1
0
mirror of https://github.com/zenorogue/hyperrogue.git synced 2025-01-20 06:03:01 +00:00

3d:: rug uses the new functions

This commit is contained in:
? 2019-02-27 19:34:05 +01:00 committed by Zeno Rogue
parent 041c7af987
commit f27bf01474
2 changed files with 27 additions and 26 deletions

31
rug.cpp
View File

@ -81,12 +81,12 @@ transmatrix orthonormalize(hyperpoint h1, hyperpoint h2) {
for(int i=0; i<3; i++) { for(int i=0; i<3; i++) {
for(int j=0; j<i; j++) vec[i] -= vec[j] * (vec[i] | vec[j]); for(int j=0; j<i; j++) vec[i] -= vec[j] * (vec[i] | vec[j]);
if(zero3(vec[i])) { if(zero_d(3, vec[i])) {
// 'random' direction // 'random' direction
vec[i] = hpxyz(1.12, 1.512+i, 1.12904+i); vec[i] = hpxyz(1.12, 1.512+i, 1.12904+i);
for(int j=0; j<i; j++) vec[i] -= vec[j] * (vec[i] | vec[j]); for(int j=0; j<i; j++) vec[i] -= vec[j] * (vec[i] | vec[j]);
} }
vec[i] /= hypot3(vec[i]); vec[i] /= hypot_d(3, vec[i]);
} }
transmatrix M; transmatrix M;
@ -133,7 +133,7 @@ hyperpoint hyperboloid_to_azeq(hyperpoint h) {
else { else {
ld d = hdist0(h); ld d = hdist0(h);
if(d == 0) { h[2] = 0; return h; } if(d == 0) { h[2] = 0; return h; }
ld d2 = hypot2(h); ld d2 = hypot_d(2, h);
if(d2 == 0) { h[2] = 0; return h; } if(d2 == 0) { h[2] = 0; return h; }
h[0] = d * h[0] / d2; h[0] = d * h[0] / d2;
h[1] = d * h[1] / d2; h[1] = d * h[1] / d2;
@ -162,7 +162,7 @@ void push_point(hyperpoint& h, int coord, ld val) {
h[coord] += val; h[coord] += val;
else if(!val) return; else if(!val) return;
else { else {
// if(zero3(h)) { h[0] = 1e-9; h[1] = 1e-10; h[2] = 1e-11; } // if(zero_d(3, h)) { h[0] = 1e-9; h[1] = 1e-10; h[2] = 1e-11; }
normalizer n(hpxyz(coord==0,coord==1,coord==2), h); normalizer n(hpxyz(coord==0,coord==1,coord==2), h);
hyperpoint f = n(h); hyperpoint f = n(h);
h = n[xpush(val) * f]; h = n[xpush(val) * f];
@ -200,7 +200,7 @@ rugpoint *addRugpoint(hyperpoint h, double dist) {
if(euwrap && !bounded) { if(euwrap && !bounded) {
hyperpoint h1 = eumove(torusconfig::sdx, torusconfig::sdy) * C0; hyperpoint h1 = eumove(torusconfig::sdx, torusconfig::sdy) * C0;
h1 /= sqhypot2(h1); h1 /= sqhypot_d(2, h1);
if(nonorientable) h1 /= 2; if(nonorientable) h1 /= 2;
m->valid = good_shape = true; m->valid = good_shape = true;
ld d = h1[0] * h[1] - h1[1] * h[0]; ld d = h1[0] * h[1] - h1[1] * h[0];
@ -211,7 +211,7 @@ rugpoint *addRugpoint(hyperpoint h, double dist) {
USING_NATIVE_GEOMETRY; USING_NATIVE_GEOMETRY;
hyperpoint hpoint = ypush(modelscale) * xpush0(modelscale * d * 2 * M_PI); hyperpoint hpoint = ypush(modelscale) * xpush0(modelscale * d * 2 * M_PI);
ld hpdist = hdist0(hpoint); ld hpdist = hdist0(hpoint);
ld z = hypot2(hpoint); ld z = hypot_d(2, hpoint);
if(z==0) z = 1; if(z==0) z = 1;
hpoint = hpoint * hpdist / z; hpoint = hpoint * hpdist / z;
@ -245,7 +245,7 @@ rugpoint *addRugpoint(hyperpoint h, double dist) {
m->valid = good_shape = true; m->valid = good_shape = true;
ld d = hdist0(h); ld d = hdist0(h);
ld d0 = hypot2(h); if(!d0) d0 = 1; ld d0 = hypot_d(2, h); if(!d0) d0 = 1;
hyperpoint hpoint; hyperpoint hpoint;
bool orig_euclid = euclid; bool orig_euclid = euclid;
@ -266,7 +266,7 @@ rugpoint *addRugpoint(hyperpoint h, double dist) {
} }
ld hpdist = hdist0(hpoint); ld hpdist = hdist0(hpoint);
ld z = hypot2(hpoint); ld z = hypot_d(2, hpoint);
if(z==0) z = 1; if(z==0) z = 1;
m->flat = hpxyz(hpdist * h[0]/d0 * hpoint[1] / z, hpdist * h[1]/d0 * hpoint[1] / z, -hpdist * hpoint[0] / z); m->flat = hpxyz(hpdist * h[0]/d0 * hpoint[1] / z, hpdist * h[1]/d0 * hpoint[1] / z, -hpdist * hpoint[0] / z);
} }
@ -285,8 +285,9 @@ rugpoint *addRugpoint(hyperpoint h, double dist) {
} }
rugpoint *findRugpoint(hyperpoint h) { rugpoint *findRugpoint(hyperpoint h) {
using namespace hyperpoint_vec;
for(int i=0; i<isize(points); i++) for(int i=0; i<isize(points); i++)
if(intvalxyz(points[i]->h, h) < 1e-5) return points[i]; if(sqhypot_d(3, points[i]->h - h) < 1e-5) return points[i];
return NULL; return NULL;
} }
@ -909,7 +910,7 @@ typedef array<ld, 4> hyperpoint4;
hyperpoint4 azeq_to_4(const hyperpoint& h) { hyperpoint4 azeq_to_4(const hyperpoint& h) {
array<ld, 4> res; array<ld, 4> res;
ld rad = hypot3(h); ld rad = hypot_d(3, h);
res[3] = cos(rad); res[3] = cos(rad);
ld sr = sin(rad) / rad; ld sr = sin(rad) / rad;
for(int j=0; j<3; j++) res[j] = h[j] * sr; for(int j=0; j<3; j++) res[j] = h[j] * sr;
@ -941,7 +942,7 @@ bincode get_bincode(hyperpoint h) {
case gcEuclid: case gcEuclid:
return acd_bin(h[0]) + acd_bin(h[1]) * sY + acd_bin(h[2]) * sZ; return acd_bin(h[0]) + acd_bin(h[1]) * sY + acd_bin(h[2]) * sZ;
case gcHyperbolic: case gcHyperbolic:
return acd_bin(hypot3(h)); return acd_bin(hypot_d(3, h));
case gcSphere: { case gcSphere: {
auto p = azeq_to_4(h); auto p = azeq_to_4(h);
return acd_bin(p[0]) + acd_bin(p[1]) * sY + acd_bin(p[2]) * sZ + acd_bin(p[3]) * sT; return acd_bin(p[0]) + acd_bin(p[1]) * sY + acd_bin(p[2]) * sZ + acd_bin(p[3]) * sT;
@ -1089,7 +1090,7 @@ void getco(rugpoint *m, hyperpoint& h, int &spherepoints) {
h = use_precompute ? m->getglue()->precompute : m->getglue()->flat; h = use_precompute ? m->getglue()->precompute : m->getglue()->flat;
if(rug_perspective && gwhere >= gSphere) { if(rug_perspective && gwhere >= gSphere) {
if(h[2] > 0) { if(h[2] > 0) {
ld rad = hypot3(h); ld rad = hypot_d(3, h);
// turn M_PI to -M_PI // turn M_PI to -M_PI
// the only difference between sphere and elliptic is here: // the only difference between sphere and elliptic is here:
// in elliptic, we subtract PI from the distance // in elliptic, we subtract PI from the distance
@ -1126,7 +1127,7 @@ bool project_ods(hyperpoint azeq, hyperpoint& h1, hyperpoint& h2, bool eye) {
if(!sphere) tanalpha = -tanalpha; if(!sphere) tanalpha = -tanalpha;
using namespace hyperpoint_vec; using namespace hyperpoint_vec;
ld d = hypot3(azeq); ld d = hypot_d(3, azeq);
ld sindbd = sin_auto(d)/d, cosd = cos_auto(d); ld sindbd = sin_auto(d)/d, cosd = cos_auto(d);
ld x = azeq[0] * sindbd; ld x = azeq[0] * sindbd;
@ -1185,7 +1186,7 @@ void drawTriangle(triangle& t) {
pts[i] = t.m[i]->getglue()->flat; pts[i] = t.m[i]->getglue()->flat;
hyperpoint hc = (pts[1] - pts[0]) ^ (pts[2] - pts[0]); hyperpoint hc = (pts[1] - pts[0]) ^ (pts[2] - pts[0]);
double hch = hypot3(hc); double hch = hypot_d(3, hc);
ld col = (2 + hc[0]/hch) / 3; ld col = (2 + hc[0]/hch) / 3;
@ -1251,7 +1252,7 @@ void drawTriangle(triangle& t) {
if(spherepoints == 1 || spherepoints == 2) return; if(spherepoints == 1 || spherepoints == 2) return;
hyperpoint hc = (h[1] - h[0]) ^ (h[2] - h[0]); hyperpoint hc = (h[1] - h[0]) ^ (h[2] - h[0]);
double hch = hypot3(hc); double hch = hypot_d(3, hc);
ld col = (2 + hc[0]/hch) / 3; ld col = (2 + hc[0]/hch) / 3;

View File

@ -235,12 +235,12 @@ dexp_data dexp(hyperpoint p, hyperpoint t) {
transmatrix T = build_matrix(coord_derivative(p, 0), coord_derivative(p, 1), Hypc); transmatrix T = build_matrix(coord_derivative(p, 0), coord_derivative(p, 1), Hypc);
// printf("Tt = %lf\n", hypot3(T * t)); // printf("Tt = %lf\n", hypot_d(3, T * t));
p += t * eps; p += t * eps;
if(!is_inbound(p) || surface_branch(p) != b) if(!is_inbound(p) || surface_branch(p) != b)
return { p - t * eps, t, hypot3(t) * (1-u) / precision }; return { p - t * eps, t, hypot_d(3, t) * (1-u) / precision };
auto v0 = coord_derivative(p, 0); auto v0 = coord_derivative(p, 0);
auto v1 = coord_derivative(p, 1); auto v1 = coord_derivative(p, 1);
@ -255,7 +255,7 @@ dexp_data dexp(hyperpoint p, hyperpoint t) {
dexp_data map_to_surface(hyperpoint p, const dexp_origin& dor) { dexp_data map_to_surface(hyperpoint p, const dexp_origin& dor) {
hyperpoint h = dor.H * p; hyperpoint h = dor.H * p;
ld rad = hypot2(h); ld rad = hypot_d(2, h);
if(rad == 0) rad = 1; if(rad == 0) rad = 1;
ld d = hdist0(h); ld d = hdist0(h);
@ -273,10 +273,10 @@ transmatrix create_M_matrix(hyperpoint zero, hyperpoint v1) {
transmatrix T = build_matrix(Te0, Te1, Hypc); transmatrix T = build_matrix(Te0, Te1, Hypc);
v1 = v1 / hypot3(T*v1); v1 = v1 / hypot_d(3, T*v1);
hyperpoint v2 = hpxyz(1e-3, 1e-4, 0); hyperpoint v2 = hpxyz(1e-3, 1e-4, 0);
v2 = v2 - v1 * ((T*v1) | (T*v2)) / hypot3(T*v1); v2 = v2 - v1 * ((T*v1) | (T*v2)) / hypot_d(3, T*v1);
v2 = v2 / hypot3(T*v2); v2 = v2 / hypot_d(3, T*v2);
if((((T*v1) ^ (T*v2)) | ((T*unit_vector[0]) ^ (T*unit_vector[1]))) < 0) if((((T*v1) ^ (T*v2)) | ((T*unit_vector[0]) ^ (T*unit_vector[1]))) < 0)
v2 = v2 * -1; v2 = v2 * -1;
@ -286,7 +286,7 @@ transmatrix create_M_matrix(hyperpoint zero, hyperpoint v1) {
println(hlog, M); println(hlog, M);
println(hlog, "M matrix test: ", println(hlog, "M matrix test: ",
make_tuple(hypot3(T*M*unit_vector[0]), hypot3(T*M*unit_vector[1]), hypot3(T*M*(unit_vector[0]+unit_vector[1])), make_tuple(hypot_d(3, T*M*unit_vector[0]), hypot_d(3, T*M*unit_vector[1]), hypot_d(3, T*M*(unit_vector[0]+unit_vector[1])),
((T*M*unit_vector[0]) | (T*M*unit_vector[1])))); ((T*M*unit_vector[0]) | (T*M*unit_vector[1]))));
return M; return M;
@ -336,7 +336,7 @@ hyperpoint kuen_cross(ld v, ld u) {
ld kuen_hypot(ld v, ld u) { ld kuen_hypot(ld v, ld u) {
auto du = coord_derivative(hpxyz(v,u,0), 0); auto du = coord_derivative(hpxyz(v,u,0), 0);
auto dv = coord_derivative(hpxyz(v,u,0), 1); auto dv = coord_derivative(hpxyz(v,u,0), 1);
auto n = hypot3(du^dv); auto n = hypot_d(3, du^dv);
return n; return n;
} }
@ -377,7 +377,7 @@ void draw_kuen_map() {
ld u = 2 * M_PI * (h+.5) / 512; ld u = 2 * M_PI * (h+.5) / 512;
auto du = coord_derivative(hpxyz(v,u,0), 0); auto du = coord_derivative(hpxyz(v,u,0), 0);
auto dv = coord_derivative(hpxyz(v,u,0), 1); auto dv = coord_derivative(hpxyz(v,u,0), 1);
auto n = hypot3(du^dv); auto n = hypot_d(3, du^dv);
if(n > nmax) nmax = n; if(n > nmax) nmax = n;
if(i == 1) { if(i == 1) {
@ -525,7 +525,7 @@ void run_kuen() {
if(!r[i]) looks_good = false; if(!r[i]) looks_good = false;
if(!looks_good) continue; if(!looks_good) continue;
for(int i=0; i<3; i++) for(int i=0; i<3; i++)
if(hypot3(r[i]->flat - r[(i+1)%3]->flat) > .2) if(hypot_d(3, r[i]->flat - r[(i+1)%3]->flat) > .2)
looks_good = false; looks_good = false;
if(looks_good) if(looks_good)
addTriangleV(r[0], r[1], r[2]); addTriangleV(r[0], r[1], r[2]);
@ -616,7 +616,7 @@ void run_shape(eShape s) {
break; break;
case dsHemisphere: case dsHemisphere:
run_function([] (hyperpoint h) { h = h / h[2]; h[2] = sqrt(1 - sqhypot2(h)); return h; }); run_function([] (hyperpoint h) { h = h / h[2]; h[2] = sqrt(1 - sqhypot_d(2, h)); return h; });
break; break;
} }