h2xr_e", "mediump vec4 from_poco_h2xr_e(mediump vec4 pos) {\n" " return vec4(sinh(pos[2]), sinh(pos[0]) * cosh(pos[2]), cosh(pos[0]) * cosh(pos[2]), 0);\n" " }\n\n"); add_if("to_poco_h2xr_e", "mediump vec4 to_poco_h2xr_e(mediump vec4 pos) {\n" " mediump float x = asinh(pos[0]);\n" " return vec4(asinh(pos[1] / cosh(x)), 0, x, 1);\n" " }\n\n"); add_if("from_poco_s2xr_s", "mediump vec4 from_poco_s2xr_s(mediump vec4 pos) {\n" " float s = 1. + pos.x*pos.x + pos.y * pos.y;\n" " pos.z = 1.;\n" " return pos / sqrt(s);\n" " }\n\n"); add_if("to_poco_s2xr_s", "mediump vec4 to_poco_s2xr_s(mediump vec4 pos) {\n" " pos /= pos[2];\n" " pos.w = 1.;\n" " return pos;\n" " }\n\n"); add_if("from_poco_s2xr_e", "mediump vec4 from_poco_s2xr_e(mediump vec4 pos) {\n" " return vec4(sin(pos[2]), sin(pos[0]) * cos(pos[2]), cos(pos[0]) * cos(pos[2]), 0);\n" " }\n\n"); add_if("to_poco_s2xr_e", "mediump vec4 to_poco_s2xr_e(mediump vec4 pos) {\n" " mediump float x = asin_clamp(pos[0]);\n" " return vec4(asin_clamp(pos[1] / cos(x)), 0, x, 1);\n" " }\n\n"); add_if("deparabolic12", "mediump vec4 deparabolic12(mediump vec4 h) {\n" " h /= (1. + h.z);\n" " h[0] -= 1.;\n" " h /= h.x*h.x + h.y*h.y;\n" " h[0] += .5;\n" " mediump vec4 res;\n" " res.x = (log(2.) + log(-h.x));\n" " res.y = h.y * 2.;\n" " res.w = 1.;\n" " return res;\n" " }\n\n"); add_if("enparabolic12", "mediump vec4 enparabolic12(mediump vec4 h) {\n" " mediump vec4 res;\n" " float diag = h.y*h.y /2.;\n" " res.x = sinh(h.x) + diag * exp(-h.x);\n" " res.y = h.y * exp(-h.x);\n" " res.z = cosh(h.x) + diag * exp(-h.x);\n" " return res;\n" " }\n\n"); add_if("len_rotspace", "mediump float len_rotspace(vec4 h) { return 1. - h[3]; }\n"); add_if("len_h3", " mediump float len_h3(mediump vec4 x) { return x[3]; }\n"); add_if("len_sr", " mediump float len_sr(mediump vec4 x) { return 1.+x.x*x.x+x.y*x.y-x.z*x.z-x.w*x.w; }\n"); add_if("len_sl2"," mediump float len_sl2(mediump vec4 x) { return 1.+x.x*x.x+x.y*x.y; }\n"); add_if("len_s3", " mediump float len_s3(mediump vec4 x) { return 1.-x[3]; }\n"); add_if("len_x", " mediump float len_x(mediump vec4 x) { return length(x.xyz); }\n"); add_if("len_h2", " mediump float len_h2(mediump vec4 x) { return x[2]; }\n"); add_if("len_s2", " mediump float len_s2(mediump vec4 x) { return 1.-x[2]; }\n"); add_if("len_e2", " mediump float len_e2(mediump vec4 x) { return length(x.xy); }\n"); } void raygen::emit_raystarter() { if(gproduct) { string sgn=in_h2xe() ? "-" : "+"; fmain += " position = vw * vec4(0., 0., 1., 0.);\n" " mediump vec4 at1 = uLP * at0;\n"; if(in_e2xe()) fmain += " zpos = log(position.z);\n"; else fmain += " zpos = log(position.z*position.z"+sgn+"position.x*position.x"+sgn+"position.y*position.y)/2.;\n"; if(eyes) fmain += " vw *= exp(-zpos);\n"; else fmain += " position *= exp(-zpos);\n" " zspeed = at1.z;\n" " xspeed = length(at1.xy);\n" " tangent = vw * exp(-zpos) * vec4(at1.xy, 0, 0) / xspeed;\n"; } else if(!eyes) { fmain += " position = vw * vec4(0., 0., 0., 1.);\n" " tangent = vw * at0;\n"; } if(eyes) { fsh += "mediump uniform mat4 uEyeShift;\n"; fsh += "mediump uniform float uAbsUnit;\n"; } if(stretch::in()) { if(stretch::mstretch) { fsh += "mediump uniform mat4 uITOA;\n"; fsh += "mediump uniform mat4 uATOI;\n"; fsh += "mediump uniform mat4 uToOrig;\n"; fsh += "mediump uniform mat4 uFromOrig;\n"; fsh += "mediump mat4 toOrig;\n"; fsh += "mediump mat4 fromOrig;\n"; fmain += "toOrig = uToOrig;\n" "fromOrig = uFromOrig;\n"; fmain += "tangent = s_itranslate(toOrig * position) * toOrig * tangent;\n"; fmain += "tangent = uITOA * tangent;\n"; fmain += "tangent = fromOrig * s_translate(toOrig * position) * tangent;\n"; } else { fmain += "tangent = s_itranslate(position) * tangent;\n"; fmain += "tangent[2] /= " + glhr::to_glsl(stretch::not_squared()) + ";\n"; fmain += "tangent = s_translate(position) * tangent;\n"; } } } void raygen::create() { using glhr::to_glsl; currentmap->wall_offset(centerover); /* so raywall is not empty and deg is not zero */ deg = 0; auto samples = used_sample_list(); for(int i=0; i= e) break;\n" "mediump vec2 v = vec2(dot(" + getWall("i", 0) + ", pos), dot(" + getWall("i", 1) + ", pos));\n" "if(v.x >= 0. && v.y >= 0. && v.x + v.y <= 1.) return vec2(v.x+v.y, v.x-v.y);\n" "}\n" "return vec2(1, 1);\n" "}\n"; eyes = is_eyes(); fmain = "void main() {\n"; if(use_reflect) fmain += " bool depthtoset = true;\n"; if(many_cell_types && vid.stereo_mode != sODS) fmain += " walloffset = uWallOffset; sides = uSides;\n"; fmain += " mediump float left = 1.;\n" " gl_FragColor = vec4(0,0,0,1);\n"; if(vid.stereo_mode == sODS) fmain += " mediump float phi;\n" " mediump float yb;\n" " float xb = (at.x + 1.) / 2.;\n" " if(at.y < 0.) { phi = at.y * PI + PI/2.; yb = 0.516525; }\n" // right " else { phi = at.y * PI - PI/2.; yb = 0.016525; }\n" // left " mediump mat4 vw;\n" " mediump mat4 uLP;\n" " mediump vec4 at0 = yzspin(phi) * vec4(0., 0., 1., 0.);\n" " mediump vec4 pt = texture2D(tStart, vec2(xb, yb + 0.25));\n" " mediump vec2 uStartid = pt.xy;\n" " for(int i=0; i<4; i++) {\n" " mediump vec4 v = texture2D(tStart, vec2(xb, yb + float(i) / 32.));\n" " for(int j=0; j<4; j++) vw[j][i] = (v[j] - .5) * " + to_glsl(ray_scale) + ";\n" " v = texture2D(tStart, vec2(xb, yb + 0.125 + float(i) / 32.));\n" " for(int j=0; j<4; j++) uLP[j][i] = (v[j] - .5) * " + to_glsl(ray_scale) + ";\n" " }\n" " walloffset = int(pt.w * " + to_glsl(max_wall_offset) + ");\n" " sides = int(pt.w * " + to_glsl(max_wall_offset * max_celltype) + ") - " + its(max_celltype) + " * walloffset;\n"; else if(vid.stereo_mode == sEquirectangular) fmain += " mediump float lambda = at.x * PI;\n" // -PI to PI " mediump float phi = at.y * PI / 2.0;\n" " mediump mat4 vw = uStart;\n" " mediump vec4 at0 = xzspin(-lambda) * yzspin(phi) * vec4(0., 0., 1., 0.);\n"; else { fmain += " mediump mat4 vw = uStart;\n" " mediump vec4 at0 = at;\n" " at0.y = -at.y;\n" " at0.w = 0.;\n"; if(vid.stereo_mode == sPanini) fmain += "mediump float hr = at0.x*at0.x;\n" "mediump float alpha = " + to_glsl(get_stereo_param()) + ";\n" "mediump float A = 1. + hr;\n" "mediump float B = -2.*hr*alpha;\n" "mediump float C = 1. - hr*alpha*alpha;\n" "B /= A; C /= A;\n" "mediump float hz = B / 2. + sqrt(C + B*B/4.);\n" "if(abs(hz) > 1e-3) {" "at0.xyz *= hz+alpha;\n" "at0.z = hz;\n}" " else at0.z = 0.;\n" "\n" ; else if(vid.stereo_mode == sStereographic) fmain += "mediump float hr = at0.x*at0.x+at0.y*at0.y;\n" "mediump float alpha = " + to_glsl(get_stereo_param()) + ";\n" "mediump float A = 1. + hr;\n" "mediump float B = -2.*hr*alpha;\n" "mediump float C = 1. - hr*alpha*alpha;\n" "B /= A; C /= A;\n" "mediump float hz = B / 2. + sqrt(C + B*B/4.);\n" "if(abs(hz) > 1e-3) {" "at0.xyz *= hz+alpha;\n" "at0.z = hz;\n}" " else at0.z = 0.;\n" "\n" ; fmain += " at0.xyz = at0.xyz / length(at0.xyz);\n"; if(eyes) fmain += " at0.xyz /= uAbsUnit;\n"; } ld s = 1; #if CAP_VR if(eyes) s *= vrhr::absolute_unit_in_meters; #endif if(is_stepbased() || intra::in) fmain += " const mediump float maxstep = " + fts(maxstep_current() * s) + ";\n" " const mediump float minstep = " + fts(minstep * s) + ";\n" " mediump float next = maxstep;\n"; string fmain_prod, fmain_nprod; fmain += " mediump vec4 position;\n"; fmain += " mediump vec4 tangent;\n"; if(gproduct || intra::in) { fmain += " mediump float zspeed = 1.;\n"; fmain += " mediump float xspeed = 1.;\n"; fmain += " mediump float zpos = 0.;\n"; } if(intra::in) { int q = isize(intra::data); intra::resetter ir; for(int gid2=0; gid2>& v, GLint t, GLuint& tx, int id, int length) { if(t == -1) println(hlog, "bind to nothing"); glUniform1i(t, id); if(tx == 0) glGenTextures(1, &tx); glActiveTexture(GL_TEXTURE0 + id); GLERR("activeTexture"); glBindTexture(GL_TEXTURE_2D, tx); GLERR("bindTexture"); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); GLERR("texParameteri"); #ifdef GLES_ONLY glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, length, isize(v)/length, 0, GL_RGBA, GL_FLOAT, &v[0]); #else glTexImage2D(GL_TEXTURE_2D, 0, 0x8814 /* GL_RGBA32F */, length, isize(v)/length, 0, GL_RGBA, GL_FLOAT, &v[0]); #endif GLERR("bind_array"); } void uniform2(GLint id, array fl) { glUniform2f(id, fl[0], fl[1]); } color_t color_out_of_range = 0x0F0800FF; EX transmatrix get_ms(cell *c, int a, bool mirror) { int z = a ? 1 : -1; if(c->type == 3) { hyperpoint h = project_on_triangle( hybrid::get_corner(c, a, 0, z), hybrid::get_corner(c, a, 1, z), hybrid::get_corner(c, a, 2, z) ); transmatrix T = rspintox(h); if(mirror) T = T * MirrorX; return T * xpush(-2*hdist0(h)) * spintox(h); } else { hyperpoint h = Hypc; for(int a=0; atype; a++) { hyperpoint corner = hybrid::get_corner(c, a, 0, z); h += corner; } h /= c->type; h = normalize(h); ld d = cgi.emb->get_logical_z(h); if(mirror) return MirrorZ * lzpush(-2*d); else return lzpush(-2*d); } } int nesting; EX transmatrix mirrorize(transmatrix T) { T = inverse(T); hyperpoint h = tC0(T); ld d = hdist0(h); return rspintox(h) * xpush(d/2) * MirrorX * xpush(-d/2) * spintox(h); } transmatrix protect_prod(transmatrix T) { if(MDIM == 3) for(int i=0; i<4; i++) T[i][3] = T[3][i] = i == 3; return T; } struct raycast_map { int saved_frameid; int saved_map_version; vector lst; map ids; vector ms; int length, per_row, rows, mirror_shift, deg; vector> connections, wallcolor, texturemap, volumetric, portal_connections; void apply_shape() { length = 4096; deg = our_raygen.deg; per_row = length / deg; rows = next_p2((isize(lst)+per_row-1) / per_row); int q = length * rows; connections.resize(q); portal_connections.resize(q); wallcolor.resize(q); texturemap.resize(q); volumetric.resize(q); } void generate_initial_ms(cell *cs) { auto sa = used_sample_list(); ms.clear(); ms.resize(sa.back().first, Id); intra::resetter ir; for(auto& p: sa) { int id = p.first; cell *c = p.second; if(!c) continue; intra::may_switch_to(c); for(int j=0; jtype; j++) ms[id+j] = protect_prod(currentmap->ray_iadj(c, j)); if(WDIM == 2) for(int a: {0, 1}) { ms[id+c->type+a] = get_ms(c, a, false); } } // println(hlog, ms); mirror_shift = isize(ms); if(!sol && !nil && (reflect_val || reg3::ultra_mirror_in())) { ms.resize(mirror_shift * 2); for(auto& p: sa) { int id = p.first; cell *c = p.second; if(!c) continue; intra::may_switch_to(c); for(int j=0; jtype; j++) ms[mirror_shift+id+j] = protect_prod(mirrorize(ms[id+j])); if(WDIM == 2) for(int a: {0, 1}) { ms[mirror_shift+id+c->type+a] = get_ms(c, a, true); } } if(reg3::ultra_mirror_in()) { for(auto v: cgi.ultra_mirrors) ms.push_back(v); } } for(auto p: sa) { cell *c = p.second; if(!c) continue; intra::may_switch_to(c); int id =p.first; if(gproduct) { ms[id+c->type-2] = Id; ms[id+c->type-1] = Id; } } } void generate_cell_listing(cell *cs) { manual_celllister cl; cl.add(cs); bool optimize = !isWall3(cs); intra::resetter ir; // vector legaldir = { -1 }; for(int i=0; i 0 && c->wall == waBarrier) continue; if(optimize && isWall3(c)) continue; forCellIdCM(c2, d, c) { // if(reflect_val == 0 && !((1<tcw.at; if(rays_generate && c3->mpdist > 7) { intra::may_switch_to(c3); setdist(c3, 7, c); intra::may_switch_to(c2); } cl.add(c3); } } if(rays_generate) setdist(c2, 7, c); /* if(!cl.listed(c2)) legaldir.push_back(legaldir[i] &~ (1<<((d+3)%6)) ); */ cl.add(c2); if(isize(cl.lst) >= max_cells) goto finish; } } finish: lst = cl.lst; ids.clear(); for(int i=0; i enc(int i, int a) { array res; res[0] = ((i%per_row) * deg + a + .5) / length; res[1] = ((i / per_row) + .5) / rows; return res; } void generate_connections(cell *c, int id) { intra::may_switch_to(c); auto& vmap = volumetric::vmap; if(volumetric::on) { celldrawer dd; dd.c = c; dd.setcolors(); int u = (id/per_row*length) + (id%per_row * deg); color_t vcolor; if(vmap.count(c)) vcolor = vmap[c]; else vcolor = (backcolor << 8); volumetric[u] = glhr::acolor(vcolor); } forCellIdEx(c1_real, i, c) { cell *c1 = c1_real; const intra::connection_data *p = nullptr; if(intra::in) { cellwalker cw(c, i); p = at_or_null(intra::connections, cw); if(p) c1 = p->tcw.at; } int u = (id/per_row*length) + (id%per_row * deg) + i; if(!ids.count(c1)) { wallcolor[u] = glhr::acolor(color_out_of_range | 0xFF); texturemap[u] = glhr::makevertex(0.1,0,0); continue; } auto code = enc(ids[c1], 0); connections[u][0] = code[0]; connections[u][1] = code[1]; portal_connections[u][0] = 0; if(isWall3(c1)) { celldrawer dd; dd.c = c1; dd.setcolors(); shiftmatrix Vf; dd.set_land_floor(Vf); color_t wcol = darkena(dd.wcol, 0, 0xFF); int dv = get_darkval(c1, c->c.spin(i)); float p = 1 - dv / 16.; wallcolor[u] = glhr::acolor(wcol); for(int a: {0,1,2}) wallcolor[u][a] *= p; if(qfi.fshape) { texturemap[u] = floor_texture_map[qfi.fshape->id]; } else texturemap[u] = glhr::makevertex(0.1,0,0); } else { color_t col = transcolor(c, c1, winf[c->wall].color) | transcolor(c1, c, winf[c1->wall].color); if(col == 0) wallcolor[u] = glhr::acolor(0); else { int dv = get_darkval(c1, c->c.spin(i)); float p = 1 - dv / 16.; wallcolor[u] = glhr::acolor(col); for(int a: {0,1,2}) wallcolor[u][a] *= p; texturemap[u] = glhr::makevertex(0.001,0,0); } } int wo = intra::full_wall_offset(c); if(wo >= our_raygen.irays) { println(hlog, "wo=", wo, " irays = ", our_raygen.irays); reset_raycaster(); return; } if(p) { int k = isize(ms); auto bak = geometry; ms.push_back(p->T); geometry = bak; ms.push_back(p->id1.T); ms.push_back(p->id2.iT); connections[u][2] = (k+.5) / 1024.; portal_connections[u][0] = p->id1.kind / 16. + .5; portal_connections[u][1] = p->id1.d / 16 + .5; portal_connections[u][2] = p->id2.kind / 16. + .5; portal_connections[u][3] = p->id2.d / 16 + .5; } else { transmatrix T = currentmap->iadj(c, i) * inverse(ms[wo + i]); if(in_e2xe() && i >= c->type-2) T = Id; T = protect_prod(T); for(int k=0; k<=isize(ms); k++) { if(k < isize(ms) && !eqmatrix(ms[k], T, 1e-5)) continue; if(k == isize(ms)) ms.push_back(T); connections[u][2] = (k+.5) / 1024.; break; } } intra::resetter ir; intra::may_switch_to(c1); int wo1 = intra::full_wall_offset(c1); if(wo1 >= max_wall_offset) println(hlog, "error: wall_offset ", wo1, " exceeds ", max_wall_offset); if(c1->type >= max_celltype) println(hlog, "error: type " + its(c1->type) + " exceeds ", max_celltype); connections[u][3] = (wo1 * 1. / max_wall_offset) + (c1->type + (WDIM == 2 ? 2 : 0) + .5) * 1. / max_wall_offset / max_celltype; } if(WDIM == 2) for(int a: {0, 1}) { celldrawer dd; dd.c = c; dd.setcolors(); shiftmatrix Vf; dd.set_land_floor(Vf); int u = (id/per_row*length) + (id%per_row * deg) + c->type + a; wallcolor[u] = glhr::acolor(darkena(dd.fcol, 0, 0xFF)); if(qfi.fshape) texturemap[u] = floor_texture_map[qfi.fshape->id]; else texturemap[u] = glhr::makevertex(0.1,0,0); } } void generate_connections() { int id = 0; intra::resetter ir; for(cell* c: lst) if(!reset_rmap) generate_connections(c, id++); } bool gms_exceeded() { if(m_via_texture) return false; return isize(ms) > gms_array_size; } void assign_uniforms(raycaster* o) { if(!o) return; glUniform1i(o->uLength, length); GLERR("uniform mediump length"); if(m_via_texture) { int mlength = next_p2(isize(ms)); vector> m_map; m_map.resize(4 * mlength); for(int i=0; itM, txM, 7, mlength); glUniform1f(o->uInvLengthM, 1. / mlength); } else { vector gms; for(auto& m: ms) gms.push_back(glhr::tmtogl_transpose3(m)); glUniformMatrix4fv(o->uM, isize(gms), 0, gms[0].as_array()); } bind_array(wallcolor, o->tWallcolor, txWallcolor, 4, length); bind_array(connections, o->tConnections, txConnections, 3, length); bind_array(texturemap, o->tTextureMap, txTextureMap, 5, length); if(volumetric::on) bind_array(volumetric, o->tVolumetric, txVolumetric, 6, length); if(o->tPortalConnections != -1) bind_array(portal_connections, o->tPortalConnections, txPortalConnections, 1, length); if(o->uMirrorShift != -1) { glUniform1i(o->uMirrorShift, mirror_shift); } } void create_all(cell *cs) { saved_frameid = frameid; saved_map_version = mapeditor::map_version; generate_initial_ms(cs); generate_cell_listing(cs); apply_shape(); generate_connections(); } bool need_to_create(cell *cs) { if(!fixed_map && frameid != saved_frameid) return true; if(saved_map_version != mapeditor::map_version) return true; return !ids.count(cs); } }; unique_ptr rmap; EX bool reset_rmap = false; EX cell* rmap_get_by_id(int id) { return rmap->lst[id]; } EX int rmap_get_id_of(cell *c) { return rmap->ids[c]; } EX void reset_raycaster() { our_raycaster = nullptr; reset_rmap = true; rots::saved_matrices_ray = {}; } EX void reset_raycaster_map() { rmap = nullptr; } EX void load_walls(vector& wallx, vector& wally, vector& wallstart) { int q = 0; if(isize(wallx)) { q = isize(wallx); wallstart.pop_back(); } for(auto i: cgi.wallstart) wallstart.push_back(q + i); dynamicval g(geometry, gCubeTiling); for(auto& m: cgi.raywall) { wallx.push_back(glhr::pointtogl(m[0])); wally.push_back(glhr::pointtogl(m[1])); } } int ray_fixes_warn_from = 10; EX void rayfix(cell*& cs, transmatrix& T, transmatrix& msm) { int ray_fixes = 0; auto ocs = cs; hyperpoint TC0 = tile_center(); back: for(int a=0; atype; a++) if(hdist(currentmap->ray_iadj(cs, a) * T * C0, TC0) < hdist(T * C0, TC0)) { T = currentmap->iadj(cs, a) * T; if(our_raycaster->uToOrig != -1) { transmatrix HT = currentmap->adj(cs, a); HT = stretch::itranslate(tC0(HT)) * HT; msm = HT * msm; } cs = cs->move(a); ray_fixes++; if(ray_fixes > 100) { println(hlog, "major ray error"); return; } goto back; } if(ray_fixes >= ray_fixes_warn_from) println(hlog, "ray error x", ray_fixes, " centerover = ", ocs, " -> ", cs); } EX int ods_prec = 8192; EX void cast() { // may call itself recursively in case of bugs -- just in case... dynamicval dn(nesting, nesting+1); if(nesting > 10) return; if(isize(cgi.raywall) > our_raygen.irays) reset_raycaster(); enable_raycaster(); auto& o = our_raycaster; if(need_many_cell_types() && o->uWallOffset == -1 && vid.stereo_mode != sODS) { reset_raycaster(); cast(); return; } if(comparison_mode) glColorMask( GL_TRUE,GL_FALSE,GL_FALSE,GL_TRUE ); vector screen = { glhr::makevertex(-1, -1, 1), glhr::makevertex(-1, +1, 1), glhr::makevertex(+1, -1, 1), glhr::makevertex(-1, +1, 1), glhr::makevertex(+1, -1, 1), glhr::makevertex(+1, +1, 1) }; ld d = current_display->eyewidth(); if(vid.stereo_mode == sLR) d = 2 * d - 1; else d = -d; auto& cd = current_display; cd->set_viewport(global_projection); cd->set_mask(global_projection); #if CAP_VR if(o->uEyeShift != -1) { dynamicval g(geometry, gCubeTiling); transmatrix T = vrhr::eyeshift; if(nonisotropic) T = inverse(NLP) * T; glUniformMatrix4fv(o->uEyeShift, 1, 0, glhr::tmtogl_transpose(T).as_array()); glUniform1f(o->uAbsUnit, vrhr::absolute_unit_in_meters); } if(vrhr::rendering_eye()) { dynamicval g(geometry, gCubeTiling); glUniformMatrix4fv(o->uProjection, 1, 0, glhr::tmtogl_transpose(vrhr::eyeproj).as_array()); } #else if(0) ; #endif else if(among(vid.stereo_mode, sODS, sEquirectangular)) { glUniformMatrix4fv(o->uProjection, 1, 0, glhr::tmtogl_transpose(Id).as_array()); } else { dynamicval g(geometry, gCubeTiling); transmatrix proj = Id; proj = eupush(-global_projection * d, 0) * proj; proj = euscale(cd->tanfov / (vid.stereo_mode == sLR ? 2 : 1), cd->tanfov * cd->ysize / cd->xsize) * proj; proj = eupush(-((cd->xcenter-cd->xtop)*2./cd->xsize - 1), -((cd->ycenter-cd->ytop)*2./cd->ysize - 1)) * proj; glUniformMatrix4fv(o->uProjection, 1, 0, glhr::tmtogl_transpose(proj).as_array()); } if(!callhandlers(false, hooks_rayset, o)) { cell *cs = centerover; transmatrix T = cview().T; if(global_projection) T = xpush(vid.ipd * global_projection/2) * T; // todo fix for intra if(nonisotropic) T = NLP * T; T = inverse(T); virtualRebase(cs, T); transmatrix msm = stretch::mstretch_matrix; rayfix(cs, T, msm); if(vid.stereo_mode != sODS) glUniformMatrix4fv(o->uStart, 1, 0, glhr::tmtogl_transpose3(T).as_array()); if(o->uLP != -1) glUniformMatrix4fv(o->uLP, 1, 0, glhr::tmtogl_transpose3(inverse(NLP)).as_array()); GLERR("uniform mediump startid"); if(o->uITOA != -1) { glUniformMatrix4fv(o->uITOA, 1, 0, glhr::tmtogl_transpose3(stretch::m_itoa).as_array()); glUniformMatrix4fv(o->uATOI, 1, 0, glhr::tmtogl_transpose3(stretch::m_atoi).as_array()); } if(o->uToOrig != -1) { glUniformMatrix4fv(o->uToOrig, 1, 0, glhr::tmtogl_transpose3(msm).as_array()); glUniformMatrix4fv(o->uFromOrig, 1, 0, glhr::tmtogl_transpose3(inverse(msm)).as_array()); } if(o->uWallOffset != -1) { glUniform1i(o->uWallOffset, intra::full_wall_offset(cs)); glUniform1i(o->uSides, cs->type + (WDIM == 2 ? 2 : 0)); } vector wallx, wally; vector wallstart; if(intra::in) { intra::resetter ir; for(int i=0; i> w_map; w_map.resize(4 * wlength); ld minval = 9, maxval = -9; for(int i=0; i(minval, w_map[i][a]); minval = min(minval, w_map[i+wlength][a]); maxval = max(maxval, w_map[i][a]); maxval = max(maxval, w_map[i+wlength][a]); } } // println(hlog, "wallrange = ", tie(minval, maxval), " wallx = ", isize(wallx), " wallstart = ", isize(cgi.wallstart)); for(int i=0; itWall, txWall, 8, wlength); glUniform1f(o->uInvLengthWall, 1. / wlength); } else { glUniform1iv(o->uWallstart, isize(wallstart), &wallstart[0]); glUniform4fv(o->uWallX, isize(wallx), &wallx[0][0]); glUniform4fv(o->uWallY, isize(wally), &wally[0][0]); } if(o->uLevelLines != -1) glUniform1f(o->uLevelLines, levellines); if(o->uBinaryWidth != -1) glUniform1f(o->uBinaryWidth, vid.binary_width/2 * (nih?1:log(2))); #if CAP_SOLV if(o->uStraighten != -1) { glUniformMatrix4fv(o->uStraighten, 1, 0, glhr::tmtogl_transpose(asonov::straighten).as_array()); } if(o->uReflectX != -1) { auto h = glhr::pointtogl(tangent_length(spin90() * asonov::ty, 2)); glUniform4fv(o->uReflectX, 1, &h[0]); h = glhr::pointtogl(tangent_length(spin90() * asonov::tx, 2)); glUniform4fv(o->uReflectY, 1, &h[0]); } #endif if(o->uPLevel != -1) glUniform1f(o->uPLevel, cgi.plevel / 2); #if CAP_BT if(o->uBLevel != -1) glUniform1f(o->uBLevel, log(bt::expansion()) / 2); #endif if(o->uLinearSightRange != -1) glUniform1f(o->uLinearSightRange, sightranges[geometry]); glUniform1f(o->uExpDecay, exp_decay_current()); glUniform1f(o->uExpStart, exp_start); auto cols = glhr::acolor(darkena(backcolor, 0, 0xFF)); if(o->uFogColor != -1) glUniform4f(o->uFogColor, cols[0], cols[1], cols[2], cols[3]); if(reset_rmap) rmap = nullptr, reset_rmap = false; if(!rmap) rmap = (unique_ptr) new raycast_map; if(rmap->need_to_create(cs)) { rmap->create_all(cs); if(reset_rmap) { reset_raycaster(); cast(); return; } if(rmap->gms_exceeded()) { if(isize(rmap->ms) > gms_limit || can_via_texture) { m_via_texture = true; wall_via_texture = true; println(hlog, "enabling m_via_texture"); reset_raycaster(); cast(); } else { gms_array_size = isize(rmap->ms); println(hlog, "changing gms_array_size to ", gms_array_size); reset_raycaster(); cast(); } return; } rmap->assign_uniforms(&*o); } // we may learn about this now... if(need_many_cell_types() && o->uWallOffset == -1 && vid.stereo_mode != sODS) { reset_raycaster(); cast(); return; } GLERR("uniform mediump start"); if(!o) { cast(); return; } if(vid.stereo_mode == sODS) { vector> tstart(ods_prec * 32); for(int y=0; y<2; y++) for(int x=0; x ok int xb = x + y * ods_prec * 16; dynamicval tco(centerover); dynamicval tfd(walking::floor_dir); dynamicval tof(walking::on_floor_of); dynamicval tis(intra::scale); dynamicval tN(NLP, NLP); dynamicval tV(View, View); dynamicval tC(current_display->which_copy, current_display->which_copy); dynamicval trt(current_display->radar_transform); int id = intra::current; cell *cov = centerover; finalizer fin([&] { if(intra::current != id) { intra::switch_to(id); } centerover = cov; }); auto T1 = T; View = inverse(T1); // if(nonisotropic) View = inverse(NLP) * View; centerover = cs; ld eye = y == 0 ? vid.ipd / 2. : -vid.ipd / 2.; rotate_view(cspin(0, 2, -lambda)); shift_view(xtangent(eye)); if(nonisotropic) { auto T = View; transmatrix T2 = eupush( tC0(view_inverse(T)) ); NLP = T * T2; } T1 = inverse(View); virtualRebase(centerover, T1); rayfix(centerover, T1, msm); T1 = protect_prod(T1); for(int a=0; a<4; a++) for(int b=0; b<4; b++) { tstart[xb + a * ods_prec][b] = T1[a][b]/ray_scale + .5; } auto mLP = protect_prod(inverse(NLP)); for(int a=0; a<4; a++) for(int b=0; b<4; b++) { tstart[xb + (a+4) * ods_prec][b] = mLP[a][b]/ray_scale + .5; } auto enc = rmap->enc(rmap->ids[centerover], 0); tstart[xb + 8 * ods_prec][0] = enc[0]; tstart[xb + 8 * ods_prec][1] = enc[1]; int wo1 = intra::full_wall_offset(centerover); int sides = centerover->type + (WDIM == 2 ? 2 : 0); tstart[xb + 8 * ods_prec][3] = (wo1 * 1. / max_wall_offset) + (sides + .5) * 1. / max_wall_offset / max_celltype; } if(vid.stereo_mode != sODS) glUniformMatrix4fv(o->uStart, 1, 0, glhr::tmtogl_transpose3(T).as_array()); bind_array(tstart, o->tStart, txStart, 10, ods_prec); } else uniform2(o->uStartid, rmap->enc(rmap->ids[cs], 0)); } #if CAP_VERTEXBUFFER glhr::bindbuffer_vertex(screen); glVertexAttribPointer(hr::aPosition, 4, GL_FLOAT, GL_FALSE, sizeof(glvertex), 0); #else glVertexAttribPointer(hr::aPosition, 4, GL_FLOAT, GL_FALSE, sizeof(glvertex), &screen[0]); #endif if(ray::comparison_mode) glhr::set_depthtest(false); else { glhr::set_depthtest(true); glhr::set_depthwrite(true); } glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); if(!floor_textures) { println(hlog, "make_floor_textures called"); make_floor_textures(); check_cgi(); } glActiveTexture(GL_TEXTURE0 + 0); glBindTexture(GL_TEXTURE_2D, floor_textures->renderedTexture); GLERR("bind"); glDrawArrays(GL_TRIANGLES, 0, 6); GLERR("finish"); } EX namespace volumetric { EX bool on; EX map vmap; int intensity = 16; EX void enable() { if(!on) { on = true; reset_raycaster(); } } EX void random_fog() { enable(); for(cell *c: currentmap->allcells()) vmap[c] = ((rand() % 0x1000000) << 8) | intensity; } EX void menu() { cmode = sm::SIDE | sm::MAYDARK; gamescreen(); dialog::init(XLAT("volumetric raycasting")); if(!cheater) { dialog::addItem(XLAT("enable the cheat mode for additional options"), 'X'); dialog::add_action(enable_cheat); dialog::addBack(); dialog::display(); return; } dialog::addBoolItem(XLAT("active"), on, 'a'); dialog::add_action([&] { on = !on; reset_raycaster(); }); dialog::addSelItem(XLAT("intensity of random coloring"), its(intensity), 'i'); dialog::add_action([] { dialog::editNumber(intensity, 0, 255, 5, 15, "", ""); dialog::get_di().reaction = random_fog; }); dialog::addItem(XLAT("color randomly"), 'r'); dialog::add_action(random_fog); dialog::addColorItem("color cell under cursor", vmap.count(centerover) ? vmap[centerover] : 0, 'c'); dialog::add_action([&] { enable(); dialog::openColorDialog(vmap[centerover]); dialog::get_di().dialogflags |= sm::SIDE; }); dialog::addColorItem("color cell under player", vmap.count(cwt.at) ? vmap[cwt.at] : 0, 'p'); dialog::add_action([&] { enable(); dialog::openColorDialog(vmap[cwt.at]); dialog::get_di().dialogflags |= sm::SIDE; }); dialog::addBreak(150); dialog::addHelp("This fills all the cells with glowing fog, for cool visualizations"); dialog::addBreak(150); dialog::addBack(); dialog::display(); } EX } EX void configure() { cmode = sm::SIDE | sm::MAYDARK; gamescreen(); dialog::init(XLAT("raycasting configuration")); dialog::addBoolItem(XLAT("available in current geometry"), available(), 0); dialog::addBoolItem(XLAT("use raycasting?"), want_use == 2 ? true : in_use, 'u'); if(want_use == 1) dialog::lastItem().value = XLAT("SMART"); dialog::add_action([] { want_use++; want_use %= 3; }); dialog::addBoolItem_action(XLAT("comparison mode"), comparison_mode, 'c'); dialog::addSelItem(XLAT("exponential range"), fts(exp_decay_current()), 'r'); dialog::add_action([&] { dialog::editNumber(exp_decay_current(), 0, 40, 0.25, 5, XLAT("exponential range"), XLAT("brightness formula: max(1-d/sightrange, s*exp(-d/r))") ); }); dialog::addSelItem(XLAT("exponential start"), fts(exp_start), 's'); dialog::add_action([&] { dialog::editNumber(exp_start, 0, 1, 0.1, 1, XLAT("exponential start"), XLAT("brightness formula: max(1-d/sightrange, s*exp(-d/r))\n") ); }); if(hard_limit < NO_LIMIT) dialog::addSelItem(XLAT("hard limit"), fts(hard_limit), 'H'); else dialog::addBoolItem(XLAT("hard limit"), false, 'H'); dialog::add_action([&] { if(hard_limit >= NO_LIMIT) hard_limit = 10; dialog::editNumber(hard_limit, 0, 100, 1, 10, XLAT("hard limit"), ""); dialog::get_di().reaction = reset_raycaster; dialog::get_di().extra_options = [] { dialog::addItem("no limit", 'N'); dialog::add_action([] { hard_limit = NO_LIMIT; reset_raycaster(); }); }; }); if(!nil) { dialog::addSelItem(XLAT("reflective walls"), fts(reflect_val), 'R'); dialog::add_action([&] { dialog::editNumber(reflect_val, 0, 1, 0.1, 0, XLAT("reflective walls"), ""); dialog::get_di().reaction = reset_raycaster; }); } if(is_stepbased()) { dialog::addSelItem(XLAT("max step"), fts(maxstep_current()), 'x'); dialog::add_action([] { auto& ms = maxstep_current(); dialog::editNumber(maxstep_current(), 1e-6, 1, .1, &ms == &maxstep_pro ? .05 : &ms == &maxstep_nil ? .1 : .5, XLAT("max step"), "affects the precision of solving the geodesic equation in Solv"); dialog::scaleLog(); dialog::bound_low(1e-9); dialog::get_di().reaction = reset_raycaster; }); dialog::addSelItem(XLAT("min step"), fts(minstep), 'n'); dialog::add_action([] { dialog::editNumber(minstep, 1e-6, 1, 0.1, 0.001, XLAT("min step"), "how precisely should we find out when do cross the cell boundary"); dialog::scaleLog(); dialog::bound_low(1e-9); dialog::get_di().reaction = reset_raycaster; }); } dialog::addBoolItem(XLAT("volumetric raycasting"), volumetric::on, 'v'); dialog::add_action_push(volumetric::menu); dialog::addSelItem(XLAT("iterations"), its(max_iter_current()), 's'); dialog::add_action([&] { dialog::editNumber(max_iter_current(), 0, 600, 1, 60, XLAT("iterations"), "in H3/H2xE/E3 this is the number of cell boundaries; in nonisotropic, the number of simulation steps"); dialog::get_di().reaction = reset_raycaster; }); dialog::addSelItem(XLAT("max cells"), its(max_cells), 's'); dialog::add_action([&] { dialog::editNumber(max_cells, 16, 131072, 0.1, 4096, XLAT("max cells"), ""); dialog::scaleLog(); dialog::get_di().extra_options = [] { dialog::addBoolItem_action("generate", rays_generate, 'G'); dialog::addColorItem(XLAT("out-of-range color"), color_out_of_range, 'X'); dialog::add_action([] { dialog::openColorDialog(color_out_of_range); dialog::get_di().dialogflags |= sm::SIDE; }); }; }); dialog::addBoolItem_action(XLAT("the map is fixed (improves performance)"), ray::fixed_map, 'F'); if(gms_array_size > gms_limit && ray::in_use) { dialog::addBreak(100); dialog::addHelp(XLAT("unfortunately this honeycomb is too complex for the current implementation (%1>%2)", its(gms_array_size), its(gms_limit))); } edit_levellines('L'); dialog::addBack(); dialog::display(); } #if CAP_COMMANDLINE int readArgs() { using namespace arg; if(0) ; else if(argis("-ray-do")) { PHASEFROM(2); want_use = 2; } else if(argis("-ray-dont")) { PHASEFROM(2); want_use = 0; } else if(argis("-ray-smart")) { PHASEFROM(2); want_use = 1; } else if(argis("-ray-range")) { PHASEFROM(2); shift_arg_formula(exp_start, reset_raycaster); shift_arg_formula(exp_decay_current(), reset_raycaster); } else if(argis("-ray-hard")) { PHASEFROM(2); shift_arg_formula(hard_limit); } else if(argis("-ray-out")) { PHASEFROM(2); shift(); color_out_of_range = argcolor(32); } else if(argis("-ray-comp")) { PHASEFROM(2); comparison_mode = true; } else if(argis("-ray-sol")) { PHASEFROM(2); shift(); max_iter_sol = argi(); shift_arg_formula(maxstep_sol, reset_raycaster); reset_raycaster(); } else if(argis("-ray-iter")) { PHASEFROM(2); shift(); max_iter_current() = argi(); } else if(argis("-ray-step")) { PHASEFROM(2); println(hlog, "maxstep_current() is ", maxstep_current()); shift_arg_formula(maxstep_current()); } else if(argis("-ray-cells")) { PHASEFROM(2); shift(); rays_generate = true; max_cells = argi(); } else if(argis("-ray-reflect")) { PHASEFROM(2); shift_arg_formula(reflect_val, reset_raycaster); } else if(argis("-ray-cells-no")) { PHASEFROM(2); shift(); rays_generate = false; max_cells = argi(); } else if(argis("-ray-random")) { start_game(); shift(); volumetric::intensity = argi(); volumetric::random_fog(); } else if(argis("-ray-cursor")) { start_game(); volumetric::enable(); shift(); volumetric::vmap[centerover] = argcolor(32); } else return 1; return 0; } auto hook = addHook(hooks_args, 100, readArgs) + addHook(hooks_clearmemory, 40, [] { rmap = {}; }); #endif #if CAP_CONFIG void addconfig() { param_f(exp_start, "ray_exp_start"); param_f(exp_decay_exp, "ray_exp_decay_exp"); param_f(maxstep_sol, "ray_maxstep_sol"); param_f(maxstep_nil, "ray_maxstep_nil"); param_f(minstep, "ray_minstep"); param_f(reflect_val, "ray_reflect_val"); param_f(hard_limit, "ray_hard_limit"); param_i(want_use, "ray_want_use"); param_f(exp_decay_poly, "ray_exp_decay_poly"); addsaver(max_iter_iso, "ray_max_iter_iso"); addsaver(max_iter_sol, "ray_max_iter_sol"); param_i(max_cells, "ray_max_cells"); addsaver(rays_generate, "ray_generate"); param_b(fixed_map, "ray_fixed_map"); param_i(max_wall_offset, "max_wall_offset"); param_i(max_celltype, "max_celltype"); } auto hookc = addHook(hooks_configfile, 100, addconfig); #endif #endif #if !CAP_RAY EX always_false in_use; EX always_false comparison_mode; EX void reset_raycaster() { } EX void cast() { } #endif EX } }